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Motivation

© Model that includes the rigid and the flexible dynamics

@ Control law that moves the system in the desired
configuration and stabilizes the flexible deformations
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Motivation

Models' possible dynamics:

@ Actuator inertia dynamics
— ODE

@ Rigid dynamics — ODE
o Flexible dynamics — PDE
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Figure: Model composed by the
interconnection between ODE and PDE
with input on the ODE.
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Motivation

Models' possible dynamics:

@ Actuator inertia dynamics o Model
— ODE Y I Finite
@ Rigid dynamics — ODE 3 Dimensional
o Flexible dynamics — PDE | r ODE
| L Infinite
. 1 Dimensional
We restrict our study on: 3 PDE

e Boundary control systems o

. Figure: Model composed by the
@ Linear model

Inea ,Ode_s interconnection between ODE and PDE
(ApprOX|mat|on) with input on the ODE.

@ First order PDE
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Motivation

We focus on the port-Hamiltonian
(PH) framework. m-PH Model
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Figure: Mixed port-Hamiltonian
(m-PH) system.
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Motivation

We focus on the port-Hamiltonian

(PH) framework. m-PH Model
—

We restrict our analysis to models 7 Dimelrr:;i(e)nal >
without internal dissipation. ! ’—' PHS
Therefore:

@ Energy is a conserved quantity L Infinite

o | Dimensional
@ Dissipation can be added only | PHS u,

through the control law T

Figure: Mixed port-Hamiltonian
(m-PH) system.



Overview

@ Introduction

o Strong dissipation feedback

© Strong dissipation & position control
@ Comparison of the control laws

@ Conclusions, ConFlex fellowship & future plans
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Introduction

Let z € L»(]0, L], R"), p € R™ and consider the following m-pH

system
—C1H 0| |p u

with the properties,

o H € CY([0, L]; R™™), H(&) is self adjoint for all ¢ € [0, L] and
cl <H(E) < Cl forall £ €[0,L] and some C,c >0
independent of £

@ P; € R™" is invertible and self adjoint, Py € R™" is skew
adjoint

e MeR™™is M >0 and symmetric
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Introduction

Define the extended state x = [z p]T € X = L»([0, L], R") x R™

Ay [ o [l

D(An ) {X € X |ze€H, Bi(Hz) = M~1p, By(Hz) = 0}.

Input output operators, with u, = B1(Hz) and y, = C1(Hz)

o [s6][1]e

= 2] - i)

(1)
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Control Design & Stability Analysis
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Figure: Control problem of a class of m-PH system.

Conclusions
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Control Design & Stability Analysis

y
u m-pH >
*|  System J Yz
Controller

A

Figure: Control problem of a class of m-PH system.

Control objectives using y and y,:

© Stabilise the system to the origin, i.e. the state x = [z p] "

has to be such that x(t) T 0

@ Stabilise the system to a desired position, i.e. the state

x = [z p q]" has to be such that x(t) = 0

Conclusions
000000
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Strong dissipation feedback: Exponential stability

Consider R,, K, € R™*™ diagonal and positive definite

Strong dissipation

Classical dissipation Additional term

-1 d -1
u= —-RMp -— pa(cl(Hz))—Rp/\/l KpC1(Hz)
y
u m_pH Lt
System J Yz
Ry, |« 1
) Koge [*

ey
5

X
y

Conclusions
000000
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Strong dissipation feedback: Exponential stability

Closed-loop operator

A
[z'] _ [ P H + PoH 0 ] ﬂ
Pl =1+ RMIK)CH — Ky $CiH —R,M™1] |p
D(A1) ={x € X | z € H, Bi(Hz) = M~1p, By(Hz) = 0}
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Strong dissipation feedback: Exponential stability

Closed-loop operator

A

[z’] _ [ P + PoH 0 ] H
Pl (I + RoMIK)CiH — Ky $CiH —R,M~1] [p

D(A1) = {x € X | z€ H}, Bi(Hz) = M~1p, By(Hz) =0}

Change of variables n = p + K,C1(H2)

A

z| Pla%’H + PoH z

nl —C1H —Rp M Ly

D(A) = {x € X | z€ HY, Bi(Hz) = M~1(n — K,C1(Hz)),
By(Hz) =0}
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Strong dissipation feedback: Exponential stability

u

@

Yz z=Jz u;

Ko

@ Classical finite and infinite dimensional port-Hamiltonian
systems

@ Boundary dissipation on the infinite dimensional system
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Strong dissipation feedback: Exponential stability

The operator A generates a contraction Cp-semigroup in the space
X = L([0, L], R™) x R™ equipped with the inner product

<X17X2> = <27H2>L2 + UTM_I”?' (3)

Assume that the input u, = Bi(Hz) and output y, = C1(Hz) are
such that ) ) )
1Hz(0, )17 < [luz()[|° + [ly=(t)]|
or
[ Hz(L, )P < [[uz()]1* + [ly=(t)]>

then the state trajectory x(t) generated by the closed-loop
operator A is such that ||x(t)|| < M,,e”"", where M, wp > 0.
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Strong dissipation feedback: Exponential stability

Sketch of the proof.
We consider the Lyapunov function V = 3(z,Hz) + snT M~1p,
V = (x,Ax) = —y; Kpyz = (M7') TR (M7 ). (4)

It is possible to find a ¢(t) > 0 for all t > 0, such that

1
V() < 1 VO (5)

Since the Lyapunov function is equivalent to the state norm, we get

[Ix(1)]? NOl (6)

L
~ 14+ c(t)
Hence, the semigroup T(t) (x(t) = T(t)xo) is such that
[|T(t)|| <1, and therefore there exist My, wp > 0 such that
[Ix(O)I] < Muge™™o".
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Strong dissipation & position control: Asymptotic stability

Example: flexible beam clamped on a rotating inertia

port-Hamiltonian representation

- PR 934
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Strong dissipation & position control: Asymptotic stability

Example: flexible beam clamped on a rotating inertia

port-Hamiltonian representation
Z] _ [PigeH + PoH 0] [z [0
p| —C1H 0 |p u

Consider the new variable g

© Mechanical interpretation: displacement of the finite
dimensional pH system

@ Dynamic defined as ¢ = M~ 1p
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Strong dissipation & position control: Asymptotic stability

Consider K, Ry, K, € R™™ diagonal and positive definite

u=—R,Mp— Kq+ (I - RyM™1K,)C1(Hz) — K, d

dt
q

(C1(H2))

X
5
D
|
X
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Strong dissipation & position control: Asymptotic stability

Closed-loop operator, x = [z p q] T € X = L»([0, L], R") x R?>™

A
z Pla%% + PoH 0 017 [z
H = | -RoM'K,CiH — K, SCH  —R,M~! K} H
q 0 M-t 0 q
D(A)) ={x € X |ze€ H', Bi(Hz) = M~ 1p, By(Hz) =0}

Change of variables n = p + K,C1(#Hz), x = [zn q]"

A
ﬂ PigeH + PoH 0 0 z}

nl = 0 —R,,M*l —K| |7

q M—1K pC1H M-t 0 q

D(A) = {x € X|zeHY, Bi(Hz) = M~Y(n — K,C1(Hz)),

By(Hz) =0}
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Strong dissipation & position control: Asymptotic stability

=-RMp—Kq | y
M™ln+u
= Mfln

U
K
y

MK,

Yz z=Jz u,
Bi(Hz) = u,
CI(HZ) =Yz

Kp

@ Not classical finite dimensional port-Hamiltonian system

@ Boundary dissipation on the infinite dimensional system
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Strong dissipation & position control: Asymptotic stability

Assume that the control parameters are selected such that
r? > 2m;k; i € {1,...,m}, then the operator A generates a
contraction Cy-semigroup in the space X equipped with the
weighted norm

K=IM~1R,K, " Kyt

IR = (x,20r = (2,1, + [na][TH e

Moreover A has a compact resolvent.

[l

= Pre-compactness of the solution set {x(t,xp) | t > 0}
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Strong dissipation & position control: Asymptotic stability

Theorem 4

Assume that the distributed parameter part of the system is
approximately observable w.r.t. the output y, and zeqg = 0 is its
only equilibrium point. If the control gains kj j, rj, k; with

i ={1,..,m} are chosen such that r? > 2m;k;, k,; > 0, then the
origin xeq = 0 is a globally asymptotically stable equilibrium.
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Strong dissipation & position control: Asymptotic stability

Theorem 4

Assume that the distributed parameter part of the system is
approximately observable w.r.t. the output y, and zeqg = 0 is its
only equilibrium point. If the control gains kj j, rj, k; with

i ={1,..,m} are chosen such that r? > 2m;k;, k,; > 0, then the
origin xeq = 0 is a globally asymptotically stable equilibrium.

Sketch of the Proof.
Define the candidate Lyapunov function V/(x) = 3(x, x)r

V = dVAx = (x, AX)r.
Using approximate observability and ze, = 0, the largest invariant

subset of Sg = {x € X | V(x) = 0} corresponds to S = {0}. With
the LaSalle’s invariance principle, lim;_ [|x(t)|| = 0.
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Comparison of the control laws

Example: Flexible beam clamped on a translating rotating inertia

Control objectives:

@ Stabilise the system starting from any initial condition.



Introduction Strong dissipation Strong dissipation & position control Comparison Conclusions
0000 000000 0000000 oeo 000000

Comparison of the control laws

Example: Flexible beam clamped on a translating rotating inertia

Control objectives:
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Comparison of the control laws

Example: Flexible beam clamped on a translating rotating inertia

Control objectives:

@ Stabilise the flexible part of the mechanism starting from an
arbitrary initial condition.

@ Stabilise the flexible part of the mechanism and position the
overall mechanism in a desired configuration.
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Comparison of the control laws

o Strong dissipation & position
Strong dissipation control

@ Exponential stabilisation of
the flexible part of the
mechanism

@ Stabilisation of the
mechanism in the desired
configuration

@ We do not know the
convergence rate

@ We do not have any control
on the Mechanism'’s position
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Conclusions & future research

Conclusions
@ Strong dissipation control: lack of direct control on the PDE’s
boundaries, Exponential stability, lack of position control.
@ Strong dissipation & position control: lack of direct control on
the PDE's boundaries, Asymptotic stability, position control.
Future research

Modify the “Strong dissipation & position control law" such to
obtain exponential stability.
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@ A. Mattioni, Y. Wu, Y. Le Gorrec. “Infinite dimensional model of a double
flexible-link manipulator: The Port-Hamiltonian approach”. Applied
Mathematical Modelling, Elsevier. (2020)

@ A. Mattioni, Y. Wu, H. Ramirez, Y. Le Gorrec, A. Macchelli. “Modelling and
control of an IPMC actuated flexible structure: A lumped port Hamiltonian

approach”. Control Engineering Practice, Elsevier. (2020)
@ A. Mattioni, Y. Wu, Y. Le Gorrec, H. Zwart. “Stabilization of a Class of Mixed

ODE-PDE port-Hamiltonian Systems with Strong Dissipation Feedback”. Major
revision in Automatica.

@ A. Mattioni, Y. Wu, Y. Le Gorrec. “Asymptotic stability of a flexible beam
clamped on a rotating inertia entering in contact with the external
environment”. In preparation

Conference papers

@ A. Mattioni, J. Toledo, Y. Le Gorrec. “Observer based nonlinear control of a
rotating flexible beam”. IFAC 2020 World Congress (2020).

@ A. Mattioni, Y. Wu, Y. Le Gorrec, H. Zwart. “Stabilisation of a rotating beam
clamped on a moving inertia with strong dissipation feedback”. Control and
Decision Conference (2020).

@ A.Mattioni, Y. Wu, Y. Le Gorrec. “Modelling, Control and Stability Analysis of
Flexible Rotating Beam's Impacts During Contact Scenario”. American Control
Conference (2021).

@ A.Mattioni, Y. Wu, Y. Le Gorrec. “Exponential stabilization of a clamped
Timoshenko beam with actuation on a tip mass”. Control and Decision
Conference (2021).
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Secondments, Trainings & Outreach activities

Secondments
@ Thales Alenia Space, Cannes, France. March - April 2019
@ University of Wuppertal, Wuppertal, Germany. June 2019

@ University of Twente, Enschede, The Netherlands. October -
November 2019

Training and Outreach activities

@ "Spring School on Theory and Applications of
Port-Hamiltonian Systems”, Munich, Germany. April 2019.

@ 215t IFAC World Congress, Virtual. July 2020.
@ 595t Control and Decision Conference, December 2020.
@ 2021 American Control Conference, May 2021.
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PhD & Future plans

PhD status
| got the PhD degree on “Automatic Control” by the University of
Bourgogne Franche Comté on the 23" April 2021.

Future plans

Post-doc position at the Gipsa-lab of the University of Grenoble on
the subject: “Reinforcement Learning control of nonlinear PDE".
In collaboration with Christophe Prieur and Paolo Frasca.
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Thanks for your attention!
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