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What’s to come

1. Structure preserving reduced order modeling
I Model approximation problem
I Model approximation of Port-Hamiltonian systems with

Symplectic projection
2. Rational approximation of irrational positive-real function

I Löwner approximation
I Spectral zeros estimation
I Rational approximation of irrational positive-real function
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Model Approximation Problem

Full-Order Model

ẋ(t) = Ax(t) +Bu(t); x(0) = x0;
y(t) = Cx(t) +Du(t);

(1)

where x ∈ Rn is the state variable.

G(s) = C(sIn −A)−1B +D (2)

Reduced-Order Model

ẋr(t) = Arxr(t) +Bru(t); xr(0) = xr0;
yr(t) = Crxr(t) +Dru(t);

(3)

Gr(s) = Cr(sIr −Ar)−1Br +Dr (4)

Gr of order r << n
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Projection-based approach

Petrov-Galerkin projective approximation

Two r−dimensional subspaces Vr,Wr ⊂ Rn associated with
two basis matrices V,W ∈ Rn×k such that Vr = ran(V ) and
Wr = ran(W ), respectively.

x(t) ≈ V xr(t)

Residual is then constrained to be orthogonal to W .
The r−dimensional reduced model (3) with

Ar = W TAV, Br = W TB;
Cr = CV, Dr = D.

(5)

How to find V and W?
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Proper Orthogonal Decomposition

G(s) =
Y (s)

U(s)
= C(sI −A)−1B with D = 0 (6)

Considering U(s) = 1

X(s) = (sI −A)−1B
Y (s) = CX(s).

(7)

State snapshot matrix

S =
[
X(s1), X(s2), . . . , X(xN )

]
∈ Rn×N . (8)

Apply SVD as follows

S = QΣP T ≈ QrΣrP
T
r (9)

Approximate the state as:

X(s) ≈ QrX̂(s), with X̂(s) ∈ Rr (10)

and, Ar = QTr AQr, Br = QTr B, Cr = CQr.
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Model approximation of Port-Hamiltonian System

Port-Hamiltonian System(PHS):

ẋ(t) = (J2n −R)Hx(t) +Bu(t)

y(t) = BTHx(t)
(11)

x ∈ R2n, R = RT ≥ 0 ∈ R2n×2n , H = HT > 0 ∈ R2n×2n,

J2n =

[
0n In
−In 0n

]
. (12)

Model approximation of PHS

G(s) = BTH(sI2n − (J2n −R)H)−1B. (13)

Gr(s) = B̂TĤ(sI2k − (J2k − R̂)Ĥ)−1B̂. (14)

ż(t) = (J2k − R̂)Ĥz(t) + B̂u(t)

ŷ(t) = B̂TĤz(t),
(15)

Problem: POD do not preserve the port-Hamiltonian structure
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Symplectic Model Approximation

Symplectic Vector Space

Let, V be a vector space of dimension 2n. A symplectic form
on V is a bilinear mapping Ω : V× V→ R that is

1. Antisymmetric: Ω(v, v̄) = −Ω(v̄, v), for all v, v̄ ∈ V
2. Non-degenerate: Ω(v, v̄) = 0, for all v ∈ V if and only if

v̄ = 0

The pair (V,Ω) is called a symplectic vector space.

Example

The canonical example of a symplectic vector space is
R2n with the bilinear form Ω(v1, v2) = 〈v1, J2nv2〉 ∀v1, v2 ∈ R2n

where 〈., .〉 is the Euclidean inner product and J2n is the Pos-
sion matrix.
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Symplectic Projection

Symplectic Map

Let (R2n,Ω) and (R2m,Ω) be two symplectic vector spaces
with m < n. Let Q : R2m be a linear mapping. It is called a
symplectic map and Q a symplectic matrix w. r. t. Ω if

QT J2nQ = J2m. (16)

The set of all 2n× 2m symplectic matrices is called the sym-
plectic Stiefel manifold, denoted by Sp(2m,R2n).

Symplectic Inverse

For each symplectic matrix Q ∈ R2n×2m, the symplectic in-
verse, denoted by Q−l, is defined by

Q−l = JT
2mQ

TJ2n ∈ R2m×2n. (17)
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Symplectic Projection

Lemma (Peng & Mohseni(2016))

Suppose Q ∈ Sp(2m,R2n) and Q−l is the symplectic inverse
of Q as defined in (17). Then,

(i) Q−lQ = I2m;
(ii) Q−lJ2n = J2mQT;
(iii) If v ∈ ran(Q), then v = QQ−lv;
(iv) Q−l is also Symplectic;
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Symplectic Approximation of PHS

[
(sI2n − J2nH) −B

BTH 0

] [
x
u

]
=

[
0
y

]
, (18)

in which u is fixed, i.e., y = G(s)u.

Theorem

Consider a Q ∈ Sp(2m,R2n) together with its symplectic in-
verse Q−l and obtained the reduced model:[

(sI2k − J2kĤ) −B̂
B̂TĤ 0

] [
z
u

]
=

[
0
y

]
. (19)

where, B̂ = Q−lB and Ĥ = Q−lHQ. If x0 ∈ ran(Q) and
Im(B) ⊆ ran(Q) then the reduced system preserve the port-
Hamiltonian structure.
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Symplectic Basis Generation

Let, x0l ∈ R2n(l = 1, . . . , N) denote N data points.

Sx = [x01, x02, . . . , x0N ].

Sz = Q−lSx = [z01, z02, . . . , z0N ] ∈ R2k×N (20)

where, x = Qz with Q ∈ R2n×2k, QTJ2nQ = J2k, and
Q−lQ = I2k.

Proper Symplectic Decomposition(PSD) and POD

min ‖Sx −QQ−lSx‖F .
sub. to QTJ2nQ = J2k
& Q−l = JT2kQT J2n

(21)

min ‖Sx −QQTSx‖F
sub. to QTQ = I2k

(22)
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Theorem

Suppose, Sx =

[
Sx1
Sx2

]
∈ R2n×N is the snapshot matrix where

Sx1, Sx2 ∈ Rn×N . Construct S1 ∈ Rn×2N from Sx as follows:

S1 =
[
Sx1 Sx2

]
.

Construct a symplectic matrix Q1 = diag(Φ,Φ) ∈ R2n×2k where
Φ ∈ Rn×k is the POD basis of the snapshot matrix S1. Then
the optimization problem (OP1)

min ‖Sx −Q1Q
−l
1 Sx‖F

s. t. QT1 J2nQ1 = J2k and Q−l = JT2kQT J2n
(23)

is equivalent to the optimization problem (OP2)

min ‖S1 − ΦΦTS1‖F
s.t., ΦTΦ = Ik

(24)
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PHS with Dissipation

Lemma(Son et. al.(2020))

For Q,T ∈ Sp(2k,R2n), ran(Q) = ran(T ) if and only if there
exists a matrix K ∈ OrSp(2n) such that T = KQ

Lemma

If T ∈ Sp(2k,R2n), then (T−l)T ∈∈ Sp(2k,R2n) with T−l =
JT2kQTKT J2n
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PHS with Dissipation

Theorem

Consider a T ∈ Sp(2m,R2n) together with its symplectic in-
verse T−l and obtained the reduced model:[

(sI2k − (J2k − R̂)Ĥ) −B̂
B̂TĤ 0

] [
z
u

]
=

[
0
y

]
. (25)

where, B̂ = T−lB, R̂ = T−lR(T−l)T , and Ĥ = T−lH(T−l)T .
If x0 ∈ ran(Q), Im(H) ⊆ ran(Q) and Im(B) ⊆ ran(Q) then the
reduced system preserve the port-Hamiltonian structure.
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Numerical Example

m2 m1mn

kn

dn d2 d1

k2 k1qn q2 q1

f

Figure: n-coupled Mass-Spring-Damper system
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Numerical Example
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Figure: Nyquist plotof original and reduced order system
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Numerical Example
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Figure: Nyquist plotof original and reduced order system
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Rational approximation of irrational positive real
function

Given: (xi, fi), i = 1, . . . , n where xi ∈ C and fi = H(xi) ∈ C

Objective: Find a positive real function Ĥ such that

Ĥ(s) = C(sE −A)−1B +D

with state-space dimension m(≤ n) that well reproduces the
data i.e., Ĥ(xi) = fi, ∀i.

system is passive⇐⇒ its transfer function is positive real

Problem Formulation: For the provided data set (xi, fi), is it
possible to construct a positive real function Ĥ(x) satisfying
the interpolation conditions Ĥ(xi) = fi,?
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Löwner Framework: Algorithm

1. Split data set:

[x1, x2, . . . , xN ] = [µ1, µ2, . . . , µn] ∪ [λ1, λ2, . . . , λn]

[f1, f2, . . . , fN ] = [ν1, ν2, . . . , νn] ∪ [ω1, ω2, . . . , ωn]

2. Compute the Löwner and the shifted Löwner matrices:

Lij =
(νi − ωj)
(µi − λj)

, [Ls]ij =
(µiνi − λjωj)

µi − λj
V = [ν1, . . . . . . , νn]T , W = [ω1, . . . . . . , ωn]

3. Realization: E = −L, A = −Ls, B = V,C = W
Trade-off between accuracy of fit and complexity of the
model [

Y1 Y2
] [Σ1

ε

] [
X∗

1

X∗
2

]
= sL− Ls

E = −Y ∗
1 LX1, A = −Y ∗

1 LsX1, C = WX1, B = Y ∗
1 V
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Löwner Framework: Passivity

Nevanlinna - Pick interpolation Problem

Π =


f1+f∗1
x1+x∗1

. . . f1+f∗n
x1+x∗n

... . . .
...

fn+f∗1
xn+x∗1

. . . fn+f∗n
xn+x∗n



must be non-negative definite to construct a positive real
rational function

Mirror image of the given data i.e., (−x∗i ,−f∗i ), i = 1, 2, . . . , N .

Π =


f1−f∗1
x1−x∗1

. . . f1−f∗n
x1−x∗n

... . . .
...

fn−f∗1
xn−x∗1

. . . fn−f∗n
xn−x∗n

 =⇒ Π = L
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Spectral Zeros

The spectral zeros of a positive real transfer function H(s) with
realization (E,A,B,C,D) are the complex numbers sz ∈ C
such that

G(sz) = H(sz) +HT(−sz) = 0. (26)

[
E 0

0 ET

] [
ẋ(t)
ż(t)

]
=

[
A 0

0 −AT

] [
x(t)
z(t)

]
+

[
B

−CT

]
u(t)

y(t) =
[
C BT

] [x(t)
z(t)

]
+ (D +DT)

(27)

Lemma
1. Spectral zeros have mirror images in the complex plane

with respect to imaginary axis.
2. For strictly passive system, no spectral zeros are on the

imaginary axis.
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Spectral Zeros

Lemma

1. Spectral zeros have mirror images in the complex plane
with respect to imaginary axis.

2. For strictly passive system, no spectral zeros are on the
imaginary axis.

Theorem

If a set of spectral zeros in the closed right-half complex plane
of the original strictly passive system are selected as interpo-
lation points, then the constructed Löwner matrix (Pick ma-
trix) is positive definite.

Problem: Spectral zeros of the system is unknown
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Spectral Zeros Estimation

Theorem

A state transformation between two minimal realizations of
a linear system does not change the spectral zeros of the
system.

We use Löwner approximation twice:
1. 1st Löwner approximation : Provide a minimal realization,

most likely not positive real, used to compute spectral
zeros

2. 2nd Löwner approximation : Provide a positive real
realization
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Motivating Example

u

Figure: Vibrating string

∂2ω

∂t2
= c2

∂2ω

∂ξ2
+ ζ

∂3ω

∂t∂ξ2
;

(28)
ω(0, t) = 0;
∂ω
∂ξ (1, t) = u(t);
∂ω
∂t (1, t) = y(t);

Transfer function:

H(s) =
1√

c2 + sζ

sinh(
√
r)

cosh(
√
r)
, where r =

s2

c2 + sζ
(29)

Irrational =⇒ Approximate by an rational one
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Löwner Framework: Approximation
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Figure: Poles and Zeros of stable and unstable Loewner realization
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Löwner Framework: Approximation
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Löwner Framework: Approximation
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Publications

1. Structure Preserving MOR of Port-Hamiltonian system
in Frequency domain (Preparing)

2. Data-driven rational approximation of irrational
positive-real function (Preparing)

Thank You!
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