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Control of free boundary problems
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Free boundary problems

Classical formulation of FBPs – a PDE for unknown v , and an ODE (or PDE) for the
unknown velocity h of the interface.

Example. the piston problem1:
8
>>>>><

>>>>>:

@tv � @2
x v + v@x v = 0 in (0,T )⇥ (�1, 1) \ {h(t)}

ḧ(t) = [@x v ](t, h(t)) in (0,T )

v(t, h(t)) = ḣ(t) in (0,T )

v(t,�1) = 0, v(t, 1) = u(t) in (0,T )

(v , h)|t=0 = (v0, h0) in (�1, 1) \ {h0}.

FBPs model multi-physics phenomena such as
• Phase transitions
• Fluid-structure interaction
• Elasticity and contact problems
• Thin fluid films
• Water waves

1Vazquez & Zuazua, Comm. PDE ’03; Liu, Takahashi, Tucsnak, COCV ’13.
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Controllability of one-dimensional viscous free boundary flows.

With E. Zuazua.
SIAM J. Control Optim., 2021
https://epubs.siam.org/doi/abs/10.1137/19M1285354

We consider
8
>>><

>>>:

@tv � @2
z v + v@z v = 0 in (0,T )⇥ (0, h(t))

ḣ(t) = v(t, h(t)) in (0,T )

v(t, 0) = u(t), @z v(t, h(t)) = 0 in (0,T )

(v , h)|t=0 = (v0, h0) in (0, h0).

Goal: Given T > 0 and a free trajectory (v , h), find a control u such that

h(T ) = h(T ) and v(T , ·) = v(T , ·) in (0, h(T )).

Theorem: Let T > 0, h⇤ > 0, v 2 R be such that h(t) = h⇤ + vt > 0 for
all t 2 [0,T ]. There exits r > 0 such that for all h0 > 0 and v0 2 H

1(0, h0)
satisfying

kv0 � vkH1 + |h0 � h⇤| 6 r ,

there exists a control u 2 C
0[0,T ] such that unique solution h 2 C

1[0,T ]
and v 2 C

0(H1) \ L
2(H2) satisfies

h(T ) = h(T ) and v(T , ·) = v in (0, h(T )).



6/28

Control of free boundary problems Interplay of control and deep learning

Null-controllability of perturbed porous medium gas flow.
ESAIM: COCV, 2020.
https://doi.org/10.1051/cocv/2020009

Model for porous medium gas flow and thin fluid film dynamics: find h > 0 solving

@th � @2
z (h

m) = 0 on R⇥ (0,+1)

for m > 1.

• Finite speed of propagation ) free boundary
@{h(t) > 0}

• Add a distributed control, and control to
self-similar Barenblatt attractor – stationary
parabola in similarity variables. Need to
linearize..

• Write equation in similarity variables and
pressure v = h

m�1 – free boundary is now
@{v(t) > 0}

• Transformation onto support of the parabola
1
2 (1 � x

2), which is [�1, 1].

vapourised air

liquid

solid

contact point contact point

h(t, z)

z

1
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Discussion leads us to consider2 equation for perturbation around ⇢(x) = 1
2 (1 � x

2)

8
><

>:

@ty � ⇢�� @x (⇢�+1 @x y) = N (y , @x y) + u1! in (0,T )⇥ (�1, 1)
(⇢�+1 @x y)(t,±1) = 0 in (0,T )

y|t=0 = y0 in (�1, 1),

where � = m�2
m�1 > �1.

Theorem: Let T > 0, ! ( (�1, 1) open, nonempty, and � 2 (�1, 0). There
exists r > 0 such that for every ky0kH1 6 r , there exists u 2 L

2((0,T )⇥ !)
such that y 2 C

0(H1) \ L
2(H2) satisfies y(T , ·) = 0 in (�1, 1).

2Koch’s Habilitation ’99, Seis JDE ’15.
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Control of the Stefan problem with surface tension. With D. Maity, in preparation,

2021.

Unknowns # (temperature) and h (melting interface) solve
8
>>>>>>>><

>>>>>>>>:

@t#��# = 0 in (0,T )⇥ ⌦(t)

@th = �
q

1 + |@x1h|2 r#|�(t)
· n on (0,T )⇥ T

# = u on (0,T )⇥ T⇥ {0}
# = ��(h) on (0,T )⇥ �(t)

(#, h)|t=0 = (#0, h0) in ⌦(0)⇥ T.

with � > 0 surface tension; (h) mean curvature, T = R/2⇡Z.

Goal: Given T > 0 and � > 0, find a control u actuating over T such that

h(T , ·) = 0 in T and #(T , ·) = 0 in T⇥ (0, 1).

• Fluid:
⌦(t) = {(x1, x2) 2 T ⇥ R : 0 < x2 < 1 + h(t, x1)}

• Interface:
�(t) = {(x1, x2) 2 T ⇥ R : x2 = 1 + h(t, x1)}

CONTROL OF THE STEFAN PROBLEM 3

In spite of the breadth of analytical results on the existence, uniqueness and quali-
tative behavior of solutions to the multidimensional Stefan problem (with or without
Gibbs-Thomson correction), very little is known on the controllability properties of this
problem. Through this work, we aim to cover this gap and provide new results in this
direction.

1.2. Formulation. In this work, we shall concentrate on the strong formulation of
the two-dimensional one-phase Stefan problem, for reasons which will become clear in
subsequent discussions. Let T := R/(2⇡Z) denote the one-dimensional torus, which we
identify with [0, 2⇡], and set

⌦ := T⇥ (0, 1).

The domain ⌦ will serve as the reference configuration in what follows. We also set

�bot := T⇥ {0}, �top = T⇥ {1}.

As mentioned in what precedes, in the one-phase Stefan problem a heat-conducting
liquid fills a time-varying domain ⌦(t) ⇢ R2 for t � 0. We will assume that the boundary
@⌦(t) of the liquid consists of two components, namely a time-varying component (the
free boundary �(t)) and a fixed component. More specifically, for any t > 0, ⌦(t) is
assumed to have a flat, rigid bottom, while the free boundary will be described by the
equation 1 + z2 = h(t, z1). In other words,

⌦(t) := {z = (z1, z2) 2 T⇥ R : 0 < z2 < 1 + h(t, z1)} ,

where h = h(t, z1) is the height function, and represents the displacement of the free
boundary away from the reference boundary �top (see Fig. 1).

⌦(t)

z2 = 1 + h(t, z1)

z2

z10 2⇡

1

Figure 1. The moving domain ⌦(t) representing the liquid, and the
free boundary �(t) representing delimiting the liquid-solid region.

The free boundary is consequently given by

�(t) := {z = (z1, z2) 2 T⇥ R : z2 = 1 + h(t, z1)} .
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Transform, linearize, extend domain fictitiously to ⌦ := T⇥ (�1, 1):
8
>>>>>>><

>>>>>>>:

@ty ��y = u1! in (0,T )⇥ ⌦

@th(t, x1) = @x2y(t, x1, 1) on (0,T )⇥ T
y(t, x1,�1) = 0 on (0,T )⇥ T

y(t, x1, 1) = �@2
x1h(t, x1) on (0,T )⇥ T

(y , h)|t=0 = (y0, h0) in ⌦⇥ T,

with ! ⇢ (�1, 0). We look for u 2 L
2
t,x s.t. y(T , ·) = 0 in ⌦ and h(T , ·) = 0 in T.

Surface tension: tendency of
liquids to minimize their surface
area. Adds an additional coupling
between the liquid and solid.
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Strategy:

• Fourier-decompose all unknowns w.r.t. x1 2 T:

8
>>>>>>><

>>>>>>>:

@tbyn � @x2byn + n
2byn = bun1! in (0,T )⇥ (�1, 1)

bh0n(t) = @x2byn(t, 1) in (0,T )

byn(t,�1) = 0 in (0,T )

byn(t, 1) = ��n2bhn(t) in (0,T )

(byn, bhn)|t=0 = (by0,n, bh0,n) in (�1, 1),

for n 2 Z.
• For n = 0, much like Burgers system from Chapter 1.
• For n 6= 0: control 1d system uniformly w.r.t. n by

• HUM for

byn
bhn

�

• coercivity inequality by computing spectrum {�n,k}
1
k=1, and after showing that

infn,k |�n,k+1 � �n,k | > 0 and �n,k ⇠ k
2 + n

2 + O(k) and using
Z

T

0

�����

1X

k=1
ake

��
n,k t

�����

2

dt &T

1X

k=1
|ak |

2
e
�2�

n,kT 8{ak} 2 `2(N) (1)

• Uniform control of all Fourier coefficients w.r.t. n 2 Z (not �!) yields linear result.
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Interplay of control and deep learning
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Supervised learning: Find an approximation of an unknown function f : X ! Y
from a dataset �

~xi , ~yi
 
N

i=1 ⇢ X ⇥ Y

X ⇢ Rd ; we distinguish:
• Classification: Y is a discrete set of m classes, e.g. Y = {1, . . . ,m};
• Regression: Y ⇢ Rm

Figure: Classification (f : R9216
! {�1,+1})

Figure: Regression (f : [0, 4] ⇥ [0, 6]2 ! R2)
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Neural networks
Neural network: for any i 6 N

(
xk+1
i

= �(wkxk
i
+ b

k ) for k 2 {0, . . . ,Nlayers � 1}

x0
i
= ~xi 2 Rd ,

(NN1)

• w
k 2 Rdk+1⇥dk and b

k 2 Rdk are controls;
• Nlayers > 1 given depth; dk > 1 called widths with d0 = d and dNlayers

= m.
• � 2 Lip(R) & �(0) = 0 defined componentwise:
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Figure: Sigmoid: tanh(x) and ReLU: max{x, 0}
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"Training" a NN

Training () Optimization: � > 0 fixed,

min
{wk ,bk}N

layers

k=0

1
N

NX

i=1
loss

⇣
PxNlayers

i
, ~yi

⌘

| {z }
training error

+�
���
n
w

k , bk
o

k

���
p

`p| {z }
regularization

P : Rd ! Rm is an affine map:

Px = w
Nlayers x + b

Nlayers .

1. Regression: ~yi 2 Y ⇢ Rm and

loss(x , y) = kx � yk2

2. Classification: ~yi 2 Y = {�1, 1} (so m = 1) and

loss(Px , y) = max
⇣
0, 1 � yPx

⌘

We shall assume that P is given, and arbitrary unless stated otherwise.
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Residual neural networks

ResNets: fix dk ⌘ d ; for any i 6 N

(
xk+1
i

= xk
i
+ h�(wkxk

i
+ b

k ) for k 2 {0, . . . ,Nlayers � 1}

x0
i
= ~xi

(ResNet)

where h = 1.

layer = timestep3; h = T

Nlayers

for given T > 0:

(
ẋi (t) = �(w(t)xi (t) + b(t)) for t 2 (0,T )

xi (0) = ~xi .
(nODE1)

For (nODE1), we shall henceforth assume �(�x) = ��(x) for � > 0 (positive
homogeneity).

3Weinan E ’17



16/28

Control of free boundary problems Interplay of control and deep learning

Residual neural networks

In addition to (nODE1), one can also consider variants:
•

(
ẋi (t) = w(t)�(xi (t)) + b(t) for t 2 (0,T )

xi (0) = ~xi .
(nODE2)

• Also
(

ẋi (t) = w1(t)�(w2xi (t) + b2) + b1(t) for t 2 (0,T )

xi (0) = ~xi
(nODE3)

where w1 2 Rd⇥d1 , w2 2 Rd1⇥d .
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Training is optimal control

Given T ,� > 0:

inf
[w,b]2H

k (0,T ;Rdu )

1
N

NX

i=1
loss

⇣
Pxi (T ), ~yi

⌘

| {z }
=:E(x(T ))

+�
���[w , b]

���
2

Hk (0,T ;Rdu )

• k = 0 for (nODE2), k = 1 for (nODE1), (nODE3) (L2–regularization might not

be enough for compactness)
• We henceforth suppose P : Rd ! Rm is affine, and loss 2 C

0(Rm ⇥ Y;R+) is
such that E attains its minimum 0.
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Large-time asymptotics in deep learning.

With C. Esteve-Yagüe, D. Pighin and E. Zuazua.
Submitted, 2021
https://arxiv.org/abs/2008.02491

• Set x0 = [~x1, . . . , ~xN ], u = [w , b], and put both (nODE1) and (nODE2) in the form
(

ẋ(t) = f(x(t), u(t)) in (0,T )

x(0) = x0 2 Rdx .
(nODE)

• And so

inf
u2H

k (0,T ;Rdu )
subject to (nODE)

E(x(T )) + � kuk2
Hk (0,T ;Rdu ) (SL1)

Question: What happens to a minimizer u
T solving (SL1), and corresponding state

xT to (nODE) when T ! +1?
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Scaling

inf
u2H

k (0,T ;Rdu )
subject to (nODE)

E(x(T )) + � kuk2
Hk (0,T ;Rdu ) (SL1)

Key idea: Time-Scaling.

• Assumptions on � entail f(x, u) positively homogeneous w.r.t. u, i.e.
f(x,↵u) = ↵f(x, u) for ↵ > 0.

• Hence, given u
T (t) and the solution xT (t) to

8
<

:
ẋT (t) = f

⇣
xT (t), uT (t)

⌘
in (0,T )

xT (0) = x0,
(2)

then u
1(t) := Tu

T (tT ) is such that x1(t) := xT (tT ) solves (2) for t 2 [0, 1].

=) �

Z
T

0

���uT (t)
���

2
dt =

�

T

Z 1

0

���u1(s)
���

2
ds
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Theorem: Fix � > 0, let P : Rd ! Rm be any surjective affine map. For any
T > 0, let u

T be minimizer in (SL1), xT associated solution to (nODE). Assume
that {E = 0} is reachable by (nODE). Then

1. 9C > 0 independent of T such that

E(xT (T )) 6 C

T
.

2. Moreover, 9{Tn}+1

n=1 positive times and 9x� 2 Rdx , E(x�) = 0, such that
���xTn (Tn)� x�

��� �! 0 as n ! +1.

3. Moreover
����

1
Tn

u
Tn

✓
·
Tn

◆
� u

⇤

����
Hk (0,1;Rdu )

�! 0 as n ! +1

where u
⇤ solves

inf
u2H

k (0,1;Rdu )
subject to (nODE) with T=1

and
E(x(1))=0

kuk2
Hk (0,1;Rdu ) .
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Enhancing the decay

Question: Better quantitative estimates for the time T required to approach the zero
training error regime E(x(T )) = 0?

• Consider loss(x , y) = kx � yk2 and so we recall

E(x(T )) :=
1
N

NX

i=1
kPxi (T )� ~yik2

• We shall suppose P : Rd ! Rm surjective, Lipschitz, but arbitrary
• and let x 2 Rdx s.t. xi 2 P

�1({~yi}) for i 6 N be fixed.
• Augmented problem:

inf
u2L

2(0,T ;Rdu )
subject to (nODE)

E(x(T )) +

Z
T

0
kx(t)� xk2

dt + � kuk2
L2(0,T ;Rdu ) (SL*)
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Exponential decay

Theorem Fix � > 0, and suppose that (nODE) is controllable with linear
estimate of the cost. There exist T

⇤ > 0 such that for any T > T
⇤, any

solution (uT , xT ) to (SL*)–(nODE) satisfies

E
⇣
xT (t)

⌘
+

���xT (t)� x
��� 6 C1e

�µt 8t 2 [0,T ]

and ���uT (t)
��� 6 C2e

�µt for a.e. t 2 [0,T ]

for some C1,C2, µ > 0, all independent of T .

• Akin to universal approximation: given tolerance " > 0, there exists T" > 0
(number of layers) and control parameters u

" such that the neural network
output is "–close to the desired target.

• One difference with universal approximation is that our parameters may be
computed explicitly via a training procedure.
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LARGE-TIME ASYMPTOTICS IN DEEP LEARNING 27

Figure 10. Example 4.4: The decay of the training error (left) and
stabilization of the trained trajectories x(t) and {Pxi(t)}i2[N ] (right).

t = 0 t = 2 t = 8 t = 15 t = 20

Figure 11. Example 4.4: We depict the evolution of two individual
samples xi(t) 2 R784 mapped onto a 28 ⇥ 28 grid. We see that each
trajectory stabilizes to some stationary configuration, and the trained
model tends to compress the input digit samples ahead of classifying
them via the softmax applied to Pxi(t) 2 R10.

regime (E(x(T )) = 0 with E given in (3.4)) when T increases. It is thus of interest to
also illuminate some of the properties of the parameters which allow the trajectory to
reach a minimizer of the empirical risk E, and to see whether such parameters indeed
exist.

By means of an elementary Grönwall argument, we can show the following illustrative
result, which stipulates a lower bound for the amplitude of the weights w in terms of
the dispersion or concentration of the input data.

Proposition 5.1. Let P : Rd
! Rm be surjective, and let T > 0. Assume that for

some parameters [w, b] 2 L
1(0, T ;Rdu) the solution x 2 C

0([0, T ];Rdx) to either (3.3)
or (3.2) satisfies

Pxi(T ) = ~yi for all i 2 [N ]. (5.1)
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Turnpike in Lipschitz-nonlinear optimal control.

With C. Esteve-Yagüe, D. Pighin and E. Zuazua.
Submitted, 2020
https://arxiv.org/abs/2011.11091

• Theorem is a special manifestation of the
turnpike property in optimal control and
economics.

• For suitable optimal control problems in a

sufficiently large T , any optimal solution

(uT , xT ) remains, during most of the time,

O(e�t + e
�(T�t))–close to the optimal

solution of a corresponding “static” optimal

control problem.

Optimal static solution is referred to as the

turnpike – the name stems from the idea that

a turnpike is the fastest route between two

points which are far apart, even if it is not the

most direct route.

• Since f(x, 0) = 0 for all x, xi may be seen as
the turnpike for Pxi . Since this is a steady
state, we do not see an exit from the turnpike
and we stabilize.
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Sparse approximation in learning via neural ODEs.

With C. Esteve-Yagüe
Submitted, 2021.
https://arxiv.org/abs/2102.13566

What about L
1–regularization?

Theorem: Fix M > 0. Consider

inf
u2L

1(0,T ;Rdu )
kuk

L1(0,T )6M

subject to (nODE2)

Z
T

0
E(x(t))dt + �kuk

L1(0,T ;Rdu ).

Then there exists T
⇤ > 0 such that for any T > T

⇤, any optimal uT satisfies
���uT (t)

��� = M, for a.e. t 2 (0,T⇤)
���uT (t)

��� = 0, for a.e. t 2 (T⇤,T ).

If moreover (nODE2) is controllable, then there exist C(M) > 0 and T (M) > 0 such
that

T
⇤ 6 T (M) and E(x(T⇤)) 6 C(M)

T
(3)
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L1–regularization
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Coming soon. . .

Optimal controller design via Brunovsky’s normal form.

With E. Zuazua.
2021

(
y
0(t)� Ay(t) = bu(t) in (0,T ),

y(0) = y0,
A 2 Mn⇥n(R), b 2 Rn Kalman rank.

Consider

C⇤(b,T ) := inf
ky0k=1

k�b(y0)kL2(0,T ),

where Rn 3 y0 7! �b(y0) = u 2 L
2(0,T ) is the "datum to minimal L2–norm exact

control". We show

min
b2Sn�1

C⇤(b,T ) () max
b2Sn�1

�1
⇣
P(b)P(b)>

⌘
(4)

where P(b)P(b)> =
P

n

j=1 pj (A)bb
>
pj (A)> and pj (A) ⇠ A

n�j + l .o.t

0
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Thank you for your attention!
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