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Free boundary problems

Classical formulation of FBPs — a PDE for unknown v, and an ODE (or PDE) for the
unknown velocity h of the interface.

Example. the piston problem*:

[ Orv — 02v + vOxv =0 in (0, 7T)x(—1,1) \ {h(t)}
h(t) = [0xv](t, h(t)) in (0, T)
q v(t, h(t)) = h(t) in (0, 7)
v(t,—1) =0, v(t,1) =u(t) in (0, T)
\ (Vs h)jt=0 = (vo, ho) in (=1,1)\ {ho}.

FBPs model multi-physics phenomena such as
® Phase transitions
® Fluid-structure interaction
® Elasticity and contact problems

® Thin fluid films

® \\ater waves

1Vazquez & Zuazua, Comm. PDE '03; Liu, Takahashi, Tucsnak, COCV '13.



Control of free boundary problems Interplay of control and deep learning

@) @)

O 000000
o oJole;

OO0 0000000
OO0

Controllability of one-dimensional viscous free boundary flows.
With E. Zuazua.

SIAM J. Control Optim., 2021
https://epubs.siam.org/doi/abs/10.1137/19M1285354

We consider

[ Otv — 0%v +vO,v =0 in (0, T) x (0, h(t))
; h(t) = v(t, h(t)) in (0, T)
v(t,0) = u(t), O,v(t,h(t))=0 in (0,T)
( (Vs h)je=0 = (o, ho) in (0, ho).

Goal: Given T > 0 and a free trajectory (V, h), find a control u such that

h(T) = h(T) and v(T,)=v(T,-) in (0,h(T)).

Theorem: Let T > 0, h, > 0, V € R be such that h(t) = hx + vt > 0 for
all t € [0, T]. There exits r > 0 such that for all hg > 0 and vo € H(0, ho)
satisfying

[vo — Vllua + [ho — he| <r.

there exists a control u € C°[0, T] such that unique solution h € C![0, T]
and v € CO(HY) N L?(H?) satisfies

h(T)=h(T) and v(T,)=Vv in (0,h(T)).
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Null-controllability of perturbed porous medium gas flow.

ESAIM: COCV, 2020.
https://doi.org/10.1051/cocv/2020009
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Model for porous medium gas flow and thin fluid film dynamics: find h > 0 solving

O¢h — 92(h™) =0 on R x (0, +0o0)

for m > 1.

® Finite speed of propagation = free boundary

0{h(t) > 0}

® Add a distributed control, and control to

self-similar Barenblatt attractor — stationary
parabola in similarity variables. Need to
linearize..

® \Write equation in similarity variables and

pressure v = h™~1 — free boundary is now

o{v(t) > 0}

® Transformation onto support of the parabola

2(1 — x?), which is [-1,1].

ht,2) T

B2 Po

Q. 5mem
140 Pa 147 Fa |

-

_ 1sPa

vapourised air

contact point contact point

solid



Control of free boundary problems

Interplay of control and deep learning
O O
O O0000O0
O 000
oce 0000000
OO0

Discussion leads us to consider? equation for perturbation around p(x) = %(1 — x?)

Oty — p~ 7 Ox(p°tt Oxy) = N(y,0xy) +uly, in (0,T)x (—1,1)
(p7tt Oxy)(t,£1) =0 in (0, T)

Yit=0 — Y0 in (—1,1),

_  m-—=2 .
where o = 1> 1.

Theorem: Let T > 0, w C (—1,1) open, nonempty, and o € (—1,0). There

exists r > 0 such that for every ||yo||3y1 < r, there exists u € L?((0, T) X w)
such that y € CO(H!) N L?(H?) satisfies y(T,-) =0in (—1,1).

2Koch's Habilitation '99, Seis JDE ’'15.
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Control of the Stefan problem with surface tension. With D. Maity, in preparation,
2021.

Unknowns ¥ (temperature) and h (melting interface) solve

(09 — AY =0 in (0, T) x Q(t)
Oth= —\/1+|0q b2V, 0 on (0,T)xT

V9 =u on (0, 7T)x T x {0}
¥ = —ok(h) on (0, T) x I'(t)

\(19, h)|t:0 = (190, ho) in Q(O) x T.

with o > 0 surface tension; x(h) mean curvature, T = R/27Z.
Goal: Given T > 0 and o > 0, find a control u actuating over T such that
h(T,-)=0in T and 9(T,-)=0in T x (0,1).

A2

z9 = 1+ h(t,zl)

e Fluid: 1__J_\/

Q(t) ={(x1,x) ETXR :0< x2 <1+ h(t,x1)}
® |nterface: )
[(t) ={(x1,x2) ETXR :x2=1+4 h(t,x1)}
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Transform, linearize, extend domain fictitiously to Q :=T x (—1,1):

(Ory — Ay = uly, in (0, 7T) x Q
Oth(t,x1) = Ox ¥(t,x1,1) on (0, T)xT

ly(t,x1,—-1) =0 on (0, T)xT
y(t,x1,1) = 08)%1 h(t,x1) on (0, T)xT

(Vs h)[t=0 = (Y0, ho) in 2 x T,

with w C (—1,0). We look for u € L2 s.t. y(T,-)=0in Q and h(T,:) =0in T.
t,x

Surface tension: tendency of
liquids to minimize their surface
area. Adds an additional coupling
between the liquid and solid.

0/28
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Strategy:

® Fourier-decompose all unknowns w.r.t. x; € T:

(0tYn — OxaYn + N°Yn = Unle  in (0, T) x (—1,1)
hi(t) = 0xa¥n(t, 1) in (0, T)
dyn(t,—1) =0 in (0, T)
ya(t, 1) = —on?hn(t) in (0, T)
(¥, hn)jt=0 = (Yo,n, ho,n) in (—1,1),

for n € 7.

® For n = 0, much like Burgers system from Chapter 1.

® For n # 0: control 1d system uniformly w.r.t. n by

® HUM for {ﬂ

® coercivity inequality by computing spectrum {\, }.=,, and after showing that
infox [Anki1 — Ank| >0and X\, x ~ k* + n® + O(k) and using

T >3O
/ —>\n kt
E aié ’
0 |k=1

® Uniform control of all Fourier coefficients w.r.t. n € Z (not o!) yields linear result.

2

dt 27 > JaxPe kT V{a} € A(N) (1)

k=1
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Supervised learning: Find an approximation of an unknown function f : X — Y
from a dataset

{87}, C A XY

X C R we distinguish:
® (Classification: ) is a discrete set of m classes, e.g. YV = {1,..., m};
® Regression: Y C R™

w(z,y), t=2.0 wlz,y), t=4.0

6 44 6t 48
. 3.3 i 36
Bl - bl
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w(z,y), t=2.0 w(z,y), t=4.0

+1.25 4

5.00
G 61
3.75
5 5
H2.50
31 H0.00 =) Lo
F-1.25 -1
21 21 | &
~2.50 B
0 2 4 G

P e

—5.00 0

0 2 1 6

Figure: Classification (f : R%?*® — {1, 4+1})

(e) PINN, T =2 (f) PINN, T =4

Figure: Regression (f : [0, 4] x [0, 6] — R?) 12/28
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Neural networks

Neural network: for any i < N

xktl — a(wkxf( + b*)  for k € {0,. .., Niayers — 1}

/

(NNy)
XQ — )_(; “ Rd,

1

o wk € R%+1Xdk and bk € R% are controls;
Niayers = 1 given depth; di > 1 called widths with dp = d and dN/ayers = m.
® 5 € Lip(R) & o(0) = 0 defined componentwise:

Cutput
; Hyperbolic tangent s Rectified Linear Unit (ReLU)
T T T T T T u T T T T T T T T T
/
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- 5+ — /,/
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Figure: Sigmoid: tanh(x) and ReLU: max{x, 0}
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"Training" a NN

Training <= Optimization: )\ > 0 fixed,

p

. Il Nlayers —».) { k k} ‘
(i :;I}nNIayers N z_: loss (Pxi Vi) A wh, b ol o
P Ik

[— \ _y
=0 g W, "
e

training error

regularization
P :RY — R™ is an affine map:
Px = wViayers x - pNiayers
1. Regression: y; € Y C R™ and
loss(x, y) = [|x — yl|?
2. Classification: y; € Y ={—1,1} (so m=1) and
loss(Px, y) = max (O, 1— yPX)

We shall assume that P is given, and arbitrary unless stated otherwise.
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Residual neural networks

ResNets: fix d, = d; forany i < N

XKL = 5K+ ho(whxk + b%)  for k € {0,. .., Niayers — 1}

/

(ResNet)

x? = X;
where h = 1.
layer = timestep3; h = N,T for given T > 0:
ayers

Xi(t) = o(w(t)x;(t) + b(t)) forte (0, T)

x,-(O) _ )_(7 (nODEl)

For (nODE;1), we shall henceforth assume o(Ax) = Ao(x) for A > 0 (positive
homogeneity).

Deep residual learning for image recognition

K He, X Zhanyg, S Ren, J Sun - Proceedings o’ tha |IEEE ..., 2016 - openacoess. lhecvli.com
Deepwr neural nelworks are mors difficull Lo Lrain, We present a rasidual leaming framework
10 ease the training cf networks that are substantially deeper than those used previous'y YW
axulidally refurmulale the layers as leaming residual funcions with referencs W the layer ...
vz 99 Chedby 77708 Related aticles Al 55versions

3Weinan E '17
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Residual neural networks

In addition to (nODE;), one can also consider variants:
o

{:E;)) - g(t)a(xi(t)) +b(t)  fort€(0,7) (nODE3)

® Also

{X,E(t))) i V_\:l(t)a(Win(t) + b2) + bi(t) fort e (0,T) (nODE3)

where wy € RIXd1 y € R Xd
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Training is optimal control

Given T, X > 0:

” b]EHIkn(f(:) radey N = Zloss(Px,(T) y,) —I—)\H[W b])

o J/

—£(x(T))

Hk (0, T;Rdu)

® k=0 for (nODEy), k = 1 for (nODE;), (nODE3) (L?-regularization might not
be enough for compactness)

® We henceforth suppose P : RY — R™ is affine, and loss € CO(R™ x V;R.) is
such that € attains its minimum O.
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Large-time asymptotics in deep learning.

With C. Esteve-Yagiie, D. Pighin and E. Zuazua.
Submitted, 2021
https://arxiv.org/abs/2008.02491

® Setx? = [X1,...,Xy], u = [w, b], and put both (hnODE;) and (nODE>) in the form

x(t) = f(x(t), u(t)) in (0, T)
x(0) = x? € R%. (nODE)

® And so

ueH"(ing;RdU) OdT)) + 2 H“Hi"‘(o,T;IRaO’u) (SL1)
subject to (nODE)

Question: What happens to a minimizer u' solving (SL1), and corresponding state
x to (nODE) when T — 4007
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Scaling
inf E(X(T)) + Allullfk o, 7 (SL1)
ueH (0, T;R%) O TE)

subject to (nODE)

Key idea: Time-Scaling.

® Assumptions on o entail f(x, u) positively homogeneous w.r.t. u, i.e.
f(x, au) = af(x, u) for a > 0.

® Hence, given u'(t) and the solution x' (t) to

xT(t) =f (XT(t), uT(t)) in (0, T)

x"(0) = x°,

(2)

then u'(t) := Tu” (tT) is such that x!(t) := x' (¢tT) solves (2) for t € [0, 1].

T 2 N 1 2
. /\/ 7 ()"t = —/ () s
0 T Jo
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Theorem: Fix A > 0, let P : RY — R™ be any surjective affine map. For any

T > 0, let u” be minimizer in (SL1), x” associated solution to (nODE). Assume
that {€ = 0} is reachable by (nODE). Then

1. 94C > 0 independent of T such that

C
E(x"(T)) < -

2. Moreover, H{Tn}::jl’ positive times and Ix, € R%, E(xo) = 0, such that

HXT”(Tn)—xO — 0 as n — +oo.

1 .
—UT" L —u*
" (%)

where u™® solves

3. Moreover

— 0 as n — +oo
Hk(0,1;R9u)

inf
ueHX(0,1;R%)
subject to (nODE) with T=1

and
E(x(1))=0

2
HUHH/((O,l;Rdu)'
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Enhancing the decay

Question: Better quantitative estimates for the time T required to approach the zero
training error regime &(x(T)) = 07

® Consider loss(x, y) = ||x — y||? and so we recall
1 N
E(T)) 1= = 2 IPxi(T) 7l
i=1

® \We shall suppose P : R? — R™ surjective, Lipschitz, but arbitrary

® and let x € R% s.t. x; € P71({y:}) for i < N be fixed.
® Augmented problem:

-
eLz(ioch-RdU) E(x(T)) —|-/0 |x(t) —§H2dt—|—)\HuHiz(o,T;Rdu) (SL*)

subject to (nODE)
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Exponential decay

Theorem Fix A > 0, and suppose that (nODE) is controllable with linear
estimate of the cost. There exist T* > 0 such that for any T > T%*, any
solution (u’,x") to (SL*)—(nODE) satisfies

e (XT(t)) + ||><T(t) _ >—<H < CreHt vt € [0, T]

and

uT(t)H < Ge Mt for a.e. t € [0, T]

for some C1, Co, i > 0, all independent of T.

® Akin to universal approximation: given tolerance € > 0, there exists T > 0
(number of layers) and control parameters u® such that the neural network
output is e—close to the desired target.

® One difference with universal approximation is that our parameters may be
computed explicitly via a training procedure.
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Turnpike in Lipschitz-nonlinear optimal control.
With C. Esteve-Yagiie, D. Pighin and E. Zuazua.
Submitted, 2020
https://arxiv.org/abs/2011.11091

® Theorem is a special manifestation of the

turnpike property in optimal control and
economics.

For suitable optimal control problems in a
sufficiently large T, any optimal solution
(u”,xT) remains, during most of the time,
O(e~t + e~ (T—=t))—close to the optimal
solution of a corresponding ‘static’’ optimal
control problem.

Optimal static solution is referred to as the
turnpike — the name stems from the idea that
a turnpike is the fastest route between two
points which are far apart, even if it is not the
most direct route.

Since f(x,0) = 0 for all x, X; may be seen as
the turnpike for Px;. Since this is a steady
state, we do not see an exit from the turnpike
and we stabilize.

NCLOA
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Sparse approximation in learning via neural ODEs.
With C. Esteve-Yagiie

Submitted, 2021.
https://arxiv.org/abs/2102.13566

What about Ll—regularization?

Theorem: Fix M > 0. Consider

)
inf / E(x(1))dt + Allull 10,700
uell(0, T;R%) 0

lullpoo (0, 7y SM
subject to (nODE3)

Then there exists T* > 0 such that for any T > T*, any optimal u’ satisfies

ul (D] = M, fora.e. t € (0, T™)

u (t)|]| = O, fora.e. t € (T, T).

If moreover (NODE3) is controllable, then there exist C(M) > 0 and T(M) > 0 such
that

T*<T(M) and  &(x(T*)) < @ (3)
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[ '—regularization

Parameter sparsity: M =8

6
8 *, [u )|
7 4 -
6 1 2
D 0-
4 1 )
9
3 -
2 —4 1
11 —6 1
O T T T T T T
0 5 1 A g 10 —10 -5 0 5 10
I
t (layers)
Stability of norms
190 - Generalization outside training data
1.05
O  train
100 A O test 0.90
0.75
80 1
0.60
60 - o
0.45
40 1
0.30
20 1 0.15
0 2 4 6 8 10 0.00

t (layers) 26/28
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Coming soon. ..

Optimal controller design via Brunovsky’s normal form.
With E. Zuazua.

2021

{y’(t)—Ay(t)zbu(t) in (0, T),

A€ Mpxn(R), b € R" Kalman rank.
y(O) — Y0,

Consider

(b, T):= inf [[Tp(¥0)ll12(0,7)s
Iyoll=1

where R" 3 yg — [p(yo) = u € L?(0, T) is the "datum to minimal L?—norm exact
control". We show

min €*(b, T) |<=| max A1 (P(b)P(b)T> (4)
besn—1 besn—1

where P(b)P(b)" = >7_; pj(A)bb " p;(A)" and p;(A) ~ A"/ + l.o.t
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Thank you for your attention!
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