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Presentation of the model

“Geometrically exact beam”
“Nonlinear Timoshenko beam”
“Geometrically nonlinear beam”
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x
ζ2
ζ3
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•e1
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reference
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•
before deformation
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p(x, t)

• p = p+R

 0
ζ2
ζ3

•

•
at time t

Small strains BUT large motions.

linear constitutive law ← → nonlinear governing system
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Presentation of the model

Framework 1. The state is (p,R), expressed in some fixed coordinate system {ej}3j=1,

• centerline’s position p(x, t) ∈ R3

• cross sections’ orientation given by the columns bj of R(x, t) ∈ SO(3)

b3(x, t)

b1(x, t)b2(x, t)

p(x, t)
at time t

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
given M(x),C(x) ∈ S6++ the mass and flexibility matrices and Υc(x) ∈ R3 the
curvature before deformation, and where v, s depend on (p,R):

v =

[
Rᵀ∂tp

vec (Rᵀ∂tR)

]
, z = C−1

[
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

]
.

Notation. Cross-product: û ζ = u× ζ and vec (û) = u

SO(3): rotation matrices. Sn++: positive definite symmetric matrices of size n.
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Presentation of the model

Framework 2. The state is y =

[
v
z

]
, expressed in the moving basis {bj}3j=1,

• linear and angular velocities v(x, t) ∈ R6

• internal forces and moments z(x, t) ∈ R6

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)

[
M 0
0 C

]
∂ty −

[
0 I
I 0

]
∂xy −

 0
Υ̂c 0

ê1 Υ̂c

Υ̂c ê1
0 Υ̂c

0

 y = −


v̂2 0
v̂1 v̂2

0 ẑ1
ẑ1 ẑ2

0
v̂2 v̂1
0 v̂2

[Mv
Cz

]

denoting by v1, z1 and v2, z2 the first and last 3 components of v, z.

We will also write the governing system:

∂ty +A(x)∂xy +B(x)y = g(x, y).

Notation. Cross-product: û ζ = u× ζ and vec (û) = u
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Presentation of the model

Two frameworks:

1. GEB. Quasilinear
second-order
(Reissner ’81, Simo ’85)
‘Wave-like’

linked by a nonlinear transformation:

T : (p,R) 7−→
[
I6 0
0 C−1

]
Rᵀ∂tp

vec (Rᵀ∂tR)
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

 =

[
v
z

]

2. IGEB. Semilinear (quadratic)
first-order hyperbolic
(Hodges ’03)
‘Hamiltonian framework’ (Simo ’88)
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Presentation of the model

Networks:

The states are now (pi,Ri)i∈I and (yi)i∈I . Recall that yi =

[
vi
zi

]
.

Transmission conditions at a multiple node n (where several beams meet):

• Rigid joint. Any two incident beams i, j remain attached to each other pi = pj

and without changing the respective angles between them RiR
ᵀ
i = RjR

ᵀ
j .

• Kirchhoff condition. In the fixed basis, the internal forces and moments exerted
by the incident beams at the node are balanced with the external load.

→ derive the corresponding transmission conditions for the IGEB model:

• Continuity of velocities. For any two incident beams i, j,[
Ri 0
0 Ri

]
vi =

[
Rj 0
0 Rj

]
vj

• Corresponding Kirchhoff condition. For qn the external load applied at the node
n, expressed in the body-attached basis,∑

incident beam i

τni

[
Ri 0
0 Ri

]
zi = qn
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Well-posedness for networks

Boundary condition at a simple node n: for the incident beam i,

τni zi = qn, or vi = qn

Based on results on results on abstract one-dimensional first-order hyperbolic systems,
Li-Jin ’01 and Bastin-Coron ’16 and ’17:

• (yi)i∈I ∈
∏N

i=1 C
1([0, `i]× [0, T ];R12) semi-global in time

• (yi)i∈I ∈ C0([0, T ),
∏

i∈I H
k(0, `i;R12)) local in time, with qn = −Knvi

where Kn ∈ R6×6

Require some regularity from the data/coefficients and some properties of the
transmission conditions for the system in diagonal form.

Assumption 1

Let m ∈ {1, 2, . . .} be given. For all i ∈ I, we suppose that

• Ci,Mi ∈ Cm([0, `i]; S6++);

• for Θi := (C
1/2

i MiC
1/2

i )−1, there exists Ui, Di ∈ Cm([0, `i];R6×6) s.t. Θi =
Uᵀ
i D

2
i Ui in [0, `i], where Di(x) ∈ S6++ diagonal & consists of the square roots of

the eigenvalues of Θi(x), and Ui(x) is unitary.
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Inverting the transformation

Two frameworks:

1. GEB. Quasilinear
second-order
(Reissner ’81, Simo ’85)
‘Wave-like’

linked by a nonlinear transformation:

T : (p,R) 7−→
[
I6 0
0 C−1

]
Rᵀ∂tp

vec (Rᵀ∂tR)
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

 =

[
v
z

]

2. IGEB. Semilinear (quadratic)
first-order hyperbolic
(Hodges ’03)
‘Hamiltonian framework’ (Simo ’88)
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Inverting the transformation

The GEB model

[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
in (0, `)× (0, T ) (1a)

(p,R)(0, t) = (f
p
, f

R
) t ∈ (0, T ) (1b)

z(`, t) = −Kv(`, t) t ∈ (0, T ) (1c)

(p,R)(x, 0) = (p
0
,R

0
)(x) x ∈ (0, `) (1d)

(∂tp,RW )(x, 0) = (p
1
, w

0
)(x) x ∈ (0, `), (1e)

and its IGEB counterpart
∂ty + A(x)∂xy + B(x)y = g(x, y) in (0, `)× (0, T ) (2a)

v(0, t) = 0 for t ∈ (0, T ) (2b)

z(`, t) = −Kv(`, t) for t ∈ (0, T ) (2c)

y(x, 0) = y
0
(x) for x ∈ (0, `). (2d)
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Inverting the transformation
Inverting the transformation

The GEB model

[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
in (0, `)× (0, T ) (1a)

(p,R)(0, t) = (f
p
, f

R
) t ∈ (0, T ) (1b)

z(`, t) = −Kv(`, t) t ∈ (0, T ) (1c)

(p,R)(x, 0) = (p
0
,R

0
)(x) x ∈ (0, `) (1d)

(∂tp,RW )(x, 0) = (p
1
, w

0
)(x) x ∈ (0, `), (1e)

and its IGEB counterpart
∂ty + A(x)∂xy + B(x)y = g(x, y) in (0, `)× (0, T ) (2a)

v(0, t) = 0 for t ∈ (0, T ) (2b)

z(`, t) = −Kv(`, t) for t ∈ (0, T ) (2c)

y(x, 0) = y
0
(x) for x ∈ (0, `). (2d)
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The transformation T : E1 → E2 is well defined for

E1 =
{

(p,R) ∈ C2
(

[0, `]× [0, T ];R3 × SO(3)
)

: (1b), (1d) hold
}

E2 =
{
y ∈ C1

(
[0, `]× [0, T ];R12

)
: (3) holds for u := diag(I6,C)y

}
,

where

d
dxp

0
= R

0
(u3(·, 0) + e1), d

dxR
0

= R
0
(û4(·, 0) + Υ̂c), in (0, `) (3a)

∂t

[
u3

u4

]
− ∂x

[
u1

u2

]
−
[
Υ̂c ê1
0 Υ̂c

] [
u1

u2

]
=

[
û2 û1

0 û2

] [
u3

u4

]
, in (0, `)× (0, T ) (3b)

u1(0, ·) = 0, u2(0, ·) = 0, in (0, T ), (3c)

where we use the notation u = (uᵀ
1 , . . . , u

ᵀ
4 )ᵀ with uk(x, t) ∈ R3 for all k ∈ {1, 2, 3, 4}.
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Inverting the transformation

Main step:

Lemma
If (fp, fR) ∈ R3 × SO(3) and (p0,R0) ∈ C2([0, `];R3 × SO(3)) satisfy

(fp, fR) = (p0,R0)(0), (4)

then the transformation T : E1 → E2 is bijective.

13 / 23



Inverting the transformation

Theorem
Assume that (4) holds with

M,C ∈ C1([0, `];R6×6)

R ∈ C2([0, `]; SO(3))

(p0,R0) ∈ C2([0, `];R3 × SO(3))

p1, w0 ∈ C1([0, `];R3)

y0 :=

[
I 0
0 C−1

]
(R0)ᵀp1

(R0)ᵀw0

(R0)ᵀ d
dx

p0 − e1
vec
(
(R0)ᵀ d

dx
R0
)
−Υc

 .
Then,
if there exists a unique solution y ∈ C1([0, `]× [0, T ];R12) to (2) with initial data y0

(for some T > 0),

=⇒ there exists a unique solution (p,R) ∈ C2([0, `]× [0, T ];R3 × SO(3)) to (1) with
initial data (p0,R0,p1, w0) and boundary data (fp, fR), and y = T (p,R).

Idea of the proof.

• A solution y to (2) always belongs to E2 due to the last six governing equations
in (2a), the last six initial conditions in (2d) and the Dirichlet conditions (2b) and
since we maintained the link between the initial and boundary data of (1) and (2).

⇒ Previous Lemma automatically provides (p,R), candidate to be solution (1);

• (p,R) then fulfills the governing system of the GEB model;

• The rest of boundary and initial conditions of System (2) lead to those of (1);

• Uniqueness comes from that of the IGEB model and the fact that T is bijective.
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Inverting the transformation

Two frameworks:

1. GEB. Quasilinear
second-order
(Reissner ’81, Simo ’85)
‘Wave-like’

linked by a nonlinear transformation:

T : (p,R) 7−→
[
I6 0
0 C−1

]
Rᵀ∂tp

vec (Rᵀ∂tR)
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

 =

[
v
z

]

2. IGEB. Semilinear (quadratic)
first-order hyperbolic
(Hodges ’03)
‘Hamiltonian framework’ (Simo ’88)
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Inverting the transformation

Idea of the proof of the Lemma:

Given y ∈ E2, ∃! (p,R) ∈ E1 such that T (p,R) = y?

Step 1. T (p,R) = y ⇔ PDE system.
∂tR = Rû2 in (0, `)× (0, T )

∂xR = R(û4 + Υ̂c) in (0, `)× (0, T )

R(0, 0) = R0(0)

,


∂tp = Ru1 in (0, `)× (0, T )

∂xp = R(u3 + e1) in (0, `)× (0, T )

p(0, 0) = p0(0).

Step 2. Quaternions. R = (q20 − 〈q , q〉)I3 + 2qqᵀ + 2q0q̂ ↔ q =

[
q0
q

]
, ‖q‖ ≡ 1

Lemma
Let f ∈ C1([0, `]× [0, T ];R3) and let z represent either of the spatial or time
variables x, t. The function q ∈ C1([0, `]× [0, T ];R4) fulfills both |q| ≡ 1 and

∂zq = U(f)q, in (0, `)× (0, T ), with U(f) := 1
2

[
0 −fᵀ

f −f̂

]
if and only if the map R ∈ C1([0, `]× [0, T ]; SO(3)) parametrized by q fulfills

∂zR = Rf̂ , in (0, `)× (0, T ).

Thus, the first system is equivalent to (R0(0) parametrized by qin)
∂tq = U(u2)q in (0, `)× (0, T )

∂xq = U(u4 + Υc)q in (0, `)× (0, T )

q(0, 0) = qin.
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Inverting the transformation

Step 3. Seemingly overdetermined systems.
The last three equations in (3b) are equivalent to:

U(u2)U(u4 + Υc)− U(u4 + Υc)U(u2) + ∂x(U(u2))− ∂t(U(u4 + Υc)) = 0,

hence they provide compatibility conditions to solve for q by means of the following
lemma.

Lemma
Let A,B ∈ C1([0, `]× [0, T ];Rn×n) be such that
AB − BA+ (∂xA)− (∂tB) = 0 holds in (0, `)× (0, T ). Then,

∂ty = Ay in (0, `)× (0, T )

∂xy = By in (0, `)× (0, T )

y(0, 0) = yin.

admits a unique solution y ∈ C1([0, `]× [0, T ];Rn), for any given yin ∈ Rn.

Then, we inject the obtained R in the second system, and solve for p using (3c)
together with the first three equations in (3b).
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Exact controllability of nodal profiles

Control of nodal profiles:

Square are the “charged nodes”, where the state should meet some profiles
Triangles are the “controlled nodes”.

Travelling time:

Let us denote the eigenvalues of Ai by {λki }12k=1 (there are negative and positive
eigenvalues).

We may define, for any i ∈ I, the function Λi ∈ C0([0, `i]; (0,+∞)) and the
travelling time Ti > 0 by

Λi(x) =

∣∣∣∣∣ min
k∈{1,...,12}

1

λki (x)

∣∣∣∣∣ and Ti =

∫ `i

0
Λi(x)dx;
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Exact controllability of nodal profiles

Theorem
Consider the A-shaped network. Suppose that Ri ∈ C2([0, `i]; SO(3)) and
Assumption 1 (m = 2) holds. Then, for any

T > T ∗ > max {T1, T2}+ max {T4, T5} =: T .

there exists ε0 > 0 such that for all ε ∈ (0, ε0), for some δ, γ > 0, and

(i) for all initial - boundary data y0i ∈ C1([0, `i];R12) and qn ∈ C1([0, T ];R6)
satisfying the first-order compatibility conditions and ‖y0i ‖C1

x
+ ‖qn‖C1

t
≤ δ, and

(ii) for all nodal profiles y1, y2 ∈ C1([T ∗, T ];R12), satisfying ‖yi‖C1
t
≤ γ and the

transmission conditions at the node n = 1,
1

2

4

3

5

1 2

3

4
5

controls
nodal profiles

For t ∈ [T ∗, T ],

y1(0, t) = y1(t)

y2(0, t) = y2(t).

For t ∈ [0, T ],

z4(`4, t) = q4(t)

z5(`5, t) = q5(t).

there exist controls q4, q5 ∈ C1([0, T ];R6) with ‖qi‖C1
t
≤ ε, such that the IGEB

network admits a unique solution (yi)i∈I ∈
∏N

i=1 C
1([0, `i]× [0, T ];R12), which

fulfills ‖yi‖C1
x
≤ ε and

yi(0, t) = yi(t) for all i ∈ {1, 2}, t ∈ [T ∗, T ].

Constructive method of by Li and collaborators; notably here Zhuang ’18 and ’21.
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Exact controllability of nodal profiles

∂tyi + Ai∂xyi + Biyi = g(x, yi) ∂xyi + A
−1
i ∂tyi + A

−1
i Biyi = A

−1
i gi(·, yi)

Step 1 → Step 2 → Step 3 → Step 4
A
.C

.

A
.C

.

4 2 1

5

3

p
ro
�
le

A.C.

A.C.

4 2 1

5

3

4 2 1

5

3

T

T ∗

T

t = 0

t

co
n
tr
o
l

co
n
tr
o
l

A.C.

A.C.

4 2 1

5

3

x (time)0

t (space)

`i

max{T4, T5}

Ti +max{T4, T5}

t
i (x)

i = 1, 2

x (space)0

t (time)

`3

max{T4, T5}

i = 3

x (time)0

t (space)

`i

Ti ti (x)

i = 4, 5

ti(x) = Ti + max{T4, T5} +

∫ x
0

min
1≤k≤12

1

λk
i

(ξ)︸ ︷︷ ︸
=−Λi(ξ)

dξ, ti(x) = Ti −
∫ x
0

Λi(ξ)dξ,
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String-spring-mass network

N1

N2

N3

N4

N5

1

2

3

4

Nonlinear strings coupled to an elastic body in R3. The resulting network has four
simple nodes {Ni}4i=1 and one multiple nodes N5, itself expended into a network of
springs.

N1

N2

N3

Nn

N0

i = 1

i = 2

i = 3

i = n

x = 0

x = L1

x = L2 x = Ln

x = L3

N0
1

N0
2

N0
3

N0
n
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Outlook

• More general junction conditions for networks of geometrically exact beams:
mass-spring junction.

• Numerics: test the effect of the feedback in numerical simulations.

• Well-posedness and stabilization with Kelvin-Voigt damping. Relax the smallness
assumption on the initial data.

• Stabilization of star-shaped network: removing one control.

• Nodal profile control: theorem with general conditions sufficient for obtaining
nodal profile controllability for any network.

22 / 23



Other references:

• G. Bastin, J.-M. Coron, Stability and boundary stabilization of 1-d hyperbolic systems, 2016.
For semilinear systems: G. Bastin, J.-M. Coron, Exponential stability of semi-linear one-dimensional balance laws, in Feedback
stabilization of controlled dynamical systems, 2017.

• D. H. Hodges, Geometrically exact, intrinsic theory for dynamics of of curved and twisted anisotropic beams. AIAA journal, 2003.

• T. Li, Controllability and observability for quasilinear hyperbolic systems. AIMS Ser. Appl. Math. Am. Inst. Math. Sci., 2010.
Extension to nonautonomous systems: Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic
systems. Chinese Ann. Math. Ser. B, 2006.

• E. Reissner. On finite deformations of space-curved beams. ZAMP, 1981

• J. C. Simo, A finite strain formulation - The three-dimensional dynamic problem - Part I. Methods Appl. Mech. Engrg., 1985.

• K. Zhuang, G. Leugering, T. Li, Exact boundary controllability of nodal profile for Saint-Venant system on a network with loops.
J. Math. Pures Appl, 2018.

Thank you for your attention! Questions?
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