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General Idea - MIMO PI Control

Classical PI control loop
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where y, r, e, w, uI , u ∈ Rp, v ∈ Rm, k, τp > 0, K ∈ Rm×p.
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Projected Dynamical Systems



Operator ΠU(u,w) - Definition

Definition 1.* For a closed convex set U ⊂ Rp, let the projection operator PU (w) be

defined for all w ∈ Rp as

PU (w) = arg min
u∈U

‖w − u‖,

then we define ΠU (u,w) for all w ∈ Rp and u ∈ U as

ΠU (u,w) = lim
δ→0

(PU (u+ δw)− u)

δ
.

*P. Dupuis. Large deviations analysis of reflected diffusions and constrained stochastic approximation algorithms in convex

sets. Stochastics, 21(1):63-96, 1987. 3



Operator ΠU(u,w) - Operating Principle

Lemma 1.* Let the operator ΠU (u,w) and the set U be as defined before. Then

1. If u ∈ Uo, then ΠU (u,w) = w.

2. if u ∈ ∂U , then ΠU (u,w) = w + β(u)n∗(u), where

n∗(u) = arg max
n∈n(u)

〈w,−n〉, and β(u) = max{0, 〈w,−n∗(u)〉},

U

u

w

〈w,−n
∗(u)〉n∗(u)

n
∗(u)
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Projected Dynamical System - Definition

Definition 2.* Let U ⊂ Rp be a closed and convex set, and F : U → Rp a vector

field. Define a projected dynamical system PDS(F,U) as the map Φ : U × R 7→ U ,

such that φu0(t) = Φ(u0, t) is a Carathéodory solution of

φ̇u0(t) = ΠU (φu0(t),−F (φu0(t))), φu0(0) = u0. (1)

Uu0 Uu0

*A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational Inequalities with Applications. International

Series in Operations Research & Management Science. Springer US, 1996. 5
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Projected Dynamical System - Existence and Uniqueness

Theorem 1.* Let U ⊂ Rp be a closed and convex set. Assume that there exists a

finite B > 0 such that the vector field −F : U → Rp satisfies:

‖F (u)‖ ≤ B(1 + ‖u‖) ∀ u ∈ U,
〈−F (u1) + F (u2), u1 − u2〉 ≤ B‖u1 − u2‖2 ∀ u1, u2 ∈ U.

Then:

1. For any u0 ∈ U , there exists a unique solution u : [0,∞)→ U to the initial value

problem (1).

2. If un → u0 as n→∞, then u(t;un) converges to u(t;u0) uniformly on every

compact set in [0,∞).

A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational Inequalities with Applications. International

Series in Operations Research & Management Science. Springer US, 1996. 6



Control Problem Formulation



Control Objective

The nonlinear plant P0 to be controlled is described by:

ẋ = f0(x, v), y = g(x),

with f0 ∈ C2(Rn × V;Rn), g ∈ C1(Rn;Rp), and V ⊂ Rm (m ≥ p) open domain.

Control Objective

The control objective is to make the output signal y track a constant reference signal

r ∈ Y ⊂ Rp, while making sure that the input signal v converges to a steady-state

value in a desired compact set V ⊂ Rm (e.g., determined by operational constraints).
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Closed-Loop System - Equations

The closed-loop system is described by

ẋ = f0(x,N (uI + τpk(r − g(x)))), u̇I = ΠU (uI , k(r − g(x))), (2)

where U ⊂ Rp is an open domain, U ⊂ U is compact and convex, N ∈ C2(U ,V),

V = N (U), k > 0 and τp ≥ 0, with state space Rn × U .

u y

+

−

r

τp

wuI e
k

+
+

∫
ΠU

v
N P0

*P. Lorenzett and G. Weiss. “PI Control of stable nonlinear plants using projected dynamical systems theory,” 2021. 8



Closed-Loop System - Existence of Solutions

Notation. Denote by

Dr := {[ xuI ] ∈ Rn × U | uI + τpk(r − g(x)) ∈ U} .

Proposition 1.Consider the closed-loop system (2), with k, τp ∈ R, r ∈ Rp. Then for

every [ x0u0 ] ∈ Dr with u0 ∈ U , there exists τ ∈ (0,∞] such that (2), with initial

conditions z(0) = [ x0u0 ], has a unique Carathéodory solution (or state trajectory) z

defined on [0, τ). If τ is finite and maximal (i.e., the state trajectory cannot be

continued beyond τ), then lim supt→ τ ‖z(t)‖ =∞, or

lim
t→ τ

(uI(t) + τpk(r − g(x(t)))) ∈ ∂U .

9



Closed-Loop Stabilty Analysis



Assumption 1

Assumption 1. There exists a function Ξ ∈ C1(V;Rn) such that

f0(Ξ(v), v) = 0 ∀ v ∈ V.

Moreover, the set of equilibrium points {Ξ(v)
∣∣v ∈ V} is uniformly exponentially stable.

This means that there exist ε0 > 0, λ > 0 and ρ ≥ 1 such that for each constant input

v0 ∈ V, the following holds:

If ‖x(0)− Ξ(v0)‖ ≤ ε0, then for every t ≥ 0,

‖x(t)− Ξ(v0)‖ ≤ ρe−λt‖x(0)− Ξ(v0)‖.

10



Assumption 2

Notation. Let G(v) := g(Ξ(v)) ∈ C1(V;Rp) denote the steady-state input-output

map corresponding to P0.

Assumption 2. The plant P0 satisfies Assumption 1. Moreover, there exist an open

set U ⊂ Rp, a function N ∈ C2(U ,V), and µ > 0 such that

〈G(N (u1))−G(N (u2)), u1 − u2 〉 ≥ µ‖u1 − u2‖2

for all u1, u2 ∈ U , i.e., G ◦ N is strictly monotone.

We denote Y = G(N (U)), and, for any r ∈ Y , we define

ur : = (G ◦ N )−1(r) xr : = Ξ(N (ur)).
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Mappings Recap
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Main Stability Theorem

Theorem 2. Consider the closed-loop system (2), where P0 satisfies Assumption 2.

Then there exists a κ > 0 such that if the gain k ∈ (0, κ], then for any

r ∈ Y = G(N (U)), (Ξ(N (ur)), ur) is a (locally) exponentially stable equilibrium point

of the closed-loop system (2), with state space X = Rn × U . If the initial state

[ x0u0 ] ∈ Dr, of the closed-loop system satisfies u0 ∈ U and ‖x0−Ξ(N (u0))‖ ≤ ε0, then

x(t)→Ξ(N (ur)), uI(t)→ur, y(t)→ r,

and this convergence is at an exponential rate.

*P. Lorenzett and G. Weiss. “PI Control of stable nonlinear plants using projected dynamical systems theory,” 2021. 13



Intuition of the Result
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Numerical Example



Power Regulation for a Grid-Connected Synchronverter
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where m = p = 2, and n = 4.
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Fourth Order Grid-Connected Synchronverter Model

The plant P0, with state x = [ id iq ω δ ]> ∈ R4, is described by the equations*

Hẋ = A(x, v)x + h(x, v) , y = g(x),

with

H =


L 0 0 0

0 L 0 0

0 0 J 0

0 0 0 1

 , h(x, v) =


V sin δ

V cos δ

Tm +Dpωn

−ωg

 ,

A(x, v) =


−R ωL 0 0

−ωL −R −mif 0

0 mif −Dp 0

0 0 1 0

 , g(x) = −V

[
cos δ sin δ

− sin δ cos δ

][
iq

id

]
.

*P. Lorenzetti, Z. Kustanovich, S. Shivratri, and G. Weiss. “The equilibrium points and stability of grid-connected

synchronverters,” IEEE Trans. Power Systems, to appear in 2021. 16



Parameters’ Choice

Parameter Numerical Value

ωg 100π rad/sec (50Hz)

V 230
√

3Volts

J 0.2 Kg·m2/rad

Dp 3N·m/(rad/sec)

R 1.875Ω

L 56.75mH

m 3.5H

ωn 100π rad/sec (50Hz)
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Assumption 1 - The Mapping Ξ

The function Ξ : V → R4 is given by

Ξ(v) =


−Tmωg

mifp
+ V sin(arccos Λ(v)−φ)

R

− Tm
mif

ωg

arccos Λ(v)− φ

 , where

φ ∈
(

0,
π

2

)
s. t. tanφ =

ωgL

R
, Λ(v) = − Tm

mif

L
√
p2 + ω2

g

V
+

mifωgp

V
√
p2 + ω2

g

,

p =
R

L
, and V = {(Tm, if ) ∈ R× (0,∞)

∣∣ |Λ(v)| ≤ 1}.

V. Natarajan and G. Weiss. “Almost global asymptotic stability of a grid-connected synchronous generator,” Math. of

Control, Signals and Systems, vol. 30, 2018. 18



Assumption 1 - The set V

19



Assumption 2 - The Mapping G

We choose N = G−1
right ∈ C

2(G(V),V), described by the equation

N (u) =

 4R2‖u−C‖2−V 4

4V 2ωgR

‖u−M‖‖Z‖
V ωgm

 ,
where

C =
[
−V 2

2R
0

]
, Z =

[
R
ωgL

]
, M = − V 2

‖Z‖2
Z,

so that Assumption 2 is satisfied (G ◦ N = I) with U = G(V).
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Assumption 2 - The sets U and U
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Assumption 2 - The Mapping G (Alternative Choice)

An alternative choice to N = G−1
right could be, e.g., N = K ∈ R2×2 given by

K =

[
1
50 0

0 1
5000

]
. (3)

The (strict) monotonicity of G ◦ N ∈ C1(U ,Rp) is equivalent to the fact that

Re ∂(G◦N )
∂u is strongly positive, i.e., there exists a µ > 0 such that〈

∂(G ◦ N )

∂u
w,w

〉
≥ µ‖w‖2 ∀ w ∈ Rp, ∀ u ∈ U .

A. Nagurney and D. Zhang. Projected Dynamical Systems and Variational Inequalities with Applications. International

Series in Operations Research & Management Science. Springer US, 1996. 22
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Assumption 2 - The sets U and U (Alternative Choice)
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Numerical Results - The Comparison

Classical PI control loop
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where τp = 0, k = 1 (on the left), k = 2 (on the right).
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Numerical Results - The Integrator State uI and the Set U
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Numerical Results - The Plant Input v and the Set V
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Conclusion
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Thanks for your attention!
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Numerical Results - The Quantities P and Q in Time
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