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» Part | Research overview

= Research illustration
= Pyblications
= Summary of the ConFlex fellowship

« Part Il Spatiotemporal wind field prediction via physics-
informed deep learning and LIDAR measurements
= Research objective and method overview
= 2D wind field
= 3D wind field
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»  QObjectives

= Turbine level -Load mitigation
= Farm level - structural control
= Wind predictions - reinforcement learning
: : -Wake interaction
* Machine learning (ML) - computational fluid dynamics
approaches - supervised machine learning
= Reinforcement learning P unstpcIviseRIERRin S Eaming
= Supervised
= Unsupervised )
= Physics-informed T

Background: the Horns Rev Offshore Wind Farm M o
(photo by Christian Steiness); (a) the illustrationof =~
a floating turbine structural system (figure T "
adapted from [9]); (b) the illustration of wind
turbine wake flows, generated by CFD simulations;
(c) the illustration of wind measurements by
turbine-mounted LIDAR.
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»  Control of wind turbine structures
= Monopile wind turbines

[C-1] J. Zhang, X. Zhao, and X. Wei, Data-driven structural control of
monopile wind turbine towers based on machine learning,
Proceedings of the 21st IFAC World Congress, Berlin, Germany,
July 2020.

= Floating wind turbines

[J-1] J. Zhang, X. Zhao and X. Wei, Reinforcement learning-based
structural control of floating wind turbines, IEEE Transactions on
Systems, Man, and Cybernetics: Systems (2020), DOI.
10.1109/TSMC.2020.3032622.

[J-2] H. Dong, X. Zhao, B. Luo, and J. Zhang, Robust Deep
Reinforcement Learning with Application in Structural Control of
Floating Wind Turbines, journal paper draft (2021).
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rLoad mitigation
- structural control
- reinforcement learning

Wake interaction -

= supervised machine learning
- unsupervised machine leaming

I- computational fluid dynamics

Background: the Horns Rev Offshore Wind Farm
(photo by Christian Steiness); (a) the illustration of
a floating turbine structural system (figure
adapted from [9]); (b) the illustration of wind
turbine wake flows, generated by CFD simulations;
(c) the illustration of wind measurements by
turbine-mounted LIDAR.
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Wind farm wake modeling
= Uncertainty quantification of traditional wake model

[J-3] J. Zhang and X. Zhao, Quantification of parameter uncertainty in
wind farm wake modeling, Energy 196 (2020) 117065.

= ML-based wind farm wake modeling

[J-4] J. Zhang and X. Zhao, A novel dynamic wind farm wake model
based on deep learning, Applied Energy, 277 (2020) 115552.

[J-5] J. Zhang and X. Zhao, Machine-learning-based surrogate
modeling of aerodynamic flow around distributed structures, AIAA
Journal 59 (3) (2021) 868-879.

[J-6] J. Zhang and X. Zhao, Wind farm wake modeling based on deep
convolutional conditional generative adversarial network, Energy
(2021), to appear.

= RL-based wind farm control

[J-7] H. Dong, J. Zhang, and X. Zhao, Intelligent Wind Farm Control
via Deep Reinforcement Learning and High-Fidelity Simulations,
Applied Energy 292 (2021) 116928.
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rLoad mitigation
- structural control
- reinforcement learning

Wake interaction

- computational fluid dynamics
= supervised machine learning
- unsupervised machine leaming

Background: the Horns Rev Offshore Wind Farm
(photo by Christian Steiness); (a) the illustration of
a floating turbine structural system (figure
adapted from [9]); (b) the illustration of wind
turbine wake flows, generated by CFD simulations;
(c) the illustration of wind measurements by
turbine-mounted LIDAR.
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»  Wind field predictions Load mitgation

- structural control
- reinforcement learning

= Two-dimensional _ Wake interaction S22
1J-8] J. Zhang and X. Zhao, Spatiotemporal wind field prediction ' - siperved macin earing
based on physics-informed deep learning and LIDAR measurements,

Applied Energy 288 (2021) 116641.

= Three-dimensional
[J-9] J. Zhang and X. Zhao, Three-dimensional spatiotemporal wind

field reconstruction based on physics-informed deep learning, Background: the Horns Rev Offshore Wind Farm
. (photo by Christian Steiness); (a) the illustration of
Applled Energy 300 (2021 ) 117390. a floating turbine structural system (figure
adapted from [9]); (b) the illustration of wind

turbine wake flows, generated by CFD simulations;
(c) the illustration of wind measurements by
turbine-mounted LIDAR.
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* Publications
= 7 high-impact journal papers as first author
= 1 conference paper as first author
= 1 high-impact journal paper as co-author
= 1 journal paper draft under review as co-author

* PhD status
= PhD degree awarded on 28 July 2021

» Career plan

= Currently working as research fellow at University of Warwick

= Plan to continue working in renewable energy research in academia, while actively seeking to
collaborate with industry.
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LIDAR measurements
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LIDAR measurements
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Wind coming from turbine yaw direction
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 Effective wind speed
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 Instantaneous wind speed N
= Reconstruction (0-100s) _:’) 30° ﬁﬂk

= Forecasting (100-115s)
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(A) the baseline case

(B1-B4) with various levels
of measurement noise

(C) half spatial resolution

(D) half temporal resolution

(E) 20° LIDAR look direction

(F) freestream turbulence

level of 1%
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Case Quantity (units) Range MRMSE
@A) Magnitude (m/s) [6.71, 9.52] 0.198
Direction (°) [-6.03, 8.28] 2.77
(B1) Magnitude (m/s) [6.71, 9.52] 0.208
Direction (°) [-6.03, 8.28] 2.75
B2) Magnitude (m/s) [6.71, 9.52] 0.236
Direction (°) [-6.03, 8.28] 3.32
(B3) Magnitude (m/s) [6.71, 9.52] 0.387
Direction (°) [-6.03, 8.28] 3.73
B4) Magnitude (m/s) [6.71, 9.52] 0.523
Direction (°) [-6.03, 8.28] 4.35
© Magnitude (m/s) [6.71, 9.52] 0.212
Direction (°) [-6.03, 8.28] 2.85
D) Magnitude (m/s) [6.71, 9.52] 0.222
Direction (°) [-6.03, 8.28] 2.66
() Magnitude (m/s) [6.70, 9.73] 0.281
Direction (°) [11.4, 27.8] 2.46
® Magnitude (m/s) [6.71, 8.96] 0.204
Direction (°) [-6.37, 6.13] 2.69
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»  Wind coming from turbine yaw direction

|

Lidar with azimuth scanning
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Effective wind speed
Ny
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Lidar with azimuth scanning
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 Instantaneous wind speed

= Reconstruction (0-100s)
= Forecasting (100-115s)

|

Lidar with azimuth scanning
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(d) 3/4 chord length (e) blade tip
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Case Quantity Value range RMSE (% of range)
u (m/s) [6.08, 10.11] 0.263 (6.5%)
v (m/s) [-1.82, 1.53] 0.397 (11.9%)
8 m/s w (m/s) [-1.48, 1.36] 0.361 (12.7%)
7y, ) [-11.4, 11.8] 2.84 (12.2%)
e %) [-10.1, 9.77] 2.58 (13.0%)
u (m/s) [9.53, 16.07] 0.592 (9.1%)
v (m/s) [-2.89, 2.90] 0.625 (10.8%)
13 m/s w (m/s) [-2.53, 2.56] 0.590 (11.6%)
s ® [-12.6, 12.4] 2.76 (11.0%)
y, (®) [-10.3, 10.9] 2.60 (12.3%)
u (m/s) [13.14, 21.62] 0.958 (11.3%)
v (m/s) [-4.18, 4.47] 0.837 (9.7%)
18 m/s w (m/s) [—4.04, 3.50] 0.774 (10.3%)
¥y, ) [-11.9, 14.9] 2.73 (10.2%)
y, (®) [-12.1, 12.1] 2.52 (10.4%)
u (m/s) [16.53, 28.44] 1.296 (10.9%)
v (m/s) [-4.57, 5.79] 1.098 (10.6%)
23 m/s w (m/s) [-4.82, 5.12] 1.036 (10.4%)
ry (©) [-11.2, 12.8] 2.72 (11.3%)
y, ®) [-11.7, 13.1] 2.57 (10.4%)

17



o)
warwick & ICSE re Conflex

IIIIIIIIIIIIIIIIIIIIII " Intelligent Control & Smart Energy

Summary:

* A deep learning model: limited data + physics

» Spatiotemporal prediction of wind field: LIDAR + NS equations

»  Combination of LIDAR and physics without model reduction

3D wind field reconstruction and forecasting for the first time

»  Wind forecasting without using Taylor’s frozen turbulence hypothesis

Perspective:
* wind resource assessment
wind turbine control/monitoring

 load/power forecasting 18
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Thanks for your attention !
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