

Machine Learning Based Modelling and Control of Wind Turbine Structures and Wind Farm Wakes

ESR2: Jincheng Zhang, Supervisor: Xiaowei Zhao School of Engineering, University of Warwick, CV47AL, UK August 4th, 2021

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

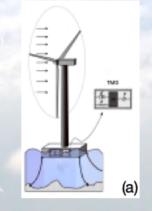
Table of Content

Part I Research overview

- Research illustration
- Publications
- Summary of the ConFlex fellowship
- Part II Spatiotemporal wind field prediction via physicsinformed deep learning and LIDAR measurements
 - Research objective and method overview
 - 2D wind field
 - 3D wind field

(b)

(c)


Research illustration

- Objectives
 - Turbine level
 - Farm level
 - Wind predictions
- Machine learning (ML) approaches
 - Reinforcement learning
 - Supervised
 - Unsupervised
 - Physics-informed

Background: the Horns Rev Offshore Wind Farm (photo by Christian Steiness); (a) the illustration of a floating turbine structural system (figure adapted from [9]); (b) the illustration of wind turbine wake flows, generated by CFD simulations; (c) the illustration of wind measurements by turbine-mounted LIDAR.

-Load mitigation

- structural control
- reinforcement learning

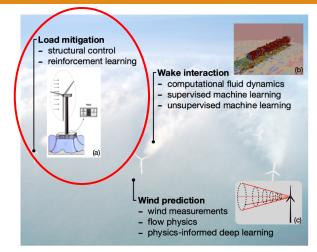
Wake interaction

- computational fluid dynamics
- supervised machine learning
- unsupervised machine learning

Wind prediction

- wind measurements
- flow physics
- physics-informed deep learning

Publications


- Control of wind turbine structures
 - Monopile wind turbines

 [C-1] J. Zhang, X. Zhao, and X. Wei, Data-driven structural control of monopile wind turbine towers based on machine learning,
Proceedings of the 21st IFAC World Congress, Berlin, Germany, July 2020.

Floating wind turbines

[J-1] J. Zhang, X. Zhao and X. Wei, Reinforcement learning-based structural control of floating wind turbines, IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020), DOI: 10.1109/TSMC.2020.3032622.

[J-2] H. Dong, X. Zhao, B. Luo, and **J. Zhang**, Robust Deep Reinforcement Learning with Application in Structural Control of Floating Wind Turbines, journal paper draft (2021).

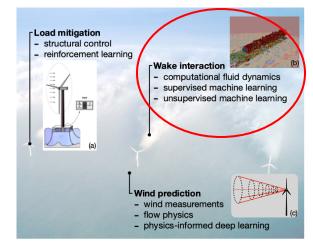
Background: the Horns Rev Offshore Wind Farm (photo by Christian Steiness); (a) the illustration of a floating turbine structural system (figure adapted from [9]); (b) the illustration of wind turbine wake flows, generated by CFD simulations; (c) the illustration of wind measurements by turbine-mounted LIDAR.

Publications

- Wind farm wake modeling
 - Uncertainty quantification of traditional wake model

[J-3] **J. Zhang** and X. Zhao, Quantification of parameter uncertainty in wind farm wake modeling, **Energy** 196 (2020) 117065.

ML-based wind farm wake modeling


[J-4] **J. Zhang** and X. Zhao, A novel dynamic wind farm wake model based on deep learning, **Applied Energy**, 277 (2020) 115552.

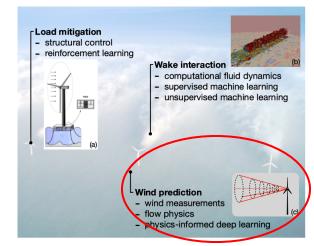
[J-5] **J. Zhang** and X. Zhao, Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures, **AIAA Journal** 59 (3) (2021) 868–879.

[J-6] **J. Zhang** and X. Zhao, Wind farm wake modeling based on deep convolutional conditional generative adversarial network, **Energy** (2021), to appear.

RL-based wind farm control

[J-7] H. Dong, **J. Zhang**, and X. Zhao, Intelligent Wind Farm Control via Deep Reinforcement Learning and High-Fidelity Simulations, **Applied Energy** 292 (2021) 116928.

Background: the Horns Rev Offshore Wind Farm (photo by Christian Steiness); (a) the illustration of a floating turbine structural system (figure adapted from [9]); (b) the illustration of wind turbine wake flows, generated by CFD simulations; (c) the illustration of wind measurements by turbine-mounted LIDAR.


Publications

- Wind field predictions
 - Two-dimensional

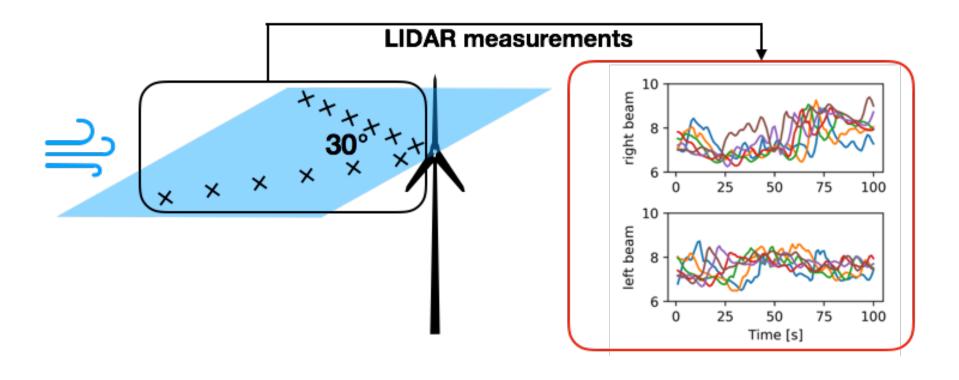
[J-8] **J. Zhang** and X. Zhao, Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements, **Applied Energy** 288 (2021) 116641.

Three-dimensional

[J-9] **J. Zhang** and X. Zhao, Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning, **Applied Energy** 300 (2021) 117390.

Background: the Horns Rev Offshore Wind Farm (photo by Christian Steiness); (a) the illustration of a floating turbine structural system (figure adapted from [9]); (b) the illustration of wind turbine wake flows, generated by CFD simulations; (c) the illustration of wind measurements by turbine-mounted LIDAR.

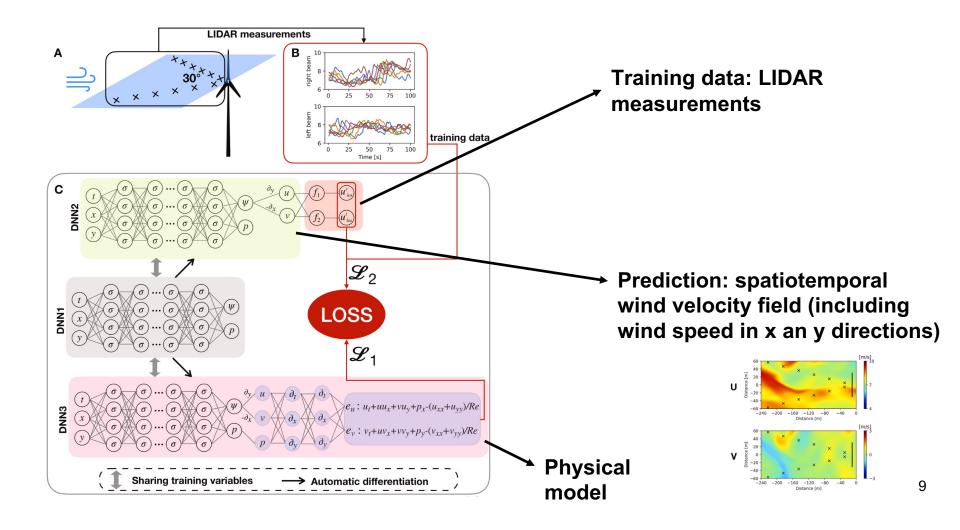
Summary of the ConFlex fellowship


• Publications

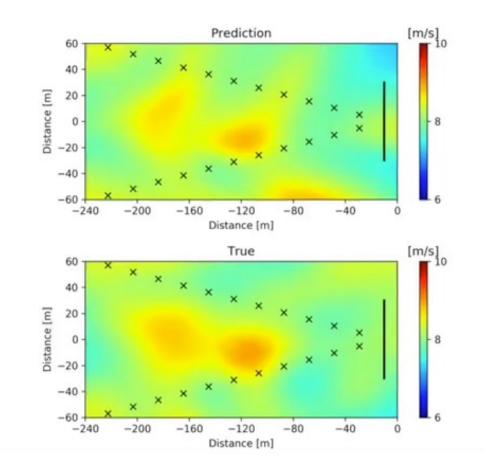
- 7 high-impact journal papers as first author
- 1 conference paper as first author
- 1 high-impact journal paper as co-author
- 1 journal paper draft under review as co-author
- PhD status
 - PhD degree awarded on 28 July 2021
- Career plan
 - Currently working as research fellow at University of Warwick
 - Plan to continue working in renewable energy research in academia, while actively seeking to collaborate with industry.

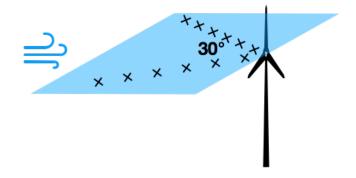
Spatiotemporal wind field prediction based on LIDAR measurements

- line-of-sight wind speed measurements
- sparse spatial measurement locations

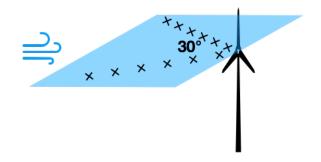


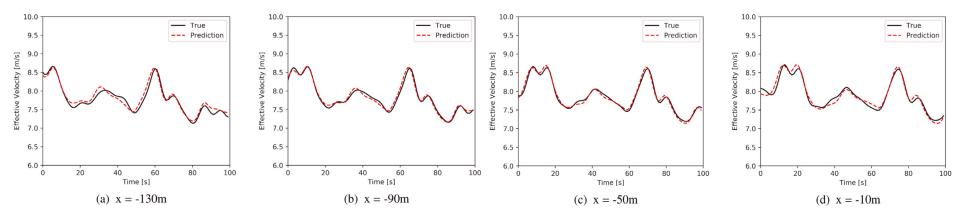
the spatiotemporal wind field?


Deep learning incorporating flow physics with LIDAR measurements



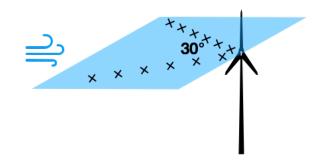
• Wind coming from turbine yaw direction

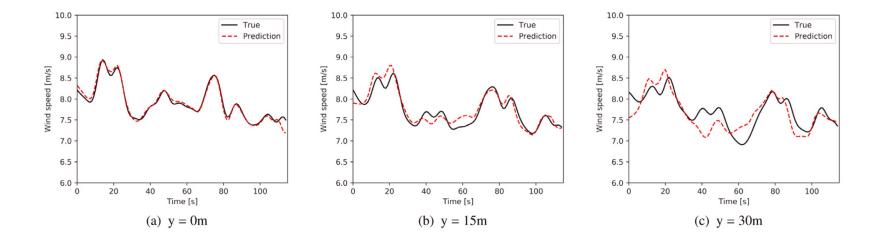

Lidar with fixed beam directions



• Effective wind speed

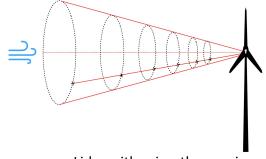
$$\bar{U}_{x,t} = \frac{1}{N_y} \sum_{i=1}^{N_y} \hat{u}_{x,y_i,t}$$

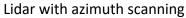


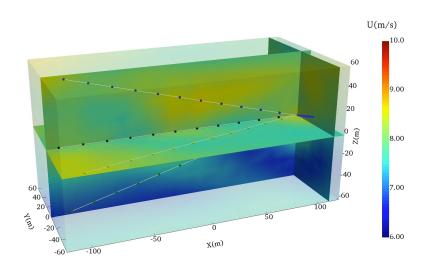


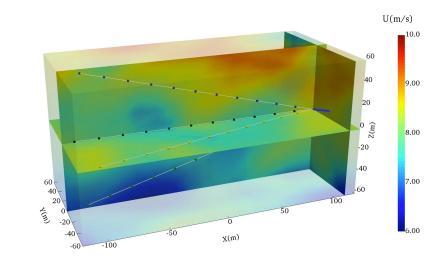
- Instantaneous wind speed
 - Reconstruction (0-100s)
 - Forecasting (100-115s)

2D wind field prediction – a set of cases

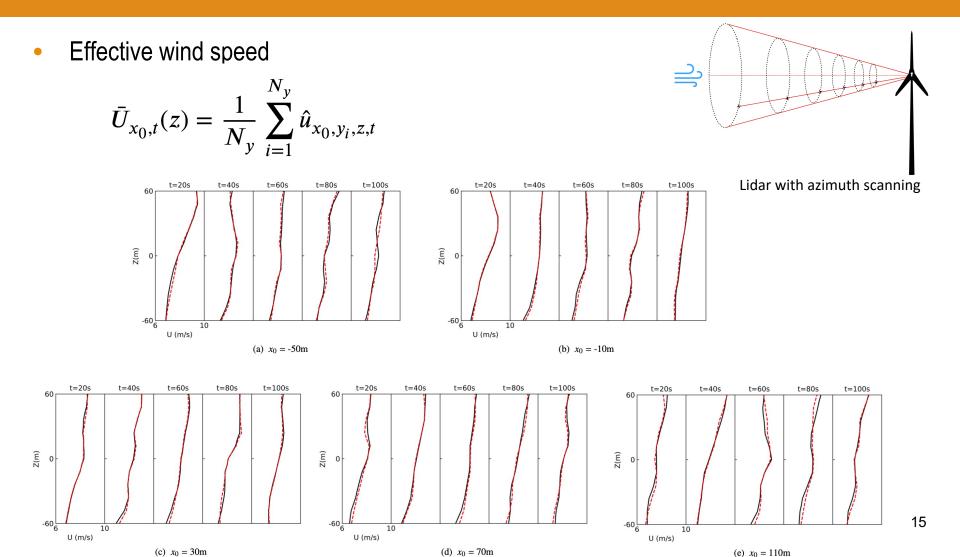

- (A) the baseline case
- (B1-B4) with various levels of measurement noise
- (C) half spatial resolution
- (D) half temporal resolution
- (E) 20° LIDAR look direction
- (F) freestream turbulence level of 1%


Case	Quantity (units)	Range	MRMSE
(A)	Magnitude (m/s)	[6.71, 9.52]	0.198
	Direction (°)	[-6.03, 8.28]	2.77
(B1)	Magnitude (m/s)	[6.71, 9.52]	0.208
	Direction (°)	[-6.03, 8.28]	2.75
(B2)	Magnitude (m/s)	[6.71, 9.52]	0.236
	Direction (°)	[-6.03, 8.28]	3.32
(B3)	Magnitude (m/s)	[6.71, 9.52]	0.387
	Direction (°)	[-6.03, 8.28]	3.73
(B4)	Magnitude (m/s)	[6.71, 9.52]	0.523
	Direction (°)	[-6.03, 8.28]	4.35
(C)	Magnitude (m/s)	[6.71, 9.52]	0.212
	Direction (°)	[-6.03, 8.28]	2.85
(D)	Magnitude (m/s)	[6.71, 9.52]	0.222
	Direction (°)	[-6.03, 8.28]	2.66
(E)	Magnitude (m/s)	[6.70, 9.73]	0.281
	Direction (°)	[11.4, 27.8]	2.46
(F)	Magnitude (m/s)	[6.71, 8.96]	0.204
	Direction (°)	[-6.37, 6.13]	2.69



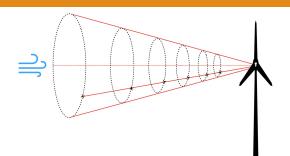


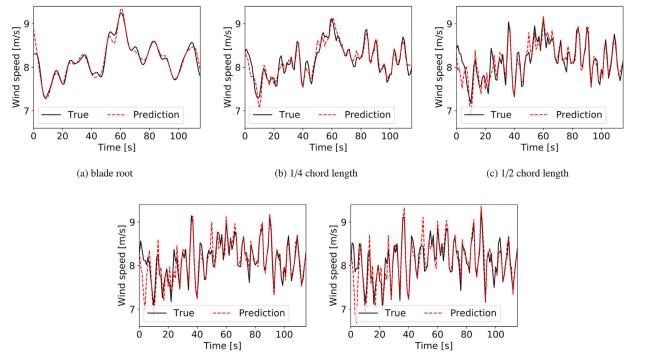
• Wind coming from turbine yaw direction



Ground Truth

Predicted Flowfield





- Instantaneous wind speed
 - Reconstruction (0-100s)
 - Forecasting (100-115s)

Lidar with azimuth scanning

3D wind field prediction – a set of cases

Case	Quantity	Value range	RMSE (% of range)
	<i>u</i> (m/s)	[6.08, 10.11]	0.263 (6.5%)
	v (m/s)	[-1.82, 1.53]	0.397 (11.9%)
8 m/s	<i>w</i> (m/s)	[-1.48, 1.36]	0.361 (12.7%)
	γ _y (°)	[-11.4, 11.8]	2.84 (12.2%)
	γ_z (°)	[-10.1, 9.77]	2.58 (13.0%)
	u (m/s)	[9.53, 16.07]	0.592 (9.1%)
	v (m/s)	[-2.89, 2.90]	0.625 (10.8%)
13 m/s	<i>w</i> (m/s)	[-2.53, 2.56]	0.590 (11.6%)
	γ _y (°)	[-12.6, 12.4]	2.76 (11.0%)
	γ_z (°)	[-10.3, 10.9]	2.60 (12.3%)
	u (m/s)	[13.14, 21.62]	0.958 (11.3%)
	v (m/s)	[-4.18, 4.47]	0.837 (9.7%)
18 m/s	<i>w</i> (m/s)	[-4.04, 3.50]	0.774 (10.3%)
	γ_y (°)	[-11.9, 14.9]	2.73 (10.2%)
	γ_z (°)	[-12.1, 12.1]	2.52 (10.4%)
	<i>u</i> (m/s)	[16.53, 28.44]	1.296 (10.9%)
	v (m/s)	[-4.57, 5.79]	1.098 (10.6%)
23 m/s	<i>w</i> (m/s)	[-4.82, 5.12]	1.036 (10.4%)
	γ _y (°)	[-11.2, 12.8]	2.72 (11.3%)
	γ_z (°)	[-11.7, 13.1]	2.57 (10.4%)

Summary and perspective

Summary:

- A deep learning model: limited data + physics
- Spatiotemporal prediction of wind field: LIDAR + NS equations
- Combination of LIDAR and physics without model reduction
- 3D wind field reconstruction and forecasting for the first time
- Wind forecasting without using Taylor's frozen turbulence hypothesis

Perspective:

- wind resource assessment
- wind turbine control/monitoring
- load/power forecasting

Thanks for your attention !