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M ẋ1−x ′2−Ex2+L1(x1)Mx1+L2(x2)Cx2=f e
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M ẋ1−x ′2−Ex2+L1(x1)Mx1+L2(x2)Cx2=f e
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Estimation/control strategies

NMHE NMPC
Nonlinear dynamics

Estimation/control by repeatedly solving open-loop optimal control problems
s.t. dynamics & input/states constraints

Multiple shooting, SQP, analytical sensitivities

SHARPy

MHEMPC
Tape

yk−Ne , . . . , yk−1

uk−Ne , . . . , uk−1

yk

wk

qc
ae

q̄ae , ū, w̄

uk
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Numerical examples I

Pazy wing, a very flexible clamped wing test case.

Image and data extracted from “Moving Forward with the Aeroelastic Prediction Workshop 3” presentation from
NASA’s Large Deflection Group

Geometry

Chord: 100mm

Span: 550mm

Airfoil: NACA0018

Wing-tip loading beam

Materials

Main spar: Aluminium 7075

Clamp base: Nylon, PA12

Cover: Foil (Oralight)
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Numerical examples I

Pazy wing, a very flexible clamped wing test case.

A compelling flutter suppr. case: 2 different control mechanisms
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N., Wynn, A., Palacios, R.,
Drachinksy, A., and Raveh,
D. E., “Flutter predictions
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Numerical examples I

Pazy wing, a very flexible clamped wing test case.

A compelling flutter suppr. case: direct actuation
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Numerical examples I

Pazy wing, a very flexible clamped wing test case.

A compelling flutter suppr. case: nonlinear stability leverage
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Numerical examples II

High-Altitude Long-Endurance concept very flexible aircraft
10

m
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%
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1m50kg
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12m

20°

50
%

2.5m

x

x
y

yz
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Image and data extracted from Deskos, G., del Carre, A., and Palacios,
R.,“Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft
Aeroelasticity,” Journal of Fluids and Structures, 2020.

Weight: 78.25 kg,
50 kg payload

Λ = 32

Flight velocity:
10− 15m/s

1 Propeller

T-tail tailplane:
rudder and
all-moving elevator
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Numerical examples II

High-Altitude Long-Endurance concept very flexible aircraft

Stabilisation after 50% payload drop. Open-loop results
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Numerical examples II

High-Altitude Long-Endurance concept very flexible aircraft

Stabilisation after 50% payload drop. Closed-loop results
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Numerical examples III

Data-driven improvements on the internal models: y = β>Θ(x)

Gravitational model

Aerodynamic model
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Numerical examples III

Data-driven improvements on the internal models: y = β>Θ(x)

Gravitational model → Reduce size (avoids comp. of
rotations)

Aerodynamic model → Improve accuracy (drag, dynamic
pressure)

9/12



Numerical examples III
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Physics-constrained → Trim, stability [Schlegel & Noack, 2015]

min
β
‖Y − β>Θ(X )‖2

2 + λ‖β‖1, Θ(X ) =



1 1

x1
1 x

nd
1

.

.

.

.

.

.

x1
nx

x
nd
nx

(x1
1 )2 · · · (x

nd
1 )2

x1
1 x

1
2 x

nd
1 x

nd
2

.

.

.

.

.

.

(x1
nx

)2 (x
nd
nx )2


9/12



Numerical examples III

Data-driven improvements on the internal models: y = β>Θ(x)

Open-loop improvements: payload drop release

Effect on MPC/MHE closed-loop performance:
improved estimation, inconclusive effect on control
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Numerical examples III

Data-driven improvements on the internal models: y = β>Θ(x)

Open-loop improvements: elevator deflection

Effect on MPC/MHE closed-loop performance:
improved estimation, inconclusive effect on control
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Numerical examples III

Data-driven improvements on the internal models: y = β>Θ(x)

Open-loop improvements:

Effect on MPC/MHE closed-loop performance:
improved estimation, inconclusive effect on control
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Concluding remarks

Summary of research achievements

Nonlinear low-order internal models for control

Application of data-driven methods in aeroelasticity modelling

Application examples of the framework with novel
nonlinear-exploiting control mechanisms

Framework opens the door to real-time nonlinear control of
very flexible aircraft.
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