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Introduction

Initial Value Problem (Existence and uniqueness)

x(t) - f(l’,t), (IZ(tO) = Zo, (1)’/

where z(t) € X CR™
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Introduction

Initial Value Problem (Existence and uniqueness)
z(t) = f(z,1t), x(tg) = xo, (1)

where z(t) € X CR". Let f(z,t) be piecewise continuous in ¢ and locally Lipschitz in z
i.e. for each £y € X C R", there is a real number r > 0 such that the ball B, (xg) is
contained in X and d an L such that

Locally Lipschitz continuous

1f (2, t) = f(y, )l < Lllx(t) —y@)) YV a(t),y(t) € Br(zo), V1€ [to, ta].

Then (1) has a unique solution z : [tg, t1] — X.
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Cauchy Problem

Abstract Cauchy problem

@(t) = Ax(t) Vt>0,  2(0) =z € D(A). (2)
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Cauchy Problem

Abstract Cauchy problem

If A: D(A) C X — X is the generator of a strongly continuous semigroup (T});>0 on X,
then x(t) = Tyxg is continuous as a D(A)-valued function and is the unique solution of (2).
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Cy semigroups

Mappings T : R; — X which satisfy:
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Cy semigroups

Mappings T : R; — X which satisfy:

Strong continuity

limy 0 50T () =« VzelX. (4) |
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Cy semigroups

Mappings T : R; — X which satisfy:

Strong continuity

limy 0 50T () =« VrelX.

1
Az = lim - [Tz —z],
t—0,t>0 ¢

D(A) = {z € X | the above limit exists} .

For any operator A € £(X), the Cy semigroup generated is T(t) = e

At

5/28



Generation Theorems

Hille-Yosida, 1948
For a linear operator A on a Banach space X, the following properties are equivalent:
o A generates a strongly continuous contraction semigroup.

e A is closed, densely defined and for every A\ € C with Re\ > 0 one has A € p(A) and

1
A < =
IMAM = A7 < 7 (7)
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Generation Theorems

Hille-Yosida, 1948
For a linear operator A on a Banach space X, the following properties are equivalent:
o A generates a strongly continuous contraction semigroup.

e A is closed, densely defined and for every A\ € C with Re\ > 0 one has A € p(A) and

1
A < =
IMAM = A7 < 7 (7)

Feller, Miyadera, Phillips, 1952

Let A be a linear operator on a Banach space X and let w € R, M > 1 be constants.
Then the following properties are equivalent:

e A generates a strongly continuous semigroup (Ty)¢>o satisfying ||Ty|| < Me™.

@ A is closed, densely defined and for every A € C with Re\ > w one has A € p(A) and

M
_ | € —— .
MM — A)™"|| < For — o) VneN (8)
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Generation Theorems

Lumer, Phillips, 1961

For a densely defined, dissipative operator A on a Banach space X the following
statements are equivalent:

@ The operator A generates a contraction semigroup.
e Ran(A] — A) = X for some (hence all) A > 0.

Operator A is dissipative if for some A € C such that ReA > 0 we have that

AL = A)z]| = All][.
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Infinite-dimensional linear system

Linear time invariant control systems (system node)
x(t) = Ax(t) + Bu(t), 9)
y(t) = Cx(t) + Du(t). (10)

where z(0) = z9 € D(A) and A, B, C, D, are linear operators such that A: D(A) — X,
B € L(U,X_1),C € L(X1,Y)and D € L(U,Y). C is the extension of C (not necessarily
unique) to X.

8/28



Infinite-dimensional linear system

Linear time invariant control systems (system node)
&(t) = Az(t) + Bu(t), 9)
y(t) = Cx(t) + Du(t). (10) |

where z(0) = z9 € D(A) and A, B, C, D, are linear operators such that A: D(A) — X,
B € L(U,X_1),C € L(X1,Y)and D € L(U,Y). C is the extension of C (not necessarily
unique) to X.

Well-posed solutions
existence + wuniqueness + continuous dependence =  well-posedness
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Well-posed linear system

Well-posed linear system X
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Well-posed linear system

Well-posed linear system X

Family of operators

z(1) = Trxg +/ T,_oBu(o)do Vag e D(A), Yue L([0,00);U), (12)
0
dru
_ B t
P,y= CTxg +C’/O Ti_sBu(o)do + Du(t) Vxo€ D(A), t € [0,T]. (13)
(Urz0)(t)
(Fru)(t)
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Motivating Example
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Wind tower coupled with TMD

e Tower (described by homogeneous

Euler-Bernoulli beam model) is ?c&,

clamped at bottom. [

o Nacelle considered as a rigid body has |
mass M and is mounted on top. \J

e Tuned mass damper (TMD) used to
dampen the vibrations. i

el

Figure: Wind tower coupled with tuned mass
damper (TMD).
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Wind tower coupled with TMD

Wind turbine tower coupled with TMD, defined for (z,t) € ((0,1) x [0,00)) is

PDEs representing Euler-Bernoulli beam coupled with TMD

Pwtt($, t) + Elwx:t:cac(fppt) =0,
’LU(O,t) =0, wr(Ovt) =0,

tht(lat) - Elwx:cai(lat) = F(t) - D[wt(lat) - ét(t)] - k[w(l7t) - g(t)]v
mett(l,t) —I—Elwm(l,t) = 0,
mé&u(t) = Dlwy(l,t) — &(t)] + k[w(l, ) — £(@)],

ET is the flexural rigidity, p is the mass density and J is the moment of inertia.
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Wind tower coupled with TMD

State space X = H2(0,1) x L?[0,]] x C*, and U =Y =C.

State space representation

&(t) = Az(t) + Bu(t),
y(t) = Cz(t).
where A:D(A) - X, Be L(U,X_;), C € L(X1,Y).
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Wind tower coupled with TMD

State space X = H2(0,1) x L?[0,]] x C*, and U =Y =C.

State space representation

&(t) = Az(t) + Bu(t),
y(t) = Cz(t).
where A:D(A) - X, Be L(U,X_;), C € L(X1,Y).

@ This linear system ¥ is well-posed.

@ X strongly stable on X.
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Wind tower-TMD system with nonlinear damping

Wind tower-TMD system with friction term

where

pwi(x,t) + Elwggee(x,t) = 0,

w(0,t) = 0, wz(0,t) = 0,

tht(l7t) - Elwwzx(l7t) = F(t) - D[wt(l7t) - gt(t)] - k[w(lvt) - f(t)]
— fosign[we(1,) — &(1)],

watt(l,t) + Elwm(l,t) = O,

méa(t) = Dlwn(L,8) — E(t)] + Hw(l,t) — EE)]+ fosignlunl,t) — &(0)],

1 ifv>0,
sign(v) = ¢ —1 ifv<0, (14)

[1,1] ifv=0.
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Objectives
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Objectives

@ Well-posedness of the coupled wind tower with nonlinear damping term N.
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Objectives

@ Well-posedness of the coupled wind tower with nonlinear damping term N.

@ Extend the study to nonlinear infinite dimensional system YN represented by:

Nonlinear infinite dimensional system
z(t) € Az(t) — N(z(t)) + Bu(t), (15)
y(t) = Cz(t) + Du(t). (16)
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Lax-Phillips semigroup
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Lax-Phillips semigroup

Assuming that ¥ is a well-posed system on Y, X,U. Let U = L?([0,00); U) and
Y = L*((—o0,0];Y). For each [yo, ro,up] €Y x X x U and t > 0 we define on Y x X x U
the operator ¥; by

Lax-Phillips model of semigroup

Yo Sft 0 0 I \I’t Ft Yo
‘It Zo = 0 I 0 0 Tt q)t Zo| - (1 7)
g 0 0 S0 0 I] |u

Then T = (T4)¢>0 is a strongly continuous semigroup on Y x X x U. T [%ﬂ contains
all the information of system 3.
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Lax-Phillips semigroup

The following conditions are equivalent:

@ Y is scattering passive, i.e. the following inquality holds for all 7 > 0:

2 T 2 2 T 2
() +/0 ly(@)|1*dt < [|z(0)]] +/0 [u(t)[I"dt, (18)

© The Lax-Phillips semigroup induced by 3 is contractive.
Q@ ||T¢| =1forallt>0.
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Generator of Lax-Phillips semigroup

d ~ *
ALB [4o0)] | =2 |20| = 0 A B | |0 V |zo| € D(A). (19)
ug uo 0 0 [d%}u (0 Ug
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Generator of Lax-Phillips semigroup

Yo Yo [d%} Y %C 80Dy Yo Yo
A&B [uo0)] | = |20| = | 0 A B | |0 vV || e D@). (19)
ug U 0 0 [d%} ug ug
u

Yo [d%} y 6C  GoDd Yo Yo
W |zl = | 00 A-N B& | |0 V |zo| € D). (20)
uo 0 0 [d%}u uo ug
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Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear ¥ on real Hilbert space Z, the

generator is defined as:
1

0, _ : _
Az = tjb{rg>0 " [z — 2], (21)
D(AY) = {z € Z | the above limit exists} . (22)
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Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear ¥ on real Hilbert space Z, the
generator is defined as:

1
0, _ : - _
Az = . 11()IB>0 " [z — 2], (21)
D(AY) = {z € Z | the above limit exists} . (22)

Contractive semigroup of nonlinear operators

Assume that ¥ is contractive, i.e.
||‘Zt21 = ‘ZtZZH < ||Zl = ZQH V21,29 € Z,t > 0.

Then 2A° is densely defined and dissipative.
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Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear ¥ on real Hilbert space Z, the
generator is defined as:

1
0, _ : - _
Az = . 11()IB>0 " [z — 2], (21)
D(AY) = {z € Z | the above limit exists} . (22)

Contractive semigroup of nonlinear operators

Assume that ¥ is contractive, i.e.
||‘Zt21 = ‘ZtZQH < ||Zl = ZQH V21,29 € Z,t > 0.

Then 2A° is densely defined and dissipative.

o 2A° has a maximal dissipative extension 2A (possibly set-valued) with D(2A) = D(A°).
o If zo € D(A) then A%z, is the unique element of smallest norm in 2Az.
e 2(t) = ;2 is Lipschitz continuous and right differentiable at every ¢ > 0.
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Main Results
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Main result

Theorem

o Let X = [311; ‘IIH be a scattering passive linear system on Y, X, U, described by the
operators A : D(A) - X, Be€ L(U, X_1),C € L(X1,Y) and D € L(U,Y).
e Let NV be a (set-valued) maximal monotone operator with D(N) = X.

Then there exists a time-invariant well-posed nonlinear system SV

i) e [a-N B][I)], (23)

vy = [C D] [)]- (24

Moreover, ¥V is incrementally scattering passive.
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Incrementally scattering passive

Let xg1, xgo € X and uq, us € leoc([O, 00); U), then corresponding state trajectories x1,

9 and outputs y; ,yo of sV satisfy for all 7 > 0,

Energy balance inequality:

lz1(7) = z2(7)|1* + /OT ly1(t) — y2(t)|*dt

< lzo —3302||2+/ Jur(t) — ua(t)||*de. (25)
0

24 /28



Perturbed operator A

Perturbted A
& 6C D6

A-N B&§ |, (26)
0

8%

2V = | o
d
0 €
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Perturbed operator A

Perturbted A

s 00 Doy
AV = |0 A-N B |, (26)
0 0 £
Splitting 2V
& %C &DS] [0 0 0
AV = |0 A B& |+|0 —N 0. (27)
0 0 4 0 0 0
3
N —
A N

DWN) =Y x X xU. Therefore, D(A) N (intD(N)) = D(A), which is dense.
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Future plans and potential research directions

Consider the case when D(N) C X.

Generalized representation of nonlinear infinite dimensional systems.

Numerical analysis of Wind turbine tower-TMD system to study the effect nonlinear
damping.

Stability analysis.
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