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Introduction

Initial Value Problem (Existence and uniqueness)

ẋ(t) = f(x, t), x(t0) = x0, (1)

where x(t) ∈ X ⊆ Rn.

Let f(x, t) be piecewise continuous in t and locally Lipschitz in x
i.e. for each x0 ∈ X ⊆ Rn, there is a real number r > 0 such that the ball Br(x0) is
contained in X and ∃ an L such that

Locally Lipschitz continuous

‖f(x, t)− f(y, t)‖ 6 L‖x(t)− y(t)‖ ∀ x(t), y(t) ∈ Br(x0), ∀ t ∈ [t0, t1].

Then (1) has a unique solution x : [t0, t1]→ X.
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Cauchy Problem

Abstract Cauchy problem

ẋ(t) = Ax(t) ∀ t > 0, x(0) = x0 ∈ D(A). (2)

Proposition

If A : D(A) ⊂ X → X is the generator of a strongly continuous semigroup (Tt)t>0 on X,
then x(t) = Ttx0 is continuous as a D(A)-valued function and is the unique solution of (2).
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ẋ(t) = Ax(t) ∀ t > 0, x(0) = x0 ∈ D(A). (2)

Proposition

If A : D(A) ⊂ X → X is the generator of a strongly continuous semigroup (Tt)t>0 on X,
then x(t) = Ttx0 is continuous as a D(A)-valued function and is the unique solution of (2).

4 / 28



C0 semigroups

Mappings T : R+ → X which satisfy:

Functional equation {
T(t+ s) = T(t)T(s) ∀ t, s > 0,
T(0) = I.

(3)

Strong continuity

limt→0,t>0T(t)x = x ∀ x ∈ X. (4)

Ax = lim
t→ 0, t>0

1

t
[Tx− x] , (5)

D(A) = {x ∈ X | the above limit exists} . (6)

For any operator A ∈ L(X), the C0 semigroup generated is T(t) = eAt.
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Generation Theorems

Hille-Yosida, 1948

For a linear operator A on a Banach space X, the following properties are equivalent:

A generates a strongly continuous contraction semigroup.

A is closed, densely defined and for every λ ∈ C with Reλ > 0 one has λ ∈ ρ(A) and

‖λ(λI −A)−1‖ 6 1

Reλ
(7)

Feller, Miyadera, Phillips, 1952

Let A be a linear operator on a Banach space X and let w ∈ R, M > 1 be constants.
Then the following properties are equivalent:

A generates a strongly continuous semigroup (Tt)t>0 satisfying ‖Tt‖ 6 Mewt.

A is closed, densely defined and for every λ ∈ C with Reλ > w one has λ ∈ ρ(A) and

‖λ(λI −A)−n‖ 6 M

(Reλ− w)n
∀ n ∈ N. (8)
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Generation Theorems

Lumer, Phillips, 1961

For a densely defined, dissipative operator A on a Banach space X the following
statements are equivalent:

The operator A generates a contraction semigroup.

Ran(λI −A) = X for some (hence all) λ > 0.

Operator A is dissipative if for some λ ∈ C such that Reλ > 0 we have that

‖(λI −A)x‖ > λ‖x‖.
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Infinite-dimensional linear system

Linear time invariant control systems (system node)

ẋ(t) = Ax(t) +Bu(t), (9)

y(t) = C̄x(t) +Du(t). (10)

where x(0) = x0 ∈ D(A) and A,B,C,D, are linear operators such that A : D(A)→ X,
B ∈ L(U,X−1), C ∈ L(X1, Y ) and D ∈ L(U, Y ). C̄ is the extension of C (not necessarily
unique) to X.

Well-posed solutions

existence + uniqueness + continuous dependence = well-posedness
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Well-posed linear system

Well-posed linear system Σ [
x(τ)
Pτy

]
=

[
Tτ Φτ

Ψτ Fτ

]
︸ ︷︷ ︸

Στ

[
x0

Pτu

]
. (11)

Family of operators

x(τ) = Tτx0 +

∫ τ

0
Tτ−σBu(σ)dσ︸ ︷︷ ︸

Φτu

∀x0 ∈ D(A), ∀u ∈ L2([0,∞);U), (12)

Pτy = C̄Ttx0︸ ︷︷ ︸
(Ψτx0)(t)

+ C̄

∫ t

0
Tt−σBu(σ)dσ +Du(t)︸ ︷︷ ︸

(Fτu)(t)

∀x0 ∈ D(A), t ∈ [0, τ ]. (13)
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Motivating Example
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Wind tower coupled with TMD

Tower (described by homogeneous
Euler-Bernoulli beam model) is
clamped at bottom.

Nacelle considered as a rigid body has
mass M and is mounted on top.

Tuned mass damper (TMD) used to
dampen the vibrations.

Figure: Wind tower coupled with tuned mass
damper (TMD).
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Wind tower coupled with TMD

Wind turbine tower coupled with TMD, defined for (x, t) ∈ ((0, l)× [0,∞)) is

PDEs representing Euler-Bernoulli beam coupled with TMD
ρwtt(x, t) + EIwxxxx(x, t) = 0,
w(0, t) = 0 , wx(0, t) = 0 ,
Mwtt(l, t)− EIwxxx(l, t) = F (t)−D[wt(l, t)− ξt(t)]− k[w(l, t)− ξ(t)] ,
Jwxtt(l, t) + EIwxx(l, t) = 0 ,
mξtt(t) = D[wt(l, t)− ξt(t)] + k[w(l, t)− ξ(t)],

EI is the flexural rigidity, ρ is the mass density and J is the moment of inertia.
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Wind tower coupled with TMD

State space X = H2
l (0, l)× L2[0, l]× C4, and U = Y = C.

State space representation

ẋ(t) = Ax(t) +Bu(t),

y(t) = C̄x(t).

where A : D(A)→ X, B ∈ L(U,X−1), C ∈ L(X1, Y ).

This linear system Σ is well-posed.

Σ strongly stable on X.
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Wind tower-TMD system with nonlinear damping

Wind tower-TMD system with friction term

ρwtt(x, t) + EIwxxxx(x, t) = 0,
w(0, t) = 0 , wx(0, t) = 0 ,
Mwtt(l, t)− EIwxxx(l, t) = F (t)−D[wt(l, t)− ξt(t)]− k[w(l, t)− ξ(t)]

−f0sign[wt(l, t)− ξt(t)] ,
Jwxtt(l, t) + EIwxx(l, t) = 0 ,
mξtt(t) = D[wt(l, t)− ξt(t)] + k[w(l, t)− ξ(t)]+f0sign[wt(l, t)− ξt(t)],

where

sign(v) =

{
1 if v > 0 ,
−1 if v < 0 ,
[−1, 1] if v = 0 .

(14)
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Objectives

1 Well-posedness of the coupled wind tower with nonlinear damping term N .

2 Extend the study to nonlinear infinite dimensional system ΣN represented by:

Nonlinear infinite dimensional system

ẋ(t) ∈ Ax(t)−N (x(t)) +Bu(t) , (15)

y(t) = C̄x(t) +Du(t) . (16)
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Lax-Phillips semigroup
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Lax-Phillips semigroup

Assuming that Σ is a well-posed system on Y,X,U . Let U = L2([0,∞);U) and
Y = L2((−∞, 0];Y ). For each [y0, x0, u0] ∈ Y ×X × U and t > 0 we define on Y ×X × U
the operator Tt by

Lax-Phillips model of semigroup

Tt

y0

x0

u0

 =

S−t 0 0
0 I 0
0 0 S∗t

I Ψt Ft
0 Tt Φt

0 0 I

y0

x0

u0

 . (17)

Then T = (Tt)t>0 is a strongly continuous semigroup on Y ×X × U . Tt

[
y0
x0
u0

]
contains

all the information of system Σ.
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Lax-Phillips semigroup

The following conditions are equivalent:

1 Σ is scattering passive, i.e. the following inquality holds for all τ > 0:

‖x(τ)‖2 +

∫ τ

0
‖y(t)‖2dt 6 ‖x(0)‖2 +

∫ τ

0
‖u(t)‖2dt, (18)

2 The Lax-Phillips semigroup induced by Σ is contractive.

3 ‖Tt‖ = 1 for all t > 0.
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Generator of Lax-Phillips semigroup

Generator of T y′0
A&B

[ x0
u0(0)

]
u′0

 = A

y0

x0

u0

 =


[

d
dξ

]
Y

δ0C̄ δ0Dδ
∗
0

0 A Bδ∗0

0 0
[

d
dξ

]
U


y0

x0

u0

 ∀

y0

x0

u0

 ∈ D(A). (19)

Everywhere defined perturbation of T

AN

y0

x0

u0

 =


[

d
dξ

]
Y

δ0C̄ δ0Dδ
∗
0

0 A−N Bδ∗0

0 0
[

d
dξ

]
U


y0

x0

u0

 ∀

y0

x0

u0

 ∈ D(A). (20)
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Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear T on real Hilbert space Z, the
generator is defined as:

A0z = lim
t→ 0, t>0

1

t
[Ttz − z] , (21)

D(A0) = {z ∈ Z | the above limit exists} . (22)

Contractive semigroup of nonlinear operators

Assume that T is contractive, i.e.

‖Ttz1 −Ttz2‖ 6 ‖z1 − z2‖ ∀ z1, z2 ∈ Z, t > 0.

Then A0 is densely defined and dissipative.

A0 has a maximal dissipative extension A (possibly set-valued) with D(A) = D(A0).

If z0 ∈ D(A) then A0z0 is the unique element of smallest norm in Az0.

z(t) = Ttz0 is Lipschitz continuous and right differentiable at every t > 0.
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Main result

Theorem

Let Σ =
[ T Φ

Ψ F
]

be a scattering passive linear system on Y,X,U , described by the
operators A : D(A)→ X, B ∈ L(U,X−1), C ∈ L(X1, Y ) and D ∈ L(U, Y ).

Let N be a (set-valued) maximal monotone operator with D(N ) = X.

Then there exists a time-invariant well-posed nonlinear system ΣN

ẋ(t) ∈
[
A−N B

] [ x(t)

u(t)

]
, (23)

y(t) =
[
C̄ D

] [ x(t)

u(t)

]
. (24)

Moreover, ΣN is incrementally scattering passive.
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Incrementally scattering passive

Let x01, x02 ∈ X and u1, u2 ∈ L2
loc([0,∞);U), then corresponding state trajectories x1,

x2 and outputs y1 ,y2 of ΣN satisfy for all τ > 0,

Energy balance inequality:

‖x1(τ)− x2(τ)‖2 +

∫ τ

0
‖y1(t)− y2(t)‖2dt

6 ‖x01 − x02‖2 +

∫ τ

0
‖u1(t)− u2(t)‖2dt. (25)
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Perturbed operator A

Perturbted A

AN =

 d
dξ δ0C̄ δ0Dδ

∗
0

0 A−N Bδ∗0
0 0 d

dξ

 , (26)

Splitting AN

AN =

 d
dξ δ0C̄ δ0Dδ

∗
0

0 A Bδ∗0
0 0 d

dξ


︸ ︷︷ ︸

A

+

0 0 0
0 −N 0
0 0 0


︸ ︷︷ ︸

Ñ

. (27)

D(Ñ ) = Y ×X × U . Therefore, D(A) ∩
(

intD(Ñ )
)

= D(A), which is dense.

25 / 28



Perturbed operator A

Perturbted A

AN =

 d
dξ δ0C̄ δ0Dδ

∗
0

0 A−N Bδ∗0
0 0 d

dξ

 , (26)

Splitting AN

AN =

 d
dξ δ0C̄ δ0Dδ

∗
0

0 A Bδ∗0
0 0 d

dξ


︸ ︷︷ ︸

A

+

0 0 0
0 −N 0
0 0 0


︸ ︷︷ ︸

Ñ
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Future plans and potential research directions

Consider the case when D(N ) ⊂ X.

Generalized representation of nonlinear infinite dimensional systems.

Numerical analysis of Wind turbine tower-TMD system to study the effect nonlinear
damping.

Stability analysis.
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Thank You.
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