Abstract nonlinear control systems

Shantanu Singh *
Supervisor: Prof. George Weiss**
School of Electrical Eng., Tel Aviv University
shantanu@tauex.tau.ac.il, ${ }^{ *}$ gweiss@tauex.tau.ac.il

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 765579.

Overview

(1) Introduction
(2) Motivation
(3) Objectives
(4) Main result
(5) Future plans and research directions
(6) List of publications

Introduction

Initial Value Problem (Existence and uniqueness)

$$
\begin{equation*}
\dot{x}(t)=f(x, t), \quad x\left(t_{0}\right)=x_{0}, \tag{1}
\end{equation*}
$$

where $x(t) \in X \subseteq \mathbb{R}^{n}$.

Initial Value Problem (Existence and uniqueness)

$$
\begin{equation*}
\dot{x}(t)=f(x, t), \quad x\left(t_{0}\right)=x_{0} \tag{1}
\end{equation*}
$$

where $x(t) \in X \subseteq \mathbb{R}^{n}$. Let $f(x, t)$ be piecewise continuous in t and locally Lipschitz in x i.e. for each $x_{0} \in X \subseteq \mathbb{R}^{n}$, there is a real number $r>0$ such that the ball $\mathcal{B}_{r}\left(x_{0}\right)$ is contained in X and \exists an L such that

Locally Lipschitz continuous

$$
\|f(x, t)-f(y, t)\| \leqslant L\|x(t)-y(t)\| \quad \forall x(t), y(t) \in \mathcal{B}_{r}\left(x_{0}\right), \quad \forall t \in\left[t_{0}, t_{1}\right]
$$

Then (1) has a unique solution $x:\left[t_{0}, t_{1}\right] \rightarrow X$.

Cauchy Problem

Abstract Cauchy problem

$$
\begin{equation*}
\dot{x}(t)=A x(t) \quad \forall t \geqslant 0, \quad x(0)=x_{0} \in \mathcal{D}(A) . \tag{2}
\end{equation*}
$$

Cauchy Problem

Abstract Cauchy problem

$$
\begin{equation*}
\dot{x}(t)=A x(t) \quad \forall t \geqslant 0, \quad x(0)=x_{0} \in \mathcal{D}(A) . \tag{2}
\end{equation*}
$$

Proposition

If $A: \mathcal{D}(A) \subset X \rightarrow X$ is the generator of a strongly continuous semigroup $\left(\mathbb{T}_{t}\right)_{t \geqslant 0}$ on X, then $x(t)=\mathbb{T}_{t} x_{0}$ is continuous as a $\mathcal{D}(A)$-valued function and is the unique solution of (2).

C_{0} semigroups

Mappings $\mathbb{T}: \mathbb{R}_{+} \rightarrow X$ which satisfy:
Functional equation

$$
\left\{\begin{array}{l}
\mathbb{T}(t+s)=\mathbb{T}(t) \mathbb{T}(s) \quad \forall t, s \geqslant 0, \tag{3}\\
\mathbb{T}(0)=I .
\end{array}\right.
$$

C_{0} semigroups

Mappings $\mathbb{T}: \mathbb{R}_{+} \rightarrow X$ which satisfy:

Functional equation

$$
\left\{\begin{array}{l}
\mathbb{T}(t+s)=\mathbb{T}(t) \mathbb{T}(s) \quad \forall t, s \geqslant 0, \tag{3}\\
\mathbb{T}(0)=I .
\end{array}\right.
$$

Strong continuity

$$
\begin{equation*}
\lim _{t \rightarrow 0, t>0} \mathbb{T}(t) x=x \quad \forall x \in X . \tag{4}
\end{equation*}
$$

C_{0} semigroups

Mappings $\mathbb{T}: \mathbb{R}_{+} \rightarrow X$ which satisfy:

Functional equation

$$
\left\{\begin{array}{l}
\mathbb{T}(t+s)=\mathbb{T}(t) \mathbb{T}(s) \quad \forall t, s \geqslant 0, \tag{3}\\
\mathbb{T}(0)=I
\end{array}\right.
$$

Strong continuity

$$
\lim _{t \rightarrow 0, t>0} \mathbb{T}(t) x=x \quad \forall x \in X
$$

$$
\begin{equation*}
A x=\lim _{t \rightarrow 0, t>0} \frac{1}{t}[\mathbb{T} x-x] \tag{5}
\end{equation*}
$$

$\mathcal{D}(A)=\{x \in X \mid$ the above limit exists $\}$.

For any operator $A \in \mathcal{L}(X)$, the C_{0} semigroup generated is $\mathbb{T}(t)=e^{A t}$.

Generation Theorems

Hille-Yosida, 1948
For a linear operator A on a Banach space X, the following properties are equivalent:

- A generates a strongly continuous contraction semigroup.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ one has $\lambda \in \rho(A)$ and

$$
\begin{equation*}
\left\|\lambda(\lambda I-A)^{-1}\right\| \leqslant \frac{1}{\operatorname{Re} \lambda} \tag{7}
\end{equation*}
$$

Generation Theorems

Hille-Yosida, 1948

For a linear operator A on a Banach space X, the following properties are equivalent:

- A generates a strongly continuous contraction semigroup.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0$ one has $\lambda \in \rho(A)$ and

$$
\begin{equation*}
\left\|\lambda(\lambda I-A)^{-1}\right\| \leqslant \frac{1}{\operatorname{Re} \lambda} \tag{7}
\end{equation*}
$$

Feller, Miyadera, Phillips, 1952

Let A be a linear operator on a Banach space X and let $w \in \mathbb{R}, M \geqslant 1$ be constants. Then the following properties are equivalent:

- A generates a strongly continuous semigroup $\left(\mathbb{T}_{t}\right)_{t \geqslant 0}$ satisfying $\left\|\mathbb{T}_{t}\right\| \leqslant M e^{w t}$.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>w$ one has $\lambda \in \rho(A)$ and

$$
\begin{equation*}
\left\|\lambda(\lambda I-A)^{-n}\right\| \leqslant \frac{M}{(\operatorname{Re} \lambda-w)^{n}} \quad \forall n \in \mathbb{N} \tag{8}
\end{equation*}
$$

Generation Theorems

Lumer, Phillips, 1961

For a densely defined, dissipative operator A on a Banach space X the following statements are equivalent:

- The operator A generates a contraction semigroup.
- $\operatorname{Ran}(\lambda I-A)=X$ for some (hence all) $\lambda>0$.

Operator A is dissipative if for some $\lambda \in \mathbb{C}$ such that $\operatorname{Re} \lambda>0$ we have that

$$
\|(\lambda I-A) x\| \geqslant \lambda\|x\|
$$

Infinite-dimensional linear system

Linear time invariant control systems (system node)

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t), \tag{9}\\
& y(t)=\bar{C} x(t)+D u(t) \tag{10}
\end{align*}
$$

where $x(0)=x_{0} \in \mathcal{D}(A)$ and A, B, C, D, are linear operators such that $A: \mathcal{D}(A) \rightarrow X$, $B \in \mathcal{L}\left(U, X_{-1}\right), C \in \mathcal{L}\left(X_{1}, Y\right)$ and $D \in \mathcal{L}(U, Y) . \bar{C}$ is the extension of C (not necessarily unique) to X.

Infinite-dimensional linear system

Linear time invariant control systems (system node)

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t), \tag{9}\\
& y(t)=\bar{C} x(t)+D u(t) \tag{10}
\end{align*}
$$

where $x(0)=x_{0} \in \mathcal{D}(A)$ and A, B, C, D, are linear operators such that $A: \mathcal{D}(A) \rightarrow X$, $B \in \mathcal{L}\left(U, X_{-1}\right), C \in \mathcal{L}\left(X_{1}, Y\right)$ and $D \in \mathcal{L}(U, Y) . \bar{C}$ is the extension of C (not necessarily unique) to X.

Well-posed solutions

existence + uniqueness + continuous dependence $=$ well-posedness

Well-posed linear system

Well-posed linear system Σ

$$
\left[\begin{array}{l}
x(\tau) \tag{11}\\
\mathbf{P}_{\tau} y
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\mathbb{T}_{\tau} & \Phi_{\tau} \\
\Psi_{\tau} & \mathbb{F}_{\tau}
\end{array}\right]}_{\Sigma_{\tau}}\left[\begin{array}{c}
x_{0} \\
\mathbf{P}_{\tau} u
\end{array}\right]
$$

Well-posed linear system

Well-posed linear system Σ

$$
\left[\begin{array}{l}
x(\tau) \tag{11}\\
\mathbf{P}_{\tau} y
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
\mathbb{T}_{\tau} & \Phi_{\tau} \\
\Psi_{\tau} & \mathbb{F}_{\tau}
\end{array}\right]}_{\Sigma_{\tau}}\left[\begin{array}{c}
x_{0} \\
\mathbf{P}_{\tau} u
\end{array}\right]
$$

Family of operators

$$
\begin{align*}
& x(\tau)=\mathbb{T}_{\tau} x_{0}+\underbrace{\int_{0}^{\tau} \mathbb{T}_{\tau-\sigma} B u(\sigma) \mathrm{d} \sigma}_{\Phi_{\tau} u} \quad \forall x_{0} \in \mathcal{D}(A), \quad \forall u \in L^{2}([0, \infty) ; U), \tag{12}\\
& \mathbf{P}_{\tau} y=\underbrace{\bar{C} \mathbb{T}_{t} x_{0}}_{\left(\Psi_{\tau} x_{0}\right)(t)}+\underbrace{\bar{C} \int_{0}^{t} \mathbb{T}_{t-\sigma} B u(\sigma) \mathrm{d} \sigma+D u(t)}_{\left(\mathbb{F}_{\tau} u\right)(t)} \quad \forall x_{0} \in \mathcal{D}(A), t \in[0, \tau] . \tag{13}
\end{align*}
$$

Motivating Example

- Tower (described by homogeneous Euler-Bernoulli beam model) is clamped at bottom.
- Nacelle considered as a rigid body has mass M and is mounted on top.
- Tuned mass damper (TMD) used to dampen the vibrations.

Figure: Wind tower coupled with tuned mass damper (TMD).

Wind tower coupled with TMD

Wind turbine tower coupled with TMD, defined for $(x, t) \in((0, l) \times[0, \infty))$ is

PDEs representing Euler-Bernoulli beam coupled with TMD

$$
\left\{\begin{array}{l}
\rho w_{t t}(x, t)+E I w_{x x x x}(x, t)=0 \\
w(0, t)=0, \quad w_{x}(0, t)=0 \\
M w_{t t}(l, t)-E I w_{x x x}(l, t)=F(t)-D\left[w_{t}(l, t)-\xi_{t}(t)\right]-k[w(l, t)-\xi(t)] \\
J w_{x t t}(l, t)+E I w_{x x}(l, t)=0 \\
m \xi_{t t}(t)=D\left[w_{t}(l, t)-\xi_{t}(t)\right]+k[w(l, t)-\xi(t)]
\end{array}\right.
$$

$E I$ is the flexural rigidity, ρ is the mass density and J is the moment of inertia.

Wind tower coupled with TMD

State space $X=\mathcal{H}_{l}^{2}(0, l) \times L^{2}[0, l] \times \mathbb{C}^{4}$, and $U=Y=\mathbb{C}$.

State space representation

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =\bar{C} x(t)
\end{aligned}
$$

where $A: \mathcal{D}(A) \rightarrow X, B \in \mathcal{L}\left(U, X_{-1}\right), C \in \mathcal{L}\left(X_{1}, Y\right)$.

Wind tower coupled with TMD

State space $X=\mathcal{H}_{l}^{2}(0, l) \times L^{2}[0, l] \times \mathbb{C}^{4}$, and $U=Y=\mathbb{C}$.

State space representation

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =\bar{C} x(t)
\end{aligned}
$$

where $A: \mathcal{D}(A) \rightarrow X, B \in \mathcal{L}\left(U, X_{-1}\right), C \in \mathcal{L}\left(X_{1}, Y\right)$.

- This linear system Σ is well-posed.
- Σ strongly stable on X.

Wind tower-TMD system with friction term

$$
\left\{\begin{array}{l}
\rho w_{t t}(x, t)+E I w_{x x x x}(x, t)=0 \\
w(0, t)=0, \quad w_{x}(0, t)=0, \\
M w_{t t}(l, t)-E I w_{x x x}(l, t)=F(t)-D\left[w_{t}(l, t)-\xi_{t}(t)\right]-k[w(l, t)-\xi(t)] \\
\quad-f_{0} \operatorname{sign}\left[w_{t}(l, t)-\xi_{t}(t)\right] \\
J w_{x t t}(l, t)+E I w_{x x}(l, t)=0, \\
m \xi_{t t}(t)=D\left[w_{t}(l, t)-\xi_{t}(t)\right]+k[w(l, t)-\xi(t)]+f_{0} \operatorname{sign}\left[w_{t}(l, t)-\xi_{t}(t)\right]
\end{array}\right.
$$

where

$$
\operatorname{sign}(v)= \begin{cases}1 & \text { if } v>0 \tag{14}\\ -1 & \text { if } v<0 \\ {[-1,1]} & \text { if } v=0\end{cases}
$$

Objectives

Objectives

(1) Well-posedness of the coupled wind tower with nonlinear damping term \mathcal{N}.

Objectives

(1) Well-posedness of the coupled wind tower with nonlinear damping term \mathcal{N}.
(2) Extend the study to nonlinear infinite dimensional system $\Sigma^{\mathcal{N}}$ represented by:

Nonlinear infinite dimensional system

$$
\begin{gather*}
\dot{x}(t) \in A x(t)-\mathcal{N}(x(t))+B u(t), \tag{15}\\
y(t)=\bar{C} x(t)+D u(t) . \tag{16}
\end{gather*}
$$

Lax-Phillips semigroup

Lax-Phillips semigroup

Assuming that Σ is a well-posed system on Y, X, U. Let $\mathcal{U}=L^{2}([0, \infty) ; U)$ and $\mathcal{Y}=L^{2}((-\infty, 0] ; Y)$. For each $\left[y_{0}, x_{0}, u_{0}\right] \in \mathcal{Y} \times X \times \mathcal{U}$ and $t \geqslant 0$ we define on $\mathcal{Y} \times X \times \mathcal{U}$ the operator \boldsymbol{T}_{t} by

Lax-Phillips model of semigroup

$$
\boldsymbol{T}_{t}\left[\begin{array}{l}
y_{0} \tag{17}\\
x_{0} \\
u_{0}
\end{array}\right]=\left[\begin{array}{ccc}
\mathcal{S}_{-t} & 0 & 0 \\
0 & I & 0 \\
0 & 0 & \mathbf{S}_{t}^{*}
\end{array}\right]\left[\begin{array}{ccc}
I & \Psi_{t} & \mathbb{F}_{t} \\
0 & \mathbb{T}_{t} & \Phi_{t} \\
0 & 0 & I
\end{array}\right]\left[\begin{array}{c}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right]
$$

Then $\mathfrak{T}=\left(\mathfrak{T}_{t}\right)_{t \geqslant 0}$ is a strongly continuous semigroup on $\mathcal{Y} \times X \times \mathcal{U} . \mathfrak{T}_{t}\left[\begin{array}{l}y_{0} \\ x_{0} \\ u_{0}\end{array}\right]$ contains all the information of system Σ.

The following conditions are equivalent:
(1) Σ is scattering passive, i.e. the following inquality holds for all $\tau \geqslant 0$:

$$
\begin{equation*}
\|x(\tau)\|^{2}+\int_{0}^{\tau}\|y(t)\|^{2} \mathrm{~d} t \leqslant\|x(0)\|^{2}+\int_{0}^{\tau}\|u(t)\|^{2} \mathrm{~d} t \tag{18}
\end{equation*}
$$

(2) The Lax-Phillips semigroup induced by Σ is contractive.
(3) $\left\|\boldsymbol{T}_{t}\right\|=1$ for all $t \geqslant 0$.

Generator of Lax-Phillips semigroup

Generator of \mathfrak{T}

$$
\left[\begin{array}{c}
y_{0}^{\prime} \tag{19}\\
A \& B\left[\begin{array}{l}
x_{0} \\
u_{0}(0)
\end{array}\right] \\
u_{0}^{\prime}
\end{array}\right]=\boldsymbol{\mathfrak { A }}\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\frac{\mathrm{d}}{\mathrm{~d} \xi}\right]_{\mathcal{Y}}} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \\
0 & A & B \delta_{0}^{*} \\
0 & 0 & {\left[\frac{\mathrm{~d}}{\mathrm{~d} \xi}\right]_{\mathcal{U}}}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \quad \forall\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \in \mathcal{D}(\boldsymbol{\mathfrak { A }) .}
$$

Generator of Lax-Phillips semigroup

Generator of \mathfrak{T}

$$
\left[\begin{array}{c}
y_{0}^{\prime} \tag{19}\\
A \& B\left[\begin{array}{l}
x_{0} \\
u_{0}(0)
\end{array}\right] \\
u_{0}^{\prime}
\end{array}\right]=\boldsymbol{\mathfrak { A }}\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\frac{\mathrm{d}}{\mathrm{~d} \xi}\right]_{\mathcal{Y}}} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \\
0 & A & B \delta_{0}^{*} \\
0 & 0 & {\left[\frac{\mathrm{~d}}{\mathrm{~d} \xi}\right]_{\mathcal{U}}}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \quad \forall\left[\begin{array}{c}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \in \mathcal{D}(\boldsymbol{\mathfrak { A }) .}
$$

Everywhere defined perturbation of \boldsymbol{T}

$$
\boldsymbol{A}^{\mathcal{N}}\left[\begin{array}{l}
y_{0} \tag{20}\\
x_{0} \\
u_{0}
\end{array}\right]=\left[\begin{array}{ccc}
{\left[\frac{\mathrm{d}}{\mathrm{~d} \xi}\right]_{\mathcal{Y}}} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \\
0 & A-\mathcal{N} & B \delta_{0}^{*} \\
0 & 0 & {\left[\frac{\mathrm{~d}}{\mathrm{~d} \xi}\right]_{\mathcal{U}}}
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \quad \forall\left[\begin{array}{l}
y_{0} \\
x_{0} \\
u_{0}
\end{array}\right] \in \mathcal{D}(\boldsymbol{\mathfrak { A }})
$$

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$
\begin{gather*}
\mathfrak{A}^{0} z=\lim _{t \rightarrow 0, t>0} \frac{1}{t}\left[\mathfrak{T}_{t} z-z\right] \tag{21}\\
\mathcal{D}\left(\boldsymbol{\mathfrak { A }}^{0}\right)=\{z \in Z \mid \text { the above limit exists }\} . \tag{22}
\end{gather*}
$$

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$
\begin{gather*}
\mathfrak{A}^{0} z=\lim _{t \rightarrow 0, t>0} \frac{1}{t}\left[\mathfrak{T}_{t} z-z\right] \tag{21}\\
\mathcal{D}\left(\boldsymbol{\mathfrak { A }}^{0}\right)=\{z \in Z \mid \text { the above limit exists }\} . \tag{22}
\end{gather*}
$$

Contractive semigroup of nonlinear operators

Assume that \mathfrak{T} is contractive, i.e.

$$
\left\|\boldsymbol{T}_{t} z_{1}-\boldsymbol{T}_{t} z_{2}\right\| \leqslant\left\|z_{1}-z_{2}\right\| \quad \forall z_{1}, z_{2} \in Z, t \geqslant 0
$$

Then $\boldsymbol{\mathfrak { A }}^{0}$ is densely defined and dissipative.

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$
\begin{gather*}
\mathfrak{A}^{0} z=\lim _{t \rightarrow 0, t>0} \frac{1}{t}\left[\boldsymbol{\mathfrak { T }}_{t} z-z\right] \tag{21}\\
\mathcal{D}\left(\boldsymbol{\mathfrak { A }}^{0}\right)=\{z \in Z \mid \text { the above limit exists }\} . \tag{22}
\end{gather*}
$$

Contractive semigroup of nonlinear operators

Assume that \mathfrak{T} is contractive, i.e.

$$
\left\|\mathfrak{T}_{t} z_{1}-\mathfrak{T}_{t} z_{2}\right\| \leqslant\left\|z_{1}-z_{2}\right\| \quad \forall z_{1}, z_{2} \in Z, t \geqslant 0
$$

Then $\boldsymbol{\mathfrak { A }}^{0}$ is densely defined and dissipative.

- \mathfrak{A}^{0} has a maximal dissipative extension $\boldsymbol{\mathfrak { A }}$ (possibly set-valued) with $\mathcal{D}(\boldsymbol{\mathfrak { A }})=\mathcal{D}\left(\boldsymbol{\mathfrak { A }}^{0}\right)$.
- If $z_{0} \in \mathcal{D}(\boldsymbol{A})$ then $\boldsymbol{\mathfrak { A }}^{0} z_{0}$ is the unique element of smallest norm in $\boldsymbol{\mathfrak { A }} z_{0}$.
- $z(t)=\boldsymbol{T}_{t} z_{0}$ is Lipschitz continuous and right differentiable at every $t \geqslant 0$.

Main Results

Theorem

- Let $\Sigma=\left[\begin{array}{c}\mathbb{T} \\ \mathbb{\Psi}\end{array}\right]$ be a scattering passive linear system on Y, X, U, described by the operators $A: \mathcal{D}(A) \rightarrow X, B \in \mathcal{L}\left(U, X_{-1}\right), C \in \mathcal{L}\left(X_{1}, Y\right)$ and $D \in \mathcal{L}(U, Y)$.
- Let \mathcal{N} be a (set-valued) maximal monotone operator with $\mathcal{D}(\mathcal{N})=X$.

Then there exists a time-invariant well-posed nonlinear system $\Sigma^{\mathcal{N}}$

$$
\begin{gather*}
\dot{x}(t) \in\left[\begin{array}{ll}
A-\mathcal{N} & B
\end{array}\right]\left[\begin{array}{l}
x(t) \\
u(t)
\end{array}\right], \tag{23}\\
y(t)=\left[\begin{array}{ll}
\bar{C} & D
\end{array}\right]\left[\begin{array}{l}
x(t) \\
u(t)
\end{array}\right] . \tag{24}
\end{gather*}
$$

Moreover, $\Sigma^{\mathcal{N}}$ is incrementally scattering passive.

Incrementally scattering passive

Let $x_{01}, x_{02} \in X$ and $u_{1}, u_{2} \in L_{\mathrm{loc}}^{2}([0, \infty) ; U)$, then corresponding state trajectories x_{1}, x_{2} and outputs y_{1}, y_{2} of $\Sigma^{\mathcal{N}}$ satisfy for all $\tau \geqslant 0$,

Energy balance inequality:

$$
\begin{align*}
& \left\|x_{1}(\tau)-x_{2}(\tau)\right\|^{2}+\int_{0}^{\tau}\left\|y_{1}(t)-y_{2}(t)\right\|^{2} \mathrm{~d} t \\
& \quad \leqslant\left\|x_{01}-x_{02}\right\|^{2}+\int_{0}^{\tau}\left\|u_{1}(t)-u_{2}(t)\right\|^{2} \mathrm{~d} t . \tag{25}
\end{align*}
$$

Perturbed operator \mathfrak{A}

Perturbted \mathfrak{A}

$$
\boldsymbol{A}^{\mathcal{N}}=\left[\begin{array}{ccc}
\frac{\mathrm{d}}{\mathrm{~d} \xi} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \tag{26}\\
0 & A-\mathcal{N} & B \delta_{0}^{*} \\
0 & 0 & \frac{\mathrm{~d}}{\mathrm{~d} \xi}
\end{array}\right],
$$

Perturbed operator \mathfrak{A}

Perturbted \mathfrak{A}

$$
\boldsymbol{A}^{\mathcal{N}}=\left[\begin{array}{ccc}
\frac{\mathrm{d}}{\mathrm{~d} \xi} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \tag{26}\\
0 & A-\mathcal{N} & B \delta_{0}^{*} \\
0 & 0 & \frac{\mathrm{~d}}{\mathrm{~d} \xi}
\end{array}\right],
$$

Splitting $\boldsymbol{\mathfrak { A }}^{\mathcal{N}}$

$$
\boldsymbol{A}^{\mathcal{N}}=\underbrace{\left[\begin{array}{ccc}
\frac{\mathrm{d}}{\mathrm{~d} \xi} & \delta_{0} \bar{C} & \delta_{0} D \delta_{0}^{*} \tag{27}\\
0 & A & B \delta_{0}^{*} \\
0 & 0 & \frac{\mathrm{~d}}{\mathrm{~d} \xi}
\end{array}\right]}_{\mathfrak{A}}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\mathcal{N} & 0 \\
0 & 0 & 0
\end{array}\right]}_{\tilde{\mathcal{N}}} .
$$

$$
\mathcal{D}(\tilde{\mathcal{N}})=\mathcal{Y} \times X \times \mathcal{U} . \text { Therefore, } \mathcal{D}(\boldsymbol{\mathfrak { A }}) \cap(\operatorname{int} \mathcal{D}(\tilde{\mathcal{N}}))=\mathcal{D}(\boldsymbol{\mathfrak { A }}), \text { which is dense }
$$

- Consider the case when $\mathcal{D}(\mathcal{N}) \subset X$.
- Generalized representation of nonlinear infinite dimensional systems.
- Numerical analysis of Wind turbine tower-TMD system to study the effect nonlinear damping.
- Stability analysis.

固 Shantanu Singh, Marius Tucsnak, and George Weiss (2020).
Non-linear damping for scattering-passive systems in the Maxwell class. IFAC-PapersOnLine, vol. 53, pp. 7458-7465.
https://doi.org/10.1016/j.ifacol.2020.12.1298
目 Shantanu Singh, George Weiss and Marius Tucsnak (2021). Abstract nonlinear control systems.
Accepted in CDC-2021.
Shantanu Singh, George Weiss, and Marius Tucsnak (2021).
A class of incrementally scattering-passive nonlinear systems. Under review in Automatica.

Thank You.

