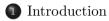
Abstract nonlinear control systems

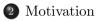
Shantanu Singh ^{*} Supervisor: Prof. George Weiss^{**}

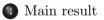
School of Electrical Eng., Tel Aviv University *shantanu@tauex.tau.ac.il, **gweiss@tauex.tau.ac.il

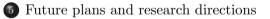
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579.

Overview









6 List of publications

Initial Value Problem (Existence and uniqueness)

$$\dot{x}(t) = f(x,t), \qquad x(t_0) = x_0,$$
(1)

where $x(t) \in X \subseteq \mathbb{R}^n$.

Initial Value Problem (Existence and uniqueness)

$$\dot{x}(t) = f(x,t), \qquad x(t_0) = x_0,$$
(1)

where $x(t) \in X \subseteq \mathbb{R}^n$. Let f(x,t) be piecewise continuous in t and locally Lipschitz in x i.e. for each $x_0 \in X \subseteq \mathbb{R}^n$, there is a real number r > 0 such that the ball $\mathcal{B}_r(x_0)$ is contained in X and \exists an L such that

Locally Lipschitz continuous

 $\|f(x,t) - f(y,t)\| \leq L \|x(t) - y(t)\| \qquad \forall x(t), y(t) \in \mathcal{B}_r(x_0), \qquad \forall t \in [t_0, t_1].$

Then (1) has a unique solution $x : [t_0, t_1] \to X$.

Abstract Cauchy problem

$$\dot{x}(t) = Ax(t) \qquad \forall t \ge 0, \qquad x(0) = x_0 \in \mathcal{D}(A).$$
(2)

Abstract Cauchy problem

$$\dot{x}(t) = Ax(t) \qquad \forall t \ge 0, \qquad x(0) = x_0 \in \mathcal{D}(A).$$
(2)

Proposition

If $A : \mathcal{D}(A) \subset X \to X$ is the generator of a strongly continuous semigroup $(\mathbb{T}_t)_{t \ge 0}$ on X, then $x(t) = \mathbb{T}_t x_0$ is continuous as a $\mathcal{D}(A)$ -valued function and is the unique solution of (2).

C_0 semigroups

(3)

Mappings $\mathbb{T}:\mathbb{R}_+\to X$ which satisfy:

Functional equation

$$\begin{cases} \mathbb{T}(t+s) = \mathbb{T}(t)\mathbb{T}(s) & \forall t, s \ge 0, \\ \mathbb{T}(0) = I. \end{cases}$$

$\overline{C_0}$ semigroups

(3)

(4)

Mappings $\mathbb{T} : \mathbb{R}_+ \to X$ which satisfy:

Functional equation

$$\begin{cases} \mathbb{T}(t+s) = \mathbb{T}(t)\mathbb{T}(s) & \forall t, s \ge 0, \\ \mathbb{T}(0) = I. \end{cases}$$

Strong continuity

$$\lim_{t \to 0, t > 0} \mathbb{T}(t) x = x \qquad \forall \ x \in X.$$

C_0 semigroups

(3)

(4)

Mappings $\mathbb{T} : \mathbb{R}_+ \to X$ which satisfy:

Functional equation

$$\begin{cases} \mathbb{T}(t+s) = \mathbb{T}(t)\mathbb{T}(s) & \forall t, s \ge 0, \\ \mathbb{T}(0) = I. \end{cases}$$

Strong continuity

$$\lim_{t \to 0, t > 0} \mathbb{T}(t) x = x \qquad \forall \ x \in X.$$

$$Ax = \lim_{t \to 0, t > 0} \frac{1}{t} \left[\mathbb{T}x - x \right],$$
 (5)

$$\mathcal{D}(A) = \{ x \in X \mid \text{the above limit exists} \}.$$
(6)

For any operator $A \in \mathcal{L}(X)$, the C_0 semigroup generated is $\mathbb{T}(t) = e^{At}$.

5/28

Generation Theorems

Hille-Yosida, 1948

For a linear operator A on a Banach space X, the following properties are equivalent:

- $\bullet~A$ generates a strongly continuous contraction semigroup.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda > 0$ one has $\lambda \in \rho(A)$ and

$$\|\lambda(\lambda I - A)^{-1}\| \leqslant \frac{1}{\operatorname{Re}\lambda}$$
(7)

Hille-Yosida, 1948

For a linear operator A on a Banach space X, the following properties are equivalent:

- $\bullet~A$ generates a strongly continuous contraction semigroup.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda > 0$ one has $\lambda \in \rho(A)$ and

$$\|\lambda(\lambda I - A)^{-1}\| \leqslant \frac{1}{\operatorname{Re}\lambda}$$
(7)

Feller, Miyadera, Phillips, 1952

Let A be a linear operator on a Banach space X and let $w \in \mathbb{R}$, $M \ge 1$ be constants. Then the following properties are equivalent:

- A generates a strongly continuous semigroup $(\mathbb{T}_t)_{t\geq 0}$ satisfying $\|\mathbb{T}_t\| \leq Me^{wt}$.
- A is closed, densely defined and for every $\lambda \in \mathbb{C}$ with $\operatorname{Re}\lambda > w$ one has $\lambda \in \rho(A)$ and

$$|\lambda(\lambda I - A)^{-n}|| \leqslant \frac{M}{(\operatorname{Re}\lambda - w)^n} \qquad \forall n \in \mathbb{N}.$$
(8)

Lumer, Phillips, 1961

For a densely defined, dissipative operator A on a Banach space X the following statements are equivalent:

- The operator A generates a contraction semigroup.
- $\operatorname{Ran}(\lambda I A) = X$ for some (hence all) $\lambda > 0$.

Operator A is dissipative if for some $\lambda \in \mathbb{C}$ such that $\operatorname{Re} \lambda > 0$ we have that

 $\|(\lambda I - A)x\| \ge \lambda \|x\|.$

Linear time invariant control systems (system node)

$$\dot{x}(t) = Ax(t) + Bu(t), \tag{9}$$

$$y(t) = \bar{C}x(t) + Du(t).$$
(10)

where $x(0) = x_0 \in \mathcal{D}(A)$ and A, B, C, D, are linear operators such that $A : \mathcal{D}(A) \to X$, $B \in \mathcal{L}(U, X_{-1}), C \in \mathcal{L}(X_1, Y)$ and $D \in \mathcal{L}(U, Y)$. \overline{C} is the extension of C (not necessarily unique) to X.

Linear time invariant control systems (system node)

$$\dot{x}(t) = Ax(t) + Bu(t), \tag{9}$$

$$y(t) = \bar{C}x(t) + Du(t).$$
(10)

where $x(0) = x_0 \in \mathcal{D}(A)$ and A, B, C, D, are linear operators such that $A : \mathcal{D}(A) \to X$, $B \in \mathcal{L}(U, X_{-1}), C \in \mathcal{L}(X_1, Y)$ and $D \in \mathcal{L}(U, Y)$. \overline{C} is the extension of C (not necessarily unique) to X.

Well-posed solutions existence + uniqueness + continuous dependence = well-posedness

Well-posed linear system

Well-posed linear system Σ

$$\begin{bmatrix} x(\tau) \\ \mathbf{P}_{\tau} y \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbb{T}_{\tau} & \Phi_{\tau} \\ \Psi_{\tau} & \mathbb{F}_{\tau} \end{bmatrix}}_{\Sigma_{\tau}} \begin{bmatrix} x_0 \\ \mathbf{P}_{\tau} u \end{bmatrix}.$$
(11)

Well-posed linear system

Well-posed linear system Σ

$$\begin{bmatrix} x(\tau) \\ \mathbf{P}_{\tau} y \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbb{T}_{\tau} & \Phi_{\tau} \\ \Psi_{\tau} & \mathbb{F}_{\tau} \end{bmatrix}}_{\Sigma_{\tau}} \begin{bmatrix} x_0 \\ \mathbf{P}_{\tau} u \end{bmatrix}.$$
(11)

Family of operators

$$x(\tau) = \mathbb{T}_{\tau} x_0 + \underbrace{\int_0^{\tau} \mathbb{T}_{\tau-\sigma} Bu(\sigma) \mathrm{d}\sigma}_{\Phi_{\tau} u} \quad \forall x_0 \in \mathcal{D}(A), \quad \forall u \in L^2([0,\infty); U), \tag{12}$$
$$\mathbf{P}_{\tau} y = \underbrace{\bar{C}}_{(\Psi_{\tau} x_0)(t)} + \underbrace{\bar{C}}_{0} \underbrace{\int_0^t \mathbb{T}_{t-\sigma} Bu(\sigma) \mathrm{d}\sigma}_{(\mathbb{F}_{\tau} u)(t)} \quad \forall x_0 \in \mathcal{D}(A), \ t \in [0,\tau]. \tag{13}$$

Motivating Example

- Tower (described by homogeneous Euler-Bernoulli beam model) is clamped at bottom.
- Nacelle considered as a rigid body has mass *M* and is mounted on top.
- Tuned mass damper (TMD) used to dampen the vibrations.

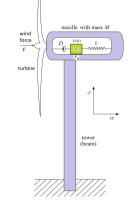


Figure: Wind tower coupled with tuned mass damper (TMD).

Wind turbine tower coupled with TMD, defined for $(x,t) \in ((0,l) \times [0,\infty))$ is

PDEs representing Euler-Bernoulli beam coupled with TMD

$$\begin{split} \rho w_{tt}(x,t) + EIw_{xxxx}(x,t) &= 0, \\ w(0,t) &= 0, \qquad w_x(0,t) = 0, \\ Mw_{tt}(l,t) - EIw_{xxx}(l,t) &= F(t) - D[w_t(l,t) - \xi_t(t)] - k[w(l,t) - \xi(t)], \\ Jw_{xtt}(l,t) + EIw_{xx}(l,t) &= 0, \\ m\xi_{tt}(t) &= D[w_t(l,t) - \xi_t(t)] + k[w(l,t) - \xi(t)], \end{split}$$

EI is the flexural rigidity, ρ is the mass density and J is the moment of inertia.

State space
$$X = \mathcal{H}_l^2(0, l) \times L^2[0, l] \times \mathbb{C}^4$$
, and $U = Y = \mathbb{C}$.

State space representation

$$\dot{x}(t) = Ax(t) + Bu(t),$$
$$y(t) = \bar{C}x(t).$$

where $A : \mathcal{D}(A) \to X, B \in \mathcal{L}(U, X_{-1}), C \in \mathcal{L}(X_1, Y).$

State space
$$X = \mathcal{H}_l^2(0, l) \times L^2[0, l] \times \mathbb{C}^4$$
, and $U = Y = \mathbb{C}$.

State space representation

$$\dot{x}(t) = Ax(t) + Bu(t),$$
$$y(t) = \bar{C}x(t).$$

where $A : \mathcal{D}(A) \to X, B \in \mathcal{L}(U, X_{-1}), C \in \mathcal{L}(X_1, Y).$

- This linear system Σ is well-posed.
- Σ strongly stable on X.

Wind tower-TMD system with friction term

$$\begin{split} \rho w_{tt}(x,t) + EIw_{xxxx}(x,t) &= 0, \\ w(0,t) &= 0, \qquad w_x(0,t) = 0, \\ Mw_{tt}(l,t) - EIw_{xxx}(l,t) &= F(t) - D[w_t(l,t) - \xi_t(t)] - k[w(l,t) - \xi(t)] \\ &- f_0 \text{sign}[w_t(l,t) - \xi_t(t)], \\ Jw_{xtt}(l,t) + EIw_{xx}(l,t) &= 0, \\ m\xi_{tt}(t) &= D[w_t(l,t) - \xi_t(t)] + k[w(l,t) - \xi(t)] + f_0 \text{sign}[w_t(l,t) - \xi_t(t)], \end{split}$$

where

$$\operatorname{sign}(v) = \begin{cases} 1 & \text{if } v > 0, \\ -1 & \text{if } v < 0, \\ [-1,1] & \text{if } v = 0. \end{cases}$$
(14)

Objectives

 $\bullet Well-posedness of the coupled wind tower with nonlinear damping term <math>\mathcal{N}.$

- Well-posedness of the coupled wind tower with nonlinear damping term \mathcal{N} .
- **2** Extend the study to nonlinear infinite dimensional system $\Sigma^{\mathcal{N}}$ represented by:

Nonlinear infinite dimensional system

$$\dot{x}(t) \in Ax(t) - \mathcal{N}(x(t)) + Bu(t), \qquad (15)$$
$$y(t) = \bar{C}x(t) + Du(t). \qquad (16)$$

Lax-Phillips semigroup

Assuming that Σ is a well-posed system on Y, X, U. Let $\mathcal{U} = L^2([0, \infty); U)$ and $\mathcal{Y} = L^2((-\infty, 0]; Y)$. For each $[y_0, x_0, u_0] \in \mathcal{Y} \times X \times \mathcal{U}$ and $t \ge 0$ we define on $\mathcal{Y} \times X \times \mathcal{U}$ the operator \mathfrak{T}_t by

Lax-Phillips model of semigroup				
\mathfrak{T}_t	1 1 1	$\begin{bmatrix} -t & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & \mathbf{S}_t^* \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$	$\begin{bmatrix} I & \Psi_t & \mathbb{F}_t \\ 0 & \mathbb{T}_t & \Phi_t \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} y_0 \\ x_0 \\ u_0 \end{bmatrix}$. (17)

Then $\mathfrak{T} = (\mathfrak{T}_t)_{t \ge 0}$ is a strongly continuous semigroup on $\mathcal{Y} \times X \times \mathcal{U}$. $\mathfrak{T}_t \begin{bmatrix} y_0 \\ x_0 \\ u_0 \end{bmatrix}$ contains all the information of system Σ .

The following conditions are equivalent:

• Σ is scattering passive, i.e. the following inquality holds for all $\tau \ge 0$:

$$\|x(\tau)\|^{2} + \int_{0}^{\tau} \|y(t)\|^{2} \mathrm{d}t \leqslant \|x(0)\|^{2} + \int_{0}^{\tau} \|u(t)\|^{2} \mathrm{d}t,$$
(18)

2 The Lax-Phillips semigroup induced by Σ is contractive.

Generator of \mathfrak{T}

$$\begin{bmatrix} y_0'\\ A\&B\begin{bmatrix} x_0\\ u_0(0) \end{bmatrix}\\ u_0' \end{bmatrix} = \mathfrak{A} \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{Y}} & \delta_0 \bar{C} & \delta_0 D \delta_0^*\\ 0 & A & B\delta_0^*\\ 0 & 0 & \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} \qquad \forall \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} \in \mathcal{D}(\mathfrak{A}).$$
(19)

Generator of \mathfrak{T}

$$\begin{bmatrix} y_0'\\ A\&B\begin{bmatrix} x_0\\ u_0(0)\end{bmatrix} \\ u_0' \end{bmatrix} = \mathfrak{A} \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{Y}} & \delta_0 \bar{C} & \delta_0 D \delta_0^*\\ 0 & A & B \delta_0^*\\ 0 & 0 & \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} \qquad \forall \begin{bmatrix} y_0\\ x_0\\ u_0 \end{bmatrix} \in \mathcal{D}(\mathfrak{A}).$$
(19)

Everywhere defined perturbation of ${\mathfrak T}$

$$\mathfrak{A}^{\mathcal{N}} \begin{bmatrix} y_0 \\ x_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{Y}} & \delta_0 \bar{C} & \delta_0 D \delta_0^* \\ 0 & A - \mathcal{N} & B \delta_0^* \\ 0 & 0 & \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}_{\mathcal{U}} \end{bmatrix} \begin{bmatrix} y_0 \\ x_0 \\ u_0 \end{bmatrix} \qquad \forall \begin{bmatrix} y_0 \\ x_0 \\ u_0 \end{bmatrix} \in \mathcal{D}(\mathfrak{A}).$$
(20)

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$\mathfrak{A}^{0}z = \lim_{t \to 0, t > 0} \frac{1}{t} \left[\mathfrak{T}_{t} z - z \right], \qquad (21)$$

$$\mathcal{D}(\mathfrak{A}^0) = \{ z \in Z \mid \text{the above limit exists} \}.$$
(22)

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$\mathfrak{A}^{0}z = \lim_{t \to 0, t > 0} \frac{1}{t} \left[\mathfrak{T}_{t} z - z \right], \qquad (21)$$

$$\mathcal{D}(\mathfrak{A}^0) = \{ z \in Z \mid \text{the above limit exists} \}.$$
(22)

Contractive semigroup of nonlinear operators

Assume that \mathfrak{T} is contractive, i.e.

$$\|\mathbf{\mathfrak{T}}_t z_1 - \mathbf{\mathfrak{T}}_t z_2\| \leqslant \|z_1 - z_2\| \qquad \forall z_1, z_2 \in \mathbb{Z}, t \ge 0.$$

Then \mathfrak{A}^0 is densely defined and dissipative.

Strongly continuous semigroup of nonlinear operators

Given a strongly continuous semigroup of nonlinear \mathfrak{T} on real Hilbert space Z, the generator is defined as:

$$\mathfrak{A}^{0}z = \lim_{t \to 0, t > 0} \frac{1}{t} \left[\mathfrak{T}_{t} z - z \right], \qquad (21)$$

$$\mathcal{D}(\mathfrak{A}^0) = \{ z \in Z \mid \text{the above limit exists} \}.$$
(22)

Contractive semigroup of nonlinear operators

Assume that \mathfrak{T} is contractive, i.e.

$$\|\mathbf{\mathfrak{T}}_t z_1 - \mathbf{\mathfrak{T}}_t z_2\| \leqslant \|z_1 - z_2\| \qquad \forall z_1, z_2 \in \mathbb{Z}, t \ge 0.$$

Then \mathfrak{A}^0 is densely defined and dissipative.

- \mathfrak{A}^0 has a maximal dissipative extension \mathfrak{A} (possibly set-valued) with $\mathcal{D}(\mathfrak{A}) = \mathcal{D}(\mathfrak{A}^0)$.
- If $z_0 \in \mathcal{D}(\mathfrak{A})$ then $\mathfrak{A}^0 z_0$ is the unique element of smallest norm in $\mathfrak{A} z_0$.
- $z(t) = \mathfrak{T}_t z_0$ is Lipschitz continuous and right differentiable at every $t \ge 0$.

Main Results

Theorem

- Let $\Sigma = \begin{bmatrix} \mathbb{T} & \Phi \\ \Psi & \mathbb{F} \end{bmatrix}$ be a scattering passive linear system on Y, X, U, described by the operators $A : \mathcal{D}(A) \to X, B \in \mathcal{L}(U, X_{-1}), C \in \mathcal{L}(X_1, Y)$ and $D \in \mathcal{L}(U, Y)$.
- Let \mathcal{N} be a (set-valued) maximal monotone operator with $\mathcal{D}(\mathcal{N}) = X$.

Then there exists a time-invariant well-posed nonlinear system $\Sigma^{\mathcal{N}}$

$$\dot{x}(t) \in \begin{bmatrix} A - \mathcal{N} & B \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix},$$
(23)

$$y(t) = \begin{bmatrix} \bar{C} & D \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}.$$
(24)

Moreover, $\Sigma^{\mathcal{N}}$ is incrementally scattering passive.

Let $x_{01}, x_{02} \in X$ and $u_1, u_2 \in L^2_{loc}([0, \infty); U)$, then corresponding state trajectories x_1, x_2 and outputs y_1, y_2 of $\Sigma^{\mathcal{N}}$ satisfy for all $\tau \ge 0$,

Energy balance inequality:

$$||x_{1}(\tau) - x_{2}(\tau)||^{2} + \int_{0}^{\tau} ||y_{1}(t) - y_{2}(t)||^{2} dt$$

$$\leq ||x_{01} - x_{02}||^{2} + \int_{0}^{\tau} ||u_{1}(t) - u_{2}(t)||^{2} dt.$$
(25)

Perturbed operator \mathfrak{A}

Perturbted \mathfrak{A}

$$\mathfrak{A}^{\mathcal{N}} = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} & \delta_0 \bar{C} & \delta_0 D \delta_0^* \\ 0 & A - \mathcal{N} & B \delta_0^* \\ 0 & 0 & \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix},$$
(26)

Perturbed operator \mathfrak{A}

Perturbted \mathfrak{A}

$$\mathfrak{A}^{\mathcal{N}} = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} & \delta_0 \bar{C} & \delta_0 D \delta_0^* \\ 0 & A - \mathcal{N} & B \delta_0^* \\ 0 & 0 & \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix},$$
(26)

Splitting $\mathfrak{A}^{\mathcal{N}}$

$$\mathfrak{A}^{\mathcal{N}} = \underbrace{\begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}\xi} & \delta_0 \bar{C} & \delta_0 D \delta_0^* \\ 0 & A & B \delta_0^* \\ 0 & 0 & \frac{\mathrm{d}}{\mathrm{d}\xi} \end{bmatrix}}_{\mathfrak{A}} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & -\mathcal{N} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\tilde{\mathcal{N}}}.$$
(27)

 $\mathcal{D}(\tilde{\mathcal{N}}) = \mathcal{Y} \times X \times \mathcal{U}$. Therefore, $\mathcal{D}(\mathfrak{A}) \cap (\operatorname{int} \mathcal{D}(\tilde{\mathcal{N}})) = \mathcal{D}(\mathfrak{A})$, which is dense.

- Consider the case when $\mathcal{D}(\mathcal{N}) \subset X$.
- Generalized representation of nonlinear infinite dimensional systems.
- Numerical analysis of Wind turbine tower-TMD system to study the effect nonlinear damping.
- Stability analysis.

- Shantanu Singh, Marius Tucsnak, and George Weiss (2020).
 Non-linear damping for scattering-passive systems in the Maxwell class.
 IFAC-PapersOnLine, vol. 53, pp. 7458-7465.
 https://doi.org/10.1016/j.ifacol.2020.12.1298
- Shantanu Singh, George Weiss and Marius Tucsnak (2021). Abstract nonlinear control systems. Accepted in CDC-2021.
- Shantanu Singh, George Weiss, and Marius Tucsnak (2021). A class of incrementally scattering-passive nonlinear systems. Under review in Automatica.

Thank You.