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Most of the talk can be found in

AvdS, Dimitri Jeltsema:
Port-Hamiltonian Systems Theory: An Introductory Overview, 2014

pdf available from my home page:
www.math.rug.nl/˜arjan

and in Chapters 6, 7 of

AvdS: L2-Gain and Passivity Techniques in Nonlinear Control, 3rd ed. 2017

Further background:

Modeling and Control of Complex Physical Systems;
the Port-Hamiltonian Approach,

GeoPleX consortium, Springer, 2009
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Introduction

• Port-Hamiltonian systems theory as systematic framework for
multi-physics systems: modeling for control

• Is based on viewing energy and power as ’lingua franca’ between
different physical domains

• Combines classical Hamiltonian dynamics with network structure,
including energy-dissipation and interaction with environment

• Unifies lumped-parameter and distributed-parameter physical systems

• Bridges the gap between modeling and control.

• Identification of underlying physical structure in the mathematical
model provides powerful tools for analysis, simulation and control
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The basic picture

Dstorage dissipation

eS

fS

eR

fR

eP fP

Figure: Port-Hamiltonian system

Every physical system that is modeled in this way defines a

port-Hamiltonian system.

For control purposes ’any’ physical system can be modeled this way.
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Port-based modeling is based on viewing the physical system as
interconnection of ideal basic elements, linked by energy flow.

Linking done via conjugate vector pairs of flow variables f ∈ R
k and effort

variables e ∈ R
k , with product eT f equal to power.

In some cases (e.g., 3D mechanical systems) f ∈ F (e.g., linear space of
twists) and e ∈ E = F∗ (e.g., wrenches), with product defined by pairing.
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Basic elements:

• (1) Energy-storing elements

ẋ = −f

e = ∂H
∂x

(x), H energy function

and hence d
dt
H = eT f .

• (2) Energy-dissipating elements:

R(f , e) = 0, eT f ≤ 0

• (3) Energy-routing elements:
- generalized transformers:

f =

[
f1
f2

]
, e =

[
e1
e2

]
, f1 = Mf2, e2 = −MT e1

- generalized gyrators:

f = Je, J = −JT
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• (4) Ideal interconnection and constraint equations:

e1 = e2 = · · · = ek , f1 + f2 + · · ·+ fk = 0

or

f1 = f2 = · · · = fk , e1 + e2 + · · ·+ ek = 0

f = 0, or e = 0

(3) and (4) share the following two properties:

Power-conservation eT f = e1f1 + e2f2 + · · ·+ ek fk = 0,

and k linear and independent equations.
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From energy-routing elements and interconnection

equations to Dirac structures

This means energy-routing elements and interconnection and constraint
equations have following two properties in common.

Described by linear equations:

Ff + Ee = 0, f , e ∈ R
k

satisfying
eT f = e1f1 + e2f2 + · · ·+ ek fk = 0

and
rank

[
F E

]
= k

Energy-routing elements (3) and interconnection and constraint equations
(4) are grouped into one geometric object: the linear space of flow and
effort variables satisfying all equations, called Dirac structure.
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Definition of Dirac structures

Definition

A (constant) Dirac structure is a subspace (typically F = R
k = E)

D ⊂ F × E

such that

(i) eT f = 0 for all (f , e) ∈ D,

(ii) dimD = dimF .

Example:

for any skew-symmetric map J : E → F its graph

{(f , e) ∈ F × E | f = Je}

is Dirac structure.
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Alternative definition; e.g., for infinite-dimensional case

Symmetrization of power eT f leads to indefinite bilinear form ≪,≫ on
F × E :

≪(fa, ea), (fb, eb) ≫ := eTa fb + eTb fa,

(fa, ea), (fb, eb) ∈ F × E

Definition

A (constant) Dirac structure is subspace

D ⊂ F × E

such that
D = D⊥⊥,

where ⊥⊥ denotes orthogonal companion with respect to ≪,≫.
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Coordinate-free definition of pH systems

Dstorage dissipation

eS

fS

eR

fR

eP fP

Start from the Dirac structure, defined as subspace of space of all flows

f = (fS , fR , fP)

and all efforts
e = (eS , eR , eP)
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Constitutive relations:

’Close’ the energy-storing ports of D by relations

−ẋ = fS ,
∂H

∂x
(x) = eS

and the energy-dissipating ports by

R(fR , eR) = 0

This leads to the port-Hamiltonian system

(−ẋ(t), fR(t), fP(t),
∂H
∂x

(x(t)), eR (t), eP(t)) ∈ D
t ∈ R

R(fR(t), eR(t)) = 0

N.B.: in general in differential-algebraic equations (DAE) format.
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Example (The ubiquitous mass-spring system)

Two energy-storage elements:

• Spring Hamiltonian Hs(q) =
1
2kq

2 (potential energy)

q̇ = −fs = velocity

es = dHs

dq
(q) = kq = force

• Mass Hamiltonian Hm(p) =
1
2mp2 (kinetic energy)

ṗ = −fm = force

em = dHm

dp
(p) = p

m
= velocity

Note the slight difference with ’classical’ mechanical modeling, where one
starts from identifying q as the position of mass, defining the velocity q̇

and momentum p = mq̇.
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Example (Mass-spring system cont’d)

Dirac structure linking flows fs , fm,F and efforts es , em, v :

fs = −em = −v , fm = es − F

Power-conserving since fses + fmem + vF = 0. Yields pH system

[
q̇

ṗ

]
=

[
0 1

−1 0

][
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
+

[
0

1

]
F

v =
[
0 1

]
[
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]

with
H(q, p) = Hs(q) + Hm(p)
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Example (Magnetically levitated ball)



q̇

ṗ

ϕ̇


 =




0 1 0
−1 0 0
0 0 −R







∂H
∂q

(q, p, φ)

∂H
∂p

(q, p, φ)

∂H
∂ϕ

(q, p, φ)


+



0
0
1


V , I =

∂H

∂ϕ
(q, p, φ)

Coupling electrical/mechanical domain via Hamiltonian H(q, p, φ)

H(q, p, ϕ) = mgq +
p2

2m
+

ϕ2

2L(q)
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Example (Synchronous machine)




ψ̇s

ψ̇r

ṗ

θ̇




=




−Rs 03 031 031

03 −Rr 031 031

013 013 −d −1

013 013 1 0







∂H
∂ψs

∂H
∂ψr

∂H
∂p

∂H
∂θ



+




I3 031 031

03



1
0
0


 031

013 0 1
013 0 0







Vs

Vf

τ






Is
If
ω


 =



I3 03 031 031
013

[
1 0 0

]
0 0

013 013 1 0







∂H
∂ψs

∂H
∂ψr

∂H
∂p

∂H
∂θ



, Rs > 0,Rf > 0, d > 0

H(ψs , ψr , p, θ) =
1

2

[
ψT
s ψT

r

]
L−1(θ)

[
ψs

ψr

]
+

1

2J
p2
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Example (DC motor)

_

V

I

J

b

R L

K

ω

τ

+

6 interconnected subsystems:
• 2 energy-storing elements: inductor L with state ϕ (flux), and rotational
inertia J with state p (angular momentum);
• 2 energy-dissipating elements: resistor R and friction b;
• gyrator K ;
• voltage source V .

Arjan van der Schaft (Univ. of Groningen) Port-Hamiltonian systems 18 / 100



Example (DC motor cont’d)

Energy-storing elements (here assumed to be linear) are

Inductor:





ϕ̇ = −VL

I =
d

dϕ

(
1

2L
ϕ2

)
=
ϕ

L
,

Inertia:





ṗ = −τJ

ω =
d

dp

(
1

2J
p2
)

=
p

J

Total Hamiltonian H(p, φ) = 1
2Lφ

2 + 1
2J p

2, and energy-dissipating relations

VR = −RI , τb = −bω,

with R , b > 0, where τb damping torque.
Energy-routing gyrator (magnetic power into mechanical, and conversely):

VK = −Kω, τK = KI
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Example (DC motor cont’d)

The subsystems are interconnected by

VL + VR + VK + V = 0, while currents are equal

τJ + τb + τK + τ = 0, while angular velocities are equal

Dirac structure is defined by these interconnection equations, together
with equations for gyrator.

Results in port-Hamiltonian model

[
ϕ̇

ṗ

]
=

([
0 −K

K 0

]
−

[
R 0
0 b

])



ϕ

L
p

J


+

[
1 0
0 1

] [
V

τ

]
,

[
I

ω

]
=

[
1 0
0 1

]



ϕ

L
p

J


 , H(ϕ, p) =

ϕ2

2L
+

p2

2J
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Standard iso representation without algebraic constraints

In many cases the Dirac structure D is graph of skew-symmetric linear map




fS

fR

fP


 =




−J −GR −G

GT
R 0 0

GT 0 0







eS

eR

eP


 , J = −JT

while the energy-dissipation relations are linear

eR = −R̄fR , R̄ ≥ 0

This leads to the standard formulation

ẋ = [J − R ] ∂H
∂x

(x) + Gu, R := GR R̄G
T
R ≥ 0

y = GT ∂H
∂x

(x)

with inputs u = fP and outputs y = eP .
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Modulated interconnection structures

All this can be generalized to Dirac structures on manifolds X :

D(x) ⊂ TxX × T ∗
x X

is a Dirac structure as before for any x ∈ X .

In this case, all matrices become state-dependent, e.g.,

ẋ = [J(x) − R(x)] ∂H
∂x

(x) + G (x)u, R(x) = GR(x)R̄G
T
R (x) ≥ 0

y = GT (x)∂H
∂x

(x)

Common situation in e.g. 3D mechanical systems.
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Mechanical systems with kinematic constraints

Consider mechanical system with n degrees of freedom. Kinematic
constraints are constraints on the vector of generalized velocities q̇:

AT (q)q̇ = 0

with A(q) an n × k matrix (k number of kinematic constraints).

This leads to constrained Hamiltonian equations

q̇ = ∂H
∂p

(q, p)

ṗ = −∂H
∂q

(q, p) + A(q)λ

0 = AT (q)∂H
∂p

(q, p)

with H(q, p) total energy, and A(q)λ the constraint forces.
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The resulting Dirac structure D, modulated by (q, p) ∈ T ∗Q,

is defined by the standard symplectic structure on T ∗Q,

together with constraints AT (q)q̇ = 0 :

D(q, p) = {(fS , eS ) ∈ T(q,p)X × T ∗

(q,p)X | ∃λ ∈ R
k s.t.

fS =

[
0 −In

In 0

]
eS −

[
0

A(q)

]
λ,

[
0 AT (q)

]
eS = 0 }

Energy-dissipating and external ports may be added.
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Example (Rolling coin)

ϕϕ

θ

x

y

(x , y)(x , y)

Figure: The geometry of the rolling euro
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Example

Let x , y be the Cartesian coordinates of the point of contact of the coin
with the plane. Furthermore, ϕ denotes the heading angle, and θ the angle
of the coin. The rolling constraints (rolling without slipping) are (with all
parameters set equal to 1)

ẋ = θ̇ cosϕ, ẏ = θ̇ sinϕ

The total energy is (after normalization)

H =
1

2
p2x +

1

2
p2y +

1

2
p2θ +

1

2
p2ϕ

and the constraints can be rewritten in the form AT (q)∂H
∂p

(q, p) = 0 as

[
1 0 − cosϕ 0
0 1 − sinϕ 0

]



px
py
pθ
pϕ


 = 0
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Nonlinear energy-dissipation

ẋ = J(x)∂H
∂x

(x)− P(∂H
∂x

(x)) + G (x)u, eTS P(eS ) ≥ 0

y = GT (x)∂H
∂x

(x)

Example (Multi-valued nonlinear dissipation: Coulomb friction)

[
q̇

ṗ

]
=

[
0 1

−1 0

][
kq

p
m

]
−

[
0

c sign p
m

]
+

[
0

1

]
u, y =

p

m
= v

where sign is the multi-valued function defined by

sign v =





1 , v > 0
[−1, 1] , v = 0
−1 , v < 0

, v sign v ≥ 0
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Generalization w.r.t. classical Hamiltonian dynamics

ẋ = J(x)∂H
∂x

(x) −P(∂H
∂x

(x)) + G (x)u

y = GT (x)∂H
∂x

(x)

Sir William Rowan Hamilton

Addition of

• Energy-dissipating elements

• External ports fP = u, eP = y

• Algebraic constraints in case of general Dirac structure

.
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Mass-spring-damper systems

Associate masses to nodes, and springs and dampers to edges of a graph.

(a)

(b)

mass 1 mass 2 mass 3

damper 1

damper 2spring 1

spring 2

Figure: (a) Mass-spring-damper system; (b) the corresponding graph.
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Mass-spring systems

For a mass-spring system with N masses and M springs in one-dimensional
space R

p ∈ R
N node space, q ∈ R

M edge space,

Let D be incidence matrix; then dynamics is given as

[
q̇

ṗ

]
=

[
0 DT

−D 0

][
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]

with total energy
H : RM × R

N → R,

with

H(q, p) =

N∑

i=1

p2i
2mi

+

M∑

j=1

Vj(qj)

Can be directly extended to motion in R
3, or to multi-body systems.
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Mass-spring-damper systems

Part of edges correspond to springs; part to dampers.
Thus D =

[
Ds Dd

]
with

Ds spring incidence matrix , Dd damper incidence matrix

Dynamics of mass-spring-damper system takes the form

[
q̇

ṗ

]
=

([
0 DT

s

−Ds 0

]
−

[
0 0

0 Dd R̄D
T
d

])

∂H
∂q

(q, p)

∂H
∂p

(q, p)




where R̄ is a positive diagonal matrix (in case of linear dampers).

Incidence structure defines Dirac structure (balance laws).

In electrical networks all elements are on the edges: Dirac structure
determined by Kirchhoff’s laws.

Chemical reaction networks: ’nonlinear mass-damper systems’.
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Example: swing equation model of power network

• All voltage and current in the network are pure sinusoids with same
frequency ω̂ (50 Hz). Then any voltage/current signal

V (t) = V sin(ω̂t + δ), t ∈ R,

can be represented by its phasor

Ve jδ

• Amplitudes Vi of voltage potentials at all nodes are constant.

• All transmission lines (edges) are purely inductive.
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Model the magnetic/electric part of the i -th generator/motor as a voltage
source with voltage angle δi (and a reactance included in adjoining
transmission line).
Average power (’active power’) flow from node i to node j is given by

Γij sin(δi − δj)

with Γij = SijViVj , Sij susceptance of the line from i to j .
Define phase differences across the lines

qk := δj − δi , k = 1, · · · ,m

Then
q = DT δ,

D the n ×m incidence matrix of network: n = # nodes, m # lines.

It follows that vector of power flows through the lines is

Pnetwork = −DΓSinDT δ = −DΓSin q

where Sin : Rm → R
m is element-wise sin function.
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Network of generators modeled by swing equations

The swing equations model the balance between mechanical and electric
power as

Mω̇ = −Aω + Pnetwork + u = −Aω − DΓSin q + u

where u ∈ R
n is the vector of produced/consumed power at all nodes, and

Aω is the vector of damping torques, with A a positive diagonal matrix.

Let ωi be the frequency deviation with respect to ω̂ of node i , then vector
of phase differences q = DT δ satisfies

q̇ = DTω, ω = (ω1, · · · , ωn)
T

Together, we obtain the system

q̇ = DTω

Mω̇ = −Aω − DΓSin q + u

Favorite equations in control literature on power networks.
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This system is naturally written into port-Hamiltonian format:

[
q̇

ṗ

]
=

[
0 DT

−D −A

][
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
+

[
0

u

]
, p = Mω

y = ∂H
∂p

(q, p) = ω

with u vector of generated/consumed power, and Hamiltonian

H(q, p) =
1

2
pTM−1p − 1

TΓCos q

However:
- Note that u is power, and thus the conjugated output ω is dimensionless
in order that uT y is power.
- Note furthermore that ω is frequency deviation, and p = Mω is
momentum deviation.
- Furthermore, 1

2p
TM−1p is shifted kinetic energy, and Aω is a restoring

magnetic torque; not energy dissipation.
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Two key properties of port-Hamiltonian systems

Power-conservation of Dirac structure

eTS fS + eTR fR + eTP fP = 0

implies energy-balance

dH
dt
(x(t)) = ∂H

∂xT
(x(t))ẋ(t) =

eTR (t)fR(t) + eTP (t)fP(t)

≤ eTP (t)fP t)

Yields passivity of any pH system if H is bounded from below.

Crucial property for analysis and control.
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Shifted passivity

In case of a constant Dirac structure, and a convex Hamiltonian, the
system is also shifted passive with respect to any constant ū. Let e.g.,

0 = [J − R ]
∂H

∂x
(x̄) + Gū, ȳ = GT ∂H

∂x
(x̄)

Then
ẋ = [J − R ] ∂H

∂x
(x) + Gu,

y = GT ∂H
∂x

(x)

can be rewritten as

ẋ = [J − R ] ∂Ĥx̄

∂x
(x) + G (u − ū),

y − ȳ = GT ∂Ĥx̄

∂x
(x)

with

Ĥx̄(x) = H(x) −
∂H

∂xT
(x̄)(x − x̄)− H(x̄)

the shifted Hamiltonian.
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Example: swing equation model of power network

Recall
[
q̇

ṗ

]
=

[
0 DT

−D −A

][
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
+

[
0

u

]
, p = Mω

y = ∂H
∂p

(q, p) = ω

with u vector of generated/consumed power, and Hamiltonian

H(q, p) =
1

2
pTM−1p − 1

TΓCos q

Convex for q ∈ (−π
2 ,

π
2 )

n.
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Stability analysis of shifted equilibria

Let ū be a constant input, yielding steady state values (q̄, p̄ = Mω̄)
determined by DT ω̄ = 0 and thus

ω̄ = 1ω∗

where

1
TA1ω∗ = 1

T ū

(premultiply 0 = −D ∂H
∂q

(q̄, p̄)− A ∂H
∂p

(q̄, p̄) + ū by 1
T )

and furthermore
DΓSin q̄ = −A1ω∗ + ū

Note that ω∗ = 0 if and only if 1T ū = 0.
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Shifted Hamiltonian is

H̃(q, p) :=
1

2
(p − p̄)TM−1(p − p̄)− 1

TΓCos q + 1
TΓSin q̄ (q − q̄)

Has a strict minimum at (q̄, p̄), whenever q̄ ∈ (−π
2 ,

π
2 )

n.

In particular, for u = ū the steady state (q̄, p̄) is asymptotically stable.

Similar to other dynamical distribution networks.
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Port-Hamiltonian systems are compositional

The interconnection of port-Hamiltonian systems through any
interconnection Dirac structure is again port-Hamiltonian:

- Total Hamiltonian H is sum of Hamiltonians of subsystems:

H = H1 + · · · + HN

- Total energy-dissipating part is direct product of energy-dissipating parts
of subsystems.

- Total Dirac structure is composition of Dirac structures of subsystems,
together with interconnection Dirac structure.
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Composition of Dirac structures

The composition of two Dirac structures with partially shared variables is
again a Dirac structure:

DA ⊂ F1 × E1 ×F2 × E2

DB ⊂ F2 × E2 ×F3 × E3

f1

e1

f2

e2

f3

e3
DA DB

︸ ︷︷ ︸
(f1,f3,e1,e3) ∈ DA◦DB
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Motivation

In many applications the system, or some of its sub-systems, is
distributed-parameter.

Examples:

1. Power-converter connected to electrical machine via transmission line,

2. Hydraulic networks with fluid pipes,

3. Multi-body systems with flexible components,

etc.

Wish to combine lumped- and distributed-parameter systems into one
framework.
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Distributed-parameter port-Hamiltonian systems

Simplest example: transmission line

fa
ea

fb
eb

a b

Telegrapher’s equations define boundary control system

∂Q
∂t

(z , t) = − ∂
∂z
I (z , t) = − ∂

∂z
φ(z ,t)
L(z)

∂φ
∂t
(z , t) = − ∂

∂z
V (z , t) = − ∂

∂z
Q(z ,t)
C(z)

fa(t) = V (a, t), ea(t) = I (a, t)
fb(t) = V (b, t), eb(t) = I (b, t)
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Stokes-Dirac structure

Define internal flows fS = (fE , fM) and efforts eS = (eE , eM):

electric flow fE : [a, b] → R

magnetic flow fM : [a, b] → R

electric effort eE : [a, b] → R

magnetic effort eM : [a, b] → R

together with boundary flows f = (fa, fb) and efforts e = (ea, eb).

Define infinite-dimensional subspace
D ⊂ (C∞[a, b])2 × (C∞[a, b])2 × R

2 × R
2 by equations

[
fE
fM

]
=

[
0 ∂

∂z
∂
∂z

0

] [
eE
eM

]

[
fa
ea

]
=

[
eE (a)
eM(a)

]
,

[
fb
eb

]
=

[
eE (b)
eM(b)

]
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D is Dirac structure: D = D⊥⊥

Differential operator ∂
∂z

is skew-symmetric, as follows from integration by
parts:

For any (fE , fM , eE , eM , fa, fb, ea, eb) ∈ D

∫ b

a
[eE (z)fE (z) + eM(z)fM(z)]dz − ebfb + eafa =

∫ b

a
[eE (z)

∂
∂z
eM(z) + eM(z) ∂

∂z
eE (z)]dz − ebfb + eafa =

∫ b

a
[−eM(z) ∂

∂z
eE (z)dz + eM(z) ∂

∂z
eE (z)]dz(+ebfb − eafa)− ebfb + eafa = 0

Thus eT f = 0 for all (f , e) ∈ D. This implies for all (f1, e1), (f2, e2) ∈ D

0 = (e1 + e2)
T (f1 + f2) = eT1 f1 + eT2 f2 + eT1 f2 + eT2 f1 =

eT1 f2 + eT2 f1 =≪ (f1, e1), (f2, e2) ≫

Hence D ⊂ D⊥⊥.
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Still need to show that D⊥⊥ ⊂ D :

Let (f̄E , f̄M , ēE , ēM , f̄a, ēa, f̄b, ēb) ∈ D⊥⊥, that is

0 =
∫ b

a
[ēE fE + eE f̄E + ēM fM + eM f̄M ]dz+

−ēbfb − eb f̄b + ēafa + ea f̄a

for all (fE , fM , eE , eM , fa, ea, fb, eb) ∈ D.
Take first fa = ea = fb = eb = 0. Then

0 =

∫ b

a

[ēE
∂

∂z
eM + eE f̄E + ēM

∂

∂z
eE + eM f̄M ]dz

for all such (eE , eM). This implies (again integration by parts!)

f̄E =
∂

∂z
ēM , f̄M =

∂

∂z
ēE
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Substitution yields

0 =
∫ b

a
[ēE

∂
∂z
eM + eE

∂
∂z
ēM + ēM

∂
∂z
eE + eM

∂
∂z
ēE ]dz

−ēbfb − eb f̄b + ēafa + ea f̄a

which implies

eE (b)ēM(b) + eM(b)ēE (b)− eE (a)ēM(a)− eM(a)ēE (a)

−ēbfb − eb f̄b + ēafa + ea f̄a = 0

for all fa = eE (a), fb = eE (b), ea = eM(a), eb = eM(b).

This finally yields

ēb = ēM(b), f̄b = ēE (b), ēa = ēM(a), f̄a = ēE (a)
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Telegrapher’s equations as port-Hamiltonian system

Substituting (as in the finite-dimensional case)

fE = −∂Q
∂t

fM = −∂ϕ
∂t



 fS = −ẋ

eE = Q
C
= ∂H

∂Q
(Q, ϕ)

eM = ϕ
L
= ∂H

∂ϕ
(Q, ϕ)



 eS =

∂H

∂x
(x)

with energy density

H(Q, ϕ) =
Q2

2C
+
ϕ2

2L

we recover the telegrapher’s equations.

Extension to fluid dynamics, 3D Maxwell’s equations, etc..
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Interconnection of distributed-parameter pH systems and

finite-dimensional pH systems

• Electrical circuits with transmission lines modeled by telegrapher’s
equations

• Control of boundary-control distributed-parameter systems by
finite-dimensional (boundary) controllers.

• Irrigation systems: networks of fluid systems

• Dynamics of rigid bodies in fluids
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Consider two heat compartments with conducting wall. The two systems,
indexed by 1 and 2, exchange heat flow q given by Fourier’s law

q = λ(T1 − T2),

with temperatures

Ti =
∂Ui

∂Si
(Si), i = 1, 2,

with U1(S1),U2(S2) internal energies of two compartments.

Leads to pseudo port-Hamiltonian system



Ṡ1

Ṡ2


 =



− q

T1

q
T2


 =



−λT1−T2

T1

λT1−T2
T2


 =

[
0 λ( 1

T1
− 1

T2
)

−λ( 1
T1

− 1
T2
) 0

]

∂U
∂S1

∂U
∂S2




with total energy U(S1,S2) := U1(S1) + U1(S2).
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Pseudo port-Hamiltonian, since the skew-symmetric map

[
0 λ( 1

T1
− 1

T2
)

−λ( 1
T1

− 1
T2
) 0

]

does not depend on S1,S2 directly, but through Ti =
∂Ui

∂Si
(Si ).

Therefore does not define Dirac structure on state space R
2 with

coordinates S1,S2: mixing of interconnection and constitutive relations.

Instead, example of the type

ẋ = J(e)e, J(e) = −JT (e), e =
∂H

∂x
(x)

As a consequence

Ṡ1 + Ṡ2 =
(T1 − T2)

2

T1T2
≥ 0

Total entropy is non-decreasing; irreversibility.

Port-Hamiltonian framework is not general enough !
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Conclusions so far

• Port-based modeling of multi-physics systems: ideal energy-storage,
energy-dissipation, energy-routing

• Underlying network structure defines Dirac structure

• In particular: incidence structure of graph determines Dirac structure:
through and across variables

• Port-Hamiltonian modeling has been successfully applied to many
situations: multi-body systems, aeronautic systems, power networks,
distribution networks, chemical reaction networks, tokamak, ...

• Key properties of pH systems: passivity and compositionality

• Extension to distributed-parameter case: Stokes-Dirac structure

• Not yet enough for thermodynamics

• After the break: use for control
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Introduction

Here: focus on passivity-based control of port-Hamiltonian systems,

and in particular on control by interconnection of pH systems,

(based on joint work with Romeo Ortega, Bernhard Maschke, Stefano
Stramigioli, · · · )

Exposition is based on parts of Chapter 7 of

AvdS, L2-Gain and Passivity Techniques in Nonlinear Control, 3rd edition,
2017.
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Recall of passivity of port-Hamiltonian systems

Power-conservation of Dirac structure

eTS fS + eTR fR + eTP fP = 0

implies energy-balance

dH
dt
(x(t)) = ∂H

∂xT
(x(t))ẋ(t) =

eTR (t)fR(t) + eTP (t)fP(t)

≤ eTP (t)fP t) = yT (t)u(t)

Implies passivity of any pH system if H is bounded from below.
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Use of passivity property for stabilization

• If H(x) ≥ 0 (equivalent to bounded from below), with H(x0) = 0,
then H can be used as Lyapunov function, implying some sort of
stability of x0 for uncontrolled system.

• Furthermore, if x0 of the uncontrolled system is only stable, then it
can be sought to be asymptotically stabilized by adding artificial
damping. In fact,

d

dt
H ≤ uT y

together with additional damping u = −y yields

d

dt
H ≤ − ‖ y ‖2

proving asymptotic stability of x0 provided an observability condition
(equivalent to LaSalle’s condition for asymptotic stability) is met.
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Example

Euler equations for a rigid body revolving about its center of gravity

I1ω̇1 = [I2 − I3]ω2ω3 + g1u

I2ω̇2 = [I3 − I1]ω1ω3 + g2u

I3ω̇3 = [I1 − I2]ω1ω2 + g3u,

with ω := (ω1, ω2, ω3)
T angular velocities around the principal axes, and

I1, I2, I3 > 0 principal moments of inertia.

For u = 0 the origin is an equilibrium with linearization

A =




0 0 0
0 0 0
0 0 0


 B =




I−1
1 g1
I−1
2 g2
I−1
3 g3




Hence the linearization does not say anything about stabilizability.
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Stability and asymptotic stabilization by damping injection

Rewrite the system in pH form by defining angular momenta

p1 = I1ω1, p2 = I2ω2, p3 = I3ω3

and defining the Hamiltonian

H(p) =
p21
2I1

+
p22
2I2

+
p23
2I3

System becomes




ṗ1

ṗ2

ṗ3


 =




0 −p3 p2

p3 0 −p1

−p2 p1 0







∂H
∂p1

∂H
∂p2

∂H
∂p3


+




g1

g2

g3


 u, y =

[
g1 g2 g3

]



∂H
∂p1

∂H
∂p2

∂H
∂p3



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Since Ḣ = 0 and H has a minimum at p = 0 the origin is stable.

Damping injection amounts to negative output feedback

u = −y = −g1
p1

I1
− g2

p2

I2
− g3

p3

I3
= −g1ω1 − g2ω2 − g3ω3,

yielding convergence to the largest invariant set contained in

S := {p ∈ R
3 | Ḣ(p) = 0} = {p ∈ R

3 | g1
p1

I1
+ g2

p2

I2
+ g3

p3

I3
= 0},

which is just the origin p = 0 if and only if

g1 6= 0, g2 6= 0, g3 6= 0,

in which case the origin is rendered asymptotically stable (even, globally).
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Beyond control via passivity

What can we say about (asymptotic) stability of an equilibrium x0 of the
uncontrolled system if x0 is not a minimum of the Hamiltonian ??

Recall the classical proof of stability of an equilibrium (ω∗
1 , 0, 0) 6= (0, 0, 0)

of the Euler equations.

The total energy H =
p21
2I1

+
p22
2I2

+
p23
2I3

has minimum at (0, 0, 0).
Stability of e.g. (ω∗

1, 0, 0) is shown by taking as Lyapunov function suitable
combination of total energy H and angular momentum

C = p21 + p22 + p23 = I 21ω
2
1 + I 22ω

2
2 + I 23ω

2
3

This is a Casimir (conserved quantity independent of H) since

[
p1 p2 p3

]



0 −p3 p2
p3 0 −p1
−p2 p1 0


 = 0
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In general, for any Hamiltonian dynamics

ẋ = J(x)
∂H

∂x
(x)

one may search for conserved quantities C , called Casimirs, as being
solutions of

∂TC

∂x
(x)J(x) = 0

Then d
dt
C = 0 for every H, and thus also H + C is a candidate Lyapunov

function.

Note that minimum of H + C may now be different from minimum of H.
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Control by interconnection: set-point stabilization

Consider pH plant system P

ẋ = J(x)∂H
∂x

(x) + g(x)u

y = gT (x)∂H
∂x

(x)

where the desired set-point x∗ is not a minimum of Hamiltonian H, and
ẋ = J(x)∂H

∂x
(x) does not possess useful Casimirs, and no shifted passivity

can be used.

How to (asymptotically) stabilize x∗ ?
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Control by interconnection

Consider a controller port-Hamiltonian system

C :

ξ̇ = Jc(ξ)
∂Hc

∂ξ
(ξ) + gc(ξ)uc , ξ ∈ Xc

yc = gT (ξ)∂Hc

∂ξ
(ξ)

via standard negative feedback u = −yc , uc = y .

cc

P

C

u

u

y

y
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By compositionality, the closed-loop system is the pH system

[
ẋ

ξ̇

]
=

[
J(x) −g(x)gT

c (ξ)

gc (ξ)g
T (x) Jc(ξ)

][
∂H
∂x

(x)

∂Hc

∂ξ
(ξ)

]

with state space X × X c , and total Hamiltonian H(x) + Hc(ξ).

Main idea: design the controller system in such a manner that the
closed-loop system has useful Casimirs C (x , ξ) !

This may lead to a suitable candidate Lyapunov function

V (x , ξ) := H(x) + Hc(ξ) + C (x , ξ)

with Hc still to-be-determined.
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Thus we look for functions C (x , ξ) satisfying

[
∂TC
∂x

(x , ξ) ∂TC
∂ξ

(x , ξ)
] [ J(x) −g(x)gT

c (ξ)

gc(ξ)g
T (x) Jc(ξ)

]
= 0

such that the candidate Lyapunov function

V (x , ξ) := H(x) + Hc(ξ) + C (x , ξ)

has a minimum at (x∗, ξ∗) for some (or a set of) ξ∗ ⇒ stability.

Remark: Set of achievable closed-loop Casimirs C (x , ξ) can be
characterized.

In order to obtain asymptotic stability add extra damping: extend
u = −yc , uc = y to

u = −yc − gT (x)
∂V

∂x
(x , ξ), uc = y − gT

c (x)
∂V

∂ξ
(x , ξ)

Asymptotic stability results under extra (LaSalle) conditions.
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Example 1: the pendulum

Consider the mathematical pendulum with Hamiltonian

H(q, p) =
1

2
p2 + (1− cos q)

actuated by torque u, with output y = p (angular velocity).

Suppose we wish to stabilize the pendulum at non-zero q∗ and p∗ = 0.

Apply the nonlinear integral control

ξ̇ = uc = y

u = −yc = −∂Hc

∂ξ
(ξ)

which is a port-Hamiltonian controller system with Jc = 0.
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Casimirs C (q, p, ξ) are found by solving

[
∂C
∂q

∂C
∂p

∂C
∂ξ

]



0 1 0
−1 0 −1
0 1 0


 = 0

leading to Casimirs C (q, p, ξ) = K (q − ξ), and candidate Lyapunov
functions

V (q, p, ξ) =
1

2
p2 + (1− cos q) + K (q − ξ) + Hc(ξ)

with Hc and K to be designed. Subsequently add damping:

u = −yc −
∂V
∂p

(q, p, ξ) = −∂Hc

∂ξ
(ξ)− p

uc = y − ∂V
∂ξ

(q, p, ξ) = p + ∂K
∂z

(q − ξ)− ∂Hc

∂ξ
(ξ)

ξ̇ = uc
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Example 2: controller system with given structure

m
v

d

kc

mc

k

Figure: Plant mass and controller mass-spring-damper system

Consider as plant system an actuated mass m
[
q̇

ṗ

]
=

[
0 1

−1 0

][
∂H
∂q

∂H
∂p

]
+

[
0

1

]
u

y =
[
0 1

]
[
∂H
∂q

∂H
∂p

]

with plant Hamiltonian H(q, p) = 1
2mp2 (kinetic energy).
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Want to asymptotically stabilize the mass to set-point (q∗, p∗ = 0).
Interconnect plant via

u = −yc , uc = y

to pH controller system consisting of mass mc , two springs kc , k , and
damper d




q̇c
ṗc
∆̇q


 =




0 1 0
−1 −d 1
0 −1 0







∂Hc

∂qc

∂Hc

∂pc

∂Hc

∂∆q


+




0
0
1


 uc

yc = ∂Hc

∂∆q

where qc is extension of spring kc , ∆q extension of spring k , pc
momentum of mass mc , d ≥ 0 is damping constant, and uc is external
force. Controller Hamiltonian is

Hc (qc , pc ,∆q) =
1

2

p2c
mc

+
1

2
k(∆q)2 +

1

2
kcq

2
c
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Closed-loop system has Casimir functions

C (q,∆qc ,∆q) = q −∆q − qc − δ

for constant δ.

Candidate closed-loop Lyapunov function

V (q,∆q, qc , p, pc) :=
1

2m
p2+

1

2mc
p2c+

1

2
k(∆q)2+

1

2
kcq

2
c+γ(q−∆q−qc−δ)

2

Select k , kc ,mc , as well as δ, γ, such that V has minimum at
p = 0, q = q∗, for some accompanying values (∆q)∗, q∗c , p

∗
c of the

controller states.

LaSalle yields asymptotic stability whenever d > 0.
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The dissipation obstacle for generating Casimirs

Surprisingly, the presence of dissipation R 6= 0 may pose a problem !
C is a Casimir for pH system

ẋ = [J(x) − R(x)]
∂H

∂x
(x), J = JT ,R = RT ≥ 0

iff

∂TC

∂x
[J−R ] = 0 ⇒

∂TC

∂x
[J−R ]

∂C

∂x
= 0 ⇒

∂TC

∂x
R
∂C

∂x
= 0 ⇒

∂TC

∂x
R = 0

and thus C is a Casimir iff

∂TC

∂x
(x)J(x) = 0,

∂TC

∂x
(x)R(x) = 0
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Similarly, if C (x , ξ) is Casimir for closed-loop pH system then it must
satisfy [

∂TC
∂x

(x , ξ) ∂TC
∂ξ

(x , ξ)
] [

R(x) 0
0 Rc(ξ)

]
= 0

implying by semi-positivity of R(x) and Rc(x)

∂TC
∂x

(x , ξ)R(x) = 0

∂TC
∂ξ

(x , ξ)Rc (ξ) = 0

This is the dissipation obstacle, which implies that one cannot shape the
Lyapunov function in coordinates that are directly affected by dissipation.

Physical reason for dissipation obstacle is that by using a passive controller
only equilibria where no energy-dissipation takes place may be stabilized.

Remark: For shaping potential energy in mechanical systems this is not a
problem since dissipation only enters in differential equations for momenta.
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Example 3: Mechanical system

Mechanical system with damping and external forces u

[
q̇

ṗ

]
=

([ 0 Ik
−Ik 0

]
−

[
0 0
0 D(q)

])
[
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
+

[
0

B(q)

]
u

y = BT (q)∂H
∂p

(q, p)

Components of C (x , ξ) := ξ − F (x) are Casimirs iff

Jc = 0,
∂F

∂q
(q, p) = gT

c (ξ)B(q),
∂F

∂p
(q, p) = 0

Hence with gc(ξ) = I there exists solution F (q) iff

∂Bil

∂qj
(q) =

∂Bjl

∂qi
(q), i , j = 1, . . . k , l = 1, . . .m
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Nonlinear integral controller

In this example, and in many other cases, conditions for r = nc reduce to

∂TF
∂x

(x)J(x)∂F
∂x

(x) = 0 = Jc (ξ)

∂TF
∂x

(x)J(x) = gc (ξ) g
T (x)

R(x)∂F
∂x

(x) = 0 = Rc(ξ)

With gc(ξ) = Im, the action of the controller pH system thus amounts to
nonlinear integral action on the output y of the plant pH system:

u = −∂Hc

∂ξ
(ξ) + v

ξ̇ = y + vc

Arjan van der Schaft (Univ. of Groningen) Port-Hamiltonian systems 80 / 100



The integral action perspective also motivates the following extension.

Consider instead of given output y = gT (x)∂H
∂x

(x) any other output

yA := [G (x) + P(x)]T
∂H

∂x
(x) + [M(x) + S(x)]u

for G ,P ,M,S satisfying

g(x) = G (x)− P(x), M(x) = −MT (x),

[
R(x) P(x)
PT (x) S(x)

]
≥ 0

Indeed, any such alternate output satisfies

d

dt
H ≤ uT yA
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Special choice of alternate passive output:

rewrite ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u as

ẋT [J(x) − R(x)]−1ẋ = ẋT
∂H

∂x
(x) + ẋT [J(x)− R(x)]−1g(x)u

Since ẋT [J(x)−R(x)]−1ẋ ≤ 0 and ẋT ∂H
∂x

(x) = d
dt
H this leads to alternate

output

yA := gT (x)[J(x) + R(x)]−1[J(x) − R(x)]∂H
∂x

(x)+

gT (x)[J(x) + R(x)]−1g(x)u

called the swapping the damping alternate passive output.
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In particular:

Assuming im g(x) ⊂ im[J(x) − R(x)] define n×m matrix Γ(x) such that

[J(x) − R(x)]Γ(x) = g(x)

Then define alternate output

yA : = [J(x)Γ(x) + R(x)Γ(x)]T ∂H
∂x

(x)

+[−ΓT (x)J(x)Γ(x) + ΓT (x)R(x)Γ(x)]u

Integral action ξ̇ = yA for arbitrary Hc leads to the following closed-loop
system for v = 0, vc = 0

[
ẋ

ξ̇

]
=

[
J − R −JΓ + RΓ

−ΓTJ + ΓTR ΓTJΓ− ΓTRΓ

][
∂H
∂x

(x)

∂Hc

∂ξ
(ξ)

]

Then [
J − R −JΓ + RΓ

−ΓT J + ΓTR ΓTJΓ− ΓTRΓ

][
Γ

Im

]
= 0,
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Hence if there exist F1, · · · ,Fm such that columns of Γ(x) satisfy

Γj (x) = −
∂Fj

∂x
(x), j = 1, · · · ,m,

then ξj − Fj(x), j = 1, · · · ,m, are Casimirs of the closed-loop system.

Example

Consider an RLC-circuit with voltage source u, where the capacitor is in
parallel with the resistor. Dynamics

[
Q̇

φ̇

]
=

[
− 1

R
1

−1 0

][
Q
C

φ
L

]
+

[
0

1

]
u

Suppose we want to stabilize the system at some non-zero set-point
(Q∗, φ∗) = (Cū, L

R
ū) for ū 6= 0.
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Example

Integral action of natural passive output y = φ
L
(current through voltage

source) does not help in creating Casimirs. Instead consider solution
ΓT =

[
1 1

R

]
, and resulting alternate passive output

yA =
2

R

Q

C
−
φ

L
+

1

R
u

Integral action yields Casimir Q + 1
R
φ− ξ for closed-loop system, resulting

in candidate Lyapunov function

V (Q, φ, ξ) =
1

2C
Q2 +

1

2L
φ2 + Hc(ξ) + Φ(Q +

1

R
φ− ξ)

Hc and Φ can be found s.t. V has minimum at (Q∗, φ∗, ξ∗) for some ξ∗.
In series RLC circuit integral action of natural output suffices, resulting in
controller system that emulates an extra capacitor.
Main difference is that in parallel RLC circuit there is energy dissipation at
equilibrium whenever ū 6= 0, in contrast to series case.
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State feedback perspective

Suppose there exists a solution F to Casimir equations with r = nc , in
which case all controller states ξ are related to the plant states x . Then
for any choice of vector of constants λ = (λ1, · · · , λnc )

Lλ := {(x , ξ) | ξi = Fi(x) + λi , i = 1, . . . , nc}

is an invariant manifold of the closed-loop system for v = 0, vc = 0.
Furthermore, dynamics restricted to Lλ is given as

ẋ = [J(x) − R(x)]
∂H

∂x
(x)− g(x)gT

c (F (x) + λ)
∂Hc

∂ξ
(F (x) + λ)

In fact

ẋ = [J(x)− R(x)]
∂Hs

∂x
(x)

with
Hs(x) := H(x) + Hλ(x), Hλ(x) := Hc (F (x) + λ),

defining pH system with same J(x) and R(x), but shaped Hamiltonian Hs .
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Alternatively, the dynamics could have been obtained directly by applying
to plant pH system state feedback u = αλ(x) such that

g(x)αλ(x) = [J(x) − R(x)]
∂Hλ

∂x
(x)

In fact

αλ(x) = −gT
c (F (x) + λ)

∂Hc

∂ξ
(F (x) + λ)

Since Casimirs are defined up to a constant we can also leave out
dependence on λ and simply consider

α(x) := −gT
c (F (x))

∂Hc

∂ξ
(F (x))

for any solution F .
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Find u = α(x) and h(x) satisfying

[J(x) − R(x)] h(x) = g(x)α(x)

such that

(i) ∂hi
∂xj

(x) =
∂hj
∂xi

(x), i , j = 1, . . . , n

(ii) h(x∗) = −∂H
∂x

(x∗)

(iii) ∂h
∂x
(x∗) > −∂2H

∂x2
(x∗)

with ∂h
∂x
(x) the n × n matrix with i -th column given by ∂hi

∂x
(x), and

∂2H
∂x2

(x∗) the Hessian matrix of H at x∗.
Then x∗ is stable equilibrium of closed-loop system

ẋ = [J(x) − R(x)]
∂Hd

∂x
(x)

where Hd (x) := H(x) + Ha(x), with

h(x) =
∂Ha

∂x
(x)
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Example

Hamiltonian H of rolling coin does not have strict minimum at the desired
equilibrium x = y = θ = φ = 0, p1 = p2 = 0, since the potential energy
is zero. Consider

[
0 0 0 −1

− cosφ − sinφ −1 0

]



∂Pa

∂x

∂Pa

∂y

∂Pa

∂θ

∂Pa

∂φ



=

[
0 1

1 0

][
α1

α2

]

with Pa and α1, α2 functions of x , y , θ, φ.

Taking Pa(x , y , θ, φ) =
1
2(x

2 + y2 + θ2 + φ2) leads to state feedback

u1 = −x cosφ− y sinφ− θ + v1

u2 = −φ+ v2
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Elimination of α(x)

Conditions
[J(x) − R(x)] h(x) = g(x)α(x)

can be simplified to conditions on h(x) only:

Let g(x) be full column rank for every x ∈ X . Denote by g⊥(x) a matrix
of maximal rank such that g⊥(x)g(x) = 0. Let h(x), α(x) be solution.
Then h(x) is solution to

g⊥(x)[J(x) − R(x)]h(x) = 0

Conversely, if h(x) is a solution to the latter then there exists α(x) such
that h(x), α(x) is solution to the first. In fact,

α(x) =
(
gT (x)g(x)

)−1
gT (x) [J(x)− R(x)] h(x)
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Interconnection-Damping Assignment (IDA)-PBC control

Further possibility to generate candidate Lyapunov functions Hd is to look
for state feedbacks u = ûIDA(x) such that

[J(x) − R(x)]
∂H

∂x
(x) + g(x)uIDA(x) = [Jd (x)− Rd(x)]

∂Hd

∂x
(x)

where Jd and Rd are newly assigned interconnection and damping
structures.

As before this reduces to finding Hd , Jd ,Rd such that

g⊥(x) [J(x) − R(x)]
∂H

∂x
(x) = g⊥(x) [Jd (x)− Rd(x)]

∂Hd

∂x
(x)

Interesting theory especially for mechanical systems.

Much more to be said; see e.g. work of Romeo Ortega and co-workers.
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Energy flow control

Consider two port-Hamiltonian systems

ẋi = Ji(xi )
∂Hi

∂xi
(xi ) + gi (xi )ui

yi = gT
i (xi )

∂Hi

∂xi
(xi ), i = 1, 2

Suppose we want to transfer energy from system 1 to system 2, while
keeping total energy H1 + H2 constant.
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Use output feedback
[
u1
u2

]
=

[
0 −y1y

T
2

y2y
T
1 0

] [
y1
y2

]

It follows that the closed-loop system is energy-preserving. However, for
the individual energies

d

dt
H1 = −yT1 y1y

T
2 y2 = −||y1||

2||y2||
2 ≤ 0

implying that H1 is decreasing as long as ||y1|| and ||y2|| are different from
0. On the other hand,

d

dt
H2 = yT2 y2y

T
1 y1 = ||y2||

2||y1||
2 ≥ 0

implying that H2 is increasing at the same rate.

Has been successfully applied to energy-efficient path-following control of
mechanical systems (Duindam & Stramigioli).

NB: results in pseudo-Poisson structure of closed-loop system; similar to
heat conduction example before.
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Impedance control

Consider a system with two (not necessarily distinct) ports

ẋ = [J(x) − R(x)]∂H
∂x

(x) + g(x)u + k(x)f , x ∈ X

y = gT (x)∂H
∂x

(x) , u, y ∈ R
m

e = kT (x)∂H
∂x

(x) , f , e ∈ R
m

Relation between f and e is called the ’impedance’ of (f , e)-port.

In Impedance Control (Hogan) one tries to shape this impedance by using
the control port (u, y).

Typical application: the (f , e)-port corresponds to end-tip of robotic
manipulator, while the (u, y)-port corresponds to actuation.

Basic question: what are achievable impedances of the (f , e)-port ?,
and how to shape by control the impedance to a desired one ?
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Dirac structures depending on u, and variable transmission

(see also Folkertsma & Stramigioli: Energy in Robotics)

Main idea: control the system by routing the power flows in desirable
manner by modulating D(u), based on information about state variables.

Aim: energy-efficient control with higher performance than ’ordinary’
passive control; achieving control aims without adding damping.

In power converters this is a natural scenario: Dirac structure (determined
by Kirchhoff’s laws) depends on (to-be-controlled) duty-ratios of switches.

In mechanical systems it corresponds to variable transmission.
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Variable stiffness control

A variable stiffness controller is defined by a (virtual) linear spring with
energy

H(q) =
1

2
kq2,

where we regard stifness k as extra state variable whose value may change
over time.

This leads to consideration of pH system

[
q̇

k̇

]
=

[
u1

u2

]
,

[
y1

y2

]
=

[
kq

1
2q

2

]

The port (u1, y1) corresponds to interaction with the environment.

The port (u2, y2) defines a control port, regulating the stiffness k based on
the output y2 =

1
2q

2, possibly modulated by information about other
variables in the total system.
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Conclusions and Outlook

Much more work on pH systems has been done:

• Switching pH systems (e.g., electrical circuits with diods and
switches; robotic walking)

• Relation with L2-gain theory via scattering

• Pseudo-gradient formulations (Brayton-Moser)

• Spatial discretization of distributed-parameter pH systems

• Time-discretization for simulation

• Structure-preserving model reduction of pH systems

• Applications to power systems and chemical reaction networks

Very much open:

Port-Hamiltonian identification theory and data-driven control.
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Epilogue

Control by interconnection of pH systems regards controller system as
another pH system; either physical or emulating a physical system
(e.g., interpretation of PI-controller as addition of damper and spring.)

Prevailing paradigm: controller system is ’physical’ system interacting with
the plant system via energy flow.

Advantages: stable (interaction with environment!) and often robust,
physically interpretable.

Disadvantages: control by interconnection (not IDA-PBC) is often
collocated control; performance may not be optimal.

Question: How about information flow? How about the paradigm of
control as ’information gathering, processing and applying’ ?
Observer design ?

Can thermodynamics help in uniting both paradigms ?
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