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Ingham’s inequality

In this lecture we present two inequalities which have been successfully
used in the study of many 1-D control problems and, more precisely, to
prove observation inequalities. They generalize the classical Parseval’s
equality for orthogonal sequences. Variants of these inequalities were
studied in the works of Paley and Wiener at the beginning of the past
century (see [PW]).
The main inequality was proved by Ingham (see [I]) who gave a beautiful
and elementary proof (see Theorems 1 and 2 below). Since then, many
generalizations have been given (see, for instance, [BS], [HA], [BKL] and
[JM]).
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Ingham’s inequality

Theorem

(Ingham [I]) Let (�n)n2Z be a sequence of real numbers and � > 0 be such
that

�n+1 � �n � � > 0, 8n 2 Z. (1)

For any real T with
T > ⇡/� (2)

there exists a positive constant C1 = C1(T , �) > 0 such that, for any finite
sequence (an)n2Z,

C1

X

n2Z
| an |2

Z T

�T

�����
X

n2Z
ane

i�nt

�����

2

dt. (3)
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Ingham’s inequality

Proof

We first reduce the problem to the case T = ⇡ and � > 1. Indeed, if T
and � are such that T� > ⇡, then

Z T

�T

�����
X

n

ane
i�nt

�����

2

dt =
T

⇡

Z ⇡

�⇡

�����
X

n

ane
i T�n

⇡ s

�����

2

ds

=
T

⇡

Z ⇡

�⇡

�����
X

n

ane
iµns

�����

2

ds

where µn = T�n/⇡. It follows that
µn+1 � µn = T (�n+1 � �n) /⇡ � �1 := T�/⇡ > 1.
We prove now that there exists C 0

1 > 0 such that

C 0
1

X

n2Z
| an |2

Z ⇡

�⇡

�����
X

n2Z
ane

iµnt

�����

2

dt.
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Ingham’s inequality

Define the function

h : R ! R, h(t) =
⇢

cos (t/2) if | t | ⇡
0 if | t |> ⇡

and let us compute its Fourier transform K ('),

K (') =

Z ⇡

�⇡
h(t)e it'dt =

Z 1

�1
h(t)e it'dt =

4 cos⇡'

1� 4'2
.

On the other hand, since 0  h(t)  1 for any t 2 [�⇡,⇡], we have that

Z ⇡

�⇡

�����
X

n

ane
iµnt

�����

2

dt �
Z ⇡

�⇡
h(t)

�����
X

n

ane
iµnt

�����

2

dt =
X

n,m

anāmK (µn�µm) =

= K (0)
X

n

| an |2 +
X

n 6=m

anāmK (µn � µm) �

� 4
X

n

| an |2 �1

2

X

n 6=m

�
| an |2 + | am |2

�
| K (µn � µm) |=

= 4
X

n

| an |2 �
X

n

| an |2
X

m 6=n

| K (µn � µm) | .
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Ingham’s inequality

Remark that

X

m 6=n

| K (µn � µm) |
X

m 6=n

4

4 | µn � µm |2 �1


X

m 6=n

4

4�21 | n �m |2 �1
=

= 8
X

r�1

1

4�21r
2 � 1

 8

�21

X

r�1

1

4r2 � 1
=

8

�21

1

2

X

r�1

✓
1

2r � 1
� 1

2r + 1

◆
=

4

�21
.

Hence,
Z ⇡

�⇡

�����
X

n

ane
iµnt

�����

2

dt �
✓
4� 4

�21

◆X

n

| an |2 .

If we take

C1 =
T

⇡

✓
4� 4

�21

◆
=

4⇡

T

✓
T 2 � ⇡2

�2

◆

the proof is concluded.
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Ingham’s inequality

Theorem

Let (�n)n2Z be a sequence of real numbers and � > 0 be such that

�n+1 � �n � � > 0, 8n 2 Z. (4)

For any T > 0 there exists a positive constant C2 = C2(T , �) > 0 such
that, for any finite sequence (an)n2Z,

Z T

�T

�����
X

n

ane
i�nt

�����

2

dt  C2

X

n

| an |2 . (5)
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Ingham’s inequality

Proof

Let us first consider the case T� � ⇡/2. As in the proof of the previous
theorem, we can reduce the problem to T = ⇡/2 and � � 1. Indeed,

Z T

�T

�����
X

n

ane
i�nt

�����

2

dt =
2T

⇡

Z ⇡
2

�⇡
2

�����
X

n

ane
iµns

�����

2

ds

where µn = 2T�n/⇡. It follows that
µn+1 � µn = 2T (�n+1 � �n) /⇡ � �1 := 2T�/⇡ � 1.
Let h be the function introduced in the proof of Theorem 1. Sincep
2/2  h(t)  1 for any t 2 [�⇡/2,⇡/2] we obtain that

Z ⇡
2

�⇡
2

�����
X

n

ane
iµnt

�����

2

dt  2

Z ⇡
2

�⇡
2

h(t)

�����
X

n

ane
iµnt

�����

2

dt 

 2

Z ⇡

�⇡
h(t)

�����
X

n

ane
iµnt

�����

2

dt = 2
X

n,m

anāmK (µn � µm) =
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Ingham’s inequality

= 8
X

n

| an |2 +2
X

n 6=m

anāmK (µn � µm) 

 8
X

n

| an |2 +
X

n 6=m

�
| an |2 + | am |2

�
| K (µn � µm) | .

As in the proof of Theorem 1 we obtain that
X

m 6=n

| K (µn � µm) |
4

�21
.

Hence,
Z ⇡

2

�⇡
2

�����
X

n

ane
iµnt

�����

2

dt  8
X

n

| an |2 + 8

�21

X

n

| an |2 8

✓
1 +

1

�21

◆X

n

| an |2

and (5) follows with C2 = 8
�
4T 2/(⇡2) + 1/�2

�
.

When T� < ⇡/2 we have that
Z T

�T

���
X

ane
i�nt

���
2
dt =

1

�

Z T�

�T�

���
X

ane
i �n� s

���
2
ds  1

�

Z ⇡/2

�⇡/2

���
X

ane
i �n� s

���
2
ds.
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Ingham’s inequality

Since �n+1/� � �n/� � 1 from the analysis of the previous case we obtain
that Z ⇡

2

�⇡
2

�����
X

n

ane
i �n� s

�����

2

ds  16
X

n

| an |2 .

Hence, (5) is proved with

C2 = 8max

⇢✓
4T 2

⇡2
+

1

�2

◆
,
2

�

�

and the proof concludes.
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Ingham’s inequality

Remarks

Inequality (5) holds for all T > 0. On the contrary, inequality (3)
requires the length T of the time interval to be su�ciently large.
Note that, when the distance between two consecutive exponents �n,
the gap, becomes small the value of T must increase proportionally.

In the first inequality (3) T depends on the minimum � of the
distances between every two consecutive exponents (gap). However,
as we shall see in the next theorem, only the asymptotic distance as
n ! 1 between consecutive exponents really matters to determine
the minimal control time T . Note also that the constant C1 in (3)
degenerates when T goes to ⇡/�.
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Ingham’s inequality

In the critical case T = ⇡/� inequality (3) may hold or not,
depending on the particular family of exponential functions. For
instance, if �n = n for all n 2 Z, (3) is verified for T = ⇡. This may
be seen immediately by using the orthogonality property of the
complex exponentials in (�⇡,⇡). Nevertheless, if �n = n � 1/4 and
��n = ��n for all n > 0, (3) fails for T = ⇡ (see, [I] or [Y]).
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An extension

As we have said before, the length 2T of the time interval in (3) does not
depend on the smallest distance between two consecutive exponents but
on the asymptotic gap defined by

lim
|n|!1

| �n+1 � �n |= �1. (6)

An induction argument due to A. Haraux (see [H]) allows to give a result
similar to Theorem 1 above in which condition (1) for � is replaced by a
similar one for �1.
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An extension

Theorem

Let (�n)n2Z be an increasing sequence of real numbers such that
�n+1 � �n � � > 0 for any n 2 Z and let �1 > 0 be given by (6). For any
real T with

T > ⇡/�1 (7)

there exist two positive constants C1,C2 > 0 such that, for any finite
sequence (an)n2Z,

C1

X

n2Z
| an |2

Z T

�T

�����
X

n2Z
ane

i�nt

�����

2

dt  C2

X

n2Z
| an |2 . (8)
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An extension

When �1 = �, the sequence of Theorem 3 satisfies �n+1 � �n � �1 > 0
for all n 2 Z and we can then apply Theorems 1 and 2. However, in
general, �1 < � and Theorem 3 gives a sharper bound on the minimal
time T needed for (8) to hold.

Note that the existence of C1 and C2 in (8) is a consequence of Kahane’s
theorem (see [K]). However, if our purpose were to have an explicit
estimate of C1 or C2 in terms of �, �1 then we would need to use the
constructive argument below. It is important to note that these estimates
depend strongly also on the number of eigenfrequencies � that fail to fulfill
the gap condition with the asymptotic gap �1.
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An extension

Proof of Theorem 3:

The second inequality from (8) follows immediately by using Theorem 2.
To prove the first inequality (8) we follow the induction argument due to
Haraux [H].
Note that for any "1 > 0, there exists N = N("1) 2 N⇤ such that

|�n+1 � �n| � �1 � "1 for any |n| > N. (9)

We begin with the function f0(t) =
P

|n|>N ane i�nt and we add the
missing exponentials one by one. From (9) we deduce that Theorems 1
and 2 may be applied to the family

�
e i�nt

�
|n|>N

for any T > ⇡/(�1 � "1)

C1

X

n>N

| an |2
Z T

�T
| f0(t) |2 dt  C2

X

n>N

| an |2 . (10)

Let now f1(t) = f0 + aNe i �Nt =
P

|n|>N ane i�nt + aNe i �Nt . Without loss of
generality we may suppose that �N = 0 (since we can consider the
function f1(t)e�i�Nt instead of f1(t)).
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An extension

Let " > 0 be such that T 0 = T � " > ⇡/�1. We have
h

Z "

0
(f1(t + ⌘)� f1(t)) d⌘ =

X

n>N

an

✓
e i�n" � 1

i�n
� "

◆
e i�nt , 8t 2 [0,T 0].

i

Applying now (10) to the function h(t) =

Z "

0
(f1(t + ⌘)� f1(t)) d⌘ we

obtain that:

C1

X

n>N

����
e i�n" � 1

i�n
� "

����
2

|an|2 
Z T 0

�T 0

����
Z "

0
(f1(t + ⌘)� f1(t)) d⌘

����
2

dt.

(11)

Moreover,:
h ���e i�n" � 1� i�n"

���
2
= |cos(�n")� 1|2 + |sin(�n")� �n"|2 =

ih
= 4sin4

✓
�n"

2

◆
+ (sin(�n")� �n")

2 �
(

4
�
�n"
⇡

�4
, if |�n|"  ⇡

(�n")
2 , if |�n|" > ⇡.

i
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An extension

Finally, taking into account that |�n| � �, we obtain that,
����
e i�n" � 1

i�n
� "

����
2

� c"2.

We return now to (11) and we get that:

"2C1

X

n>N

|an|2 
Z T 0

�T 0

����
Z "

0
(f1(t + ⌘)� f1(t)) d⌘

����
2

dt. (12)

On the other hand
Z T 0

�T 0

����
Z "

0
(f1(t + ⌘)� f1(t)) d⌘

����
2

dt 
Z T 0

�T 0
"

Z "

0
|f1(t + ⌘)� f1(t)|2 d⌘dt 

 2"

Z T 0

�T 0

Z "

0

⇣
|f1(t + ⌘)|2 + |f1(t)|2

⌘
d⌘dt  2"2

Z T

�T 0
|f1(t)|2 dt+

+2"

Z "

0

Z T 0

�T 0
|f1(t + ⌘)|2 dtd⌘ = 2"2

Z T

�T 0
|f1(t)|2 dt+2"

Z "

0

Z T 0+⌘

�T 0+⌘
|f1(s)|2 dsd⌘

 2"2
Z T

�T
|f1(t)|2 dt + 2"

Z "

0

Z T

�T
|f1(s)|2 dsd⌘  4"2

Z T

�T
|f1(t)|2 dt.
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An extension

From (12) it follows that

C1

X

n>N

|an|2 
Z T

�T
|f1(t)|2 dt. (13)

On the other hand

|aN |2 =

�����f1(t)�
X

n>N

ane
i�nt

�����

2

=
1

2T

Z T

�T

�����f1(t)�
X

n>N

ane
i�nt

�����

2

dt 

 1

T

0

@
Z T

�T
|f1(t)|2 dt +

Z T

�T

�����
X

n>N

ane
i�nt

�����

2
1

A dt 

 1

T

 Z T

�T
|f1(t)|2 dt + C 0

2

X

n>N

|an|2
!



 1

T

✓
1 +

C2

C1

◆Z T

�T
|f1(t)|2 dt.
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An extension

From (13) we get that

C1

X

n�N

|an|2 
Z T

�T
|f1(t)|2 dt.

Repeating this argument we may add all the terms ane i�nt , |n|  N and
we obtain the desired inequalities.
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