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MATHEMATICAL CONTROL THEORY,
or

CONTROL ENGINEERING
or simply

CONTROL THEORY?

An interdisciplinary field of research in between Mathematics and
Engineering with strong connections with Scientific Computing,
Technology, Communications,...
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The state equation
A(y) = f (v). (1)

y is the state to be controlled.

v is the control. It belongs to the set of admissible controls .

Roughly speaking the goal is to drive the state y close to a
desired state yd :

y ⇠ yd .
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In this general functional setting many di↵erent mathematical
models feet:

• Linear versus nonlinear problems;

• Deterministic versus stochastic models;

• Finite dimensional versus infinite dimensional models;

• Ordinary Di↵erential Equations (ODE) versus Partial
Di↵erential Equations (PDE).
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Several kinds of di↵erent control problems may also feet in this
frame depending on how the control objective is formulated:

• Optimal control (related with the Calculus of Variations)

minv2Uad ||y � yd ||2.

• Controllability: Drive exactly the state y to the prescribed one
yd .
This is a more dynamical notion.
Several relaxed versions also arise: approximate controllability.

• Stabilization or feedback control. (real time control)

v = F (y); A(y) = f (F (y)).
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The concept of feedback. Inspired in the capacity of biological
systems to self-regulate their activities.
Incorporated to Control Engineering in the twenties by the
engineers of the “Bell Telephone Laboratory” but, at that time, it
was already recognized and consolidated in other areas, such as
Political Economics.

Feedback process: the one in which the state of the system
determines the way the control has to be exerted in real time
Nowadays, feedback processes are ubiquitous in applications to
Engineering, Economy also in Biology, Psychology, etc.

Cause-e↵ect principle ! Cause-e↵ect-cause principle.
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Some examples

• The thermostat;

• The control of aircrafts in flight or vehicles in motion:
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• Noise reduction:

Noise reduction is a subject to research in many di↵erent fields.
Depending on the environment, the application, the source signals,
the noise, and so on, the solutions look very di↵erent. Here we
consider noise reduction for audio signals, especially speech signals,
and concentrate on common acoustic environments such an o�ce
room or inside a car. The goal of the noise reduction is to reduce
the noise level without distorting the speech, thus reduce the stress
on the listener and - ideally - increase intelligibility.
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The need of fluctuations.
“It is a curious fact that, while political economists
recognize that for the proper action of the law of supply
and demand there must be fluctuations, it has not
generally been recognized by mechanicians in this matter
of the steam engine governor. The aim of the mechanical
engineers, as is that of the political economist, should be
not to do away with these fluctuations all together (for
then he does away with the principles of self-regulation),
but to diminish them as much as possible, still leaving
them large enough to have su�cient regulating power.”

H.R. Hall, Governors and Governing Mechanisms, The Technical
Publishing Co., 2nd ed., Manchester 1907.
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An example: Lagrange multipliers.

min
g(x)=c

f (x).

The answer: critical points x are those for which

rf (x) = �rg(x)

for some real �.
This is so because rg(x) is the normal to the level set in which
minimization occurs. A necessary condition for the point x to be
critical is that rf (x) points in this normal direction. Otherwise, if
r(x) had a nontrivial projection over the level set g(x) = c there
would necessarilly exist a better choice of x for which f (x) would
be even smaller.
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In mathematical terms this corresponds to duality in convex
analysis.
To each optimization problem it corresponds a dual one. Solving
the primal one is equivalent to solving the dual one, and viceversa.
But often in practice one is much easier to solve than the other
one.
This duality principle is to be used to always solve the easy one.

PRIMAL =DUAL

CONTROL= COMMUNICATION
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• Irrigation systems, ancient Mesopotamia, 2000 BC.

• Harpenodaptai, ancient Egypt, the string stretchers.
Primal: The minimal distance between two points is given by
the straight line.
Dual: The maximal distance between the extremes of a cord is
obtained when the cord is along a straight line.

In mathematical terms, things are not easy:
To minimize the functional

Z 1

0
||x 0(t)||dt

among the set of parametrized curves x : [0, 1] ! Rd , such that
x(0) = A and x(1) = B .
We easily end up working in the BV class of functions of bounded
variation, out of the most natural and simple context of Hilbert
spaces.
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Roman aqueducts. Systems of water transportation endowed with
valves and regulators.

The pendulum. The works of Ch. Huygens and R. Hooke, in the
end of the XVII century, the goal being measuring in a precise way
location and time, so precious in navigation.

Regulator of windmills. Applied later by J. Watt (1736-1819), to
the steam engine, the motor of industrial revolution.
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The first mathematical rigorous analysis of the stability properties
of the steam engine was done by Lord J. C. Maxwell, in 1868.
The explanation of some erratic behaviors was explained. Until
them it was not well understood why apparently more ellaborated
and perfect regulators could have a bad behavior.
The reason is now refered to as the overdamping phenomenon.
Consider the equation of the pendulum:

x 00 + x = 0.

This describes a pure conservative dynamics: the energy

e(t) =
1

2
[x2(t) + |x 0(t)|2]

is constant in time.
Let us now consider the dynamics of the pendulum in presence of a
friction term:

x 00 + x = �kx 0,

k being a positive constant k > 0.
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The energy decays exponently. But the decay rate does not
necessarily increase with the damping parameter k .
Indeed, computed the eigenvalues of the characteristic equation
one finds:

�± = [�k ±
p
k2 � 4]/2.

It is easy to see that �+ increases as k > 2 increases.
This confirms the prediction that optimal controls and strategies
are often complex and that they do not necessarily obey to the
very first intuition.
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Automatic control. The number of applications rapidly increased
in the thirties covering di↵erent areas like amplifiers in
telecommunications, distribution systems in electrical plants,
stabilization of aeroplanes, electrical mechanisms in paper
production, petroleum and steel industry,...
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By that time there were two clear and distinct approaches:

• State space approach, based on modelling by means of
Ordinary Di↵erential equations (ODE);

• The frequency domain approach, based in the Fourier
representation of signals.

PHYSICAL SPACE ⌘ FREQUENCY SPACE

But after the second world war it was discovered that most
physical systems were nonlinear and nondeterministic.
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IMPORTANT CONTRIBUTIONS WERE MADE IN THE 60’s:

• Kalman and his theory of filtering and algebraic approach to
the control of systems;

• Pontryagin and his maximum principle: A generalization of
Lagrange multipliers.

• Bellman and his principle of dynamic programming:
A trajectory is optimal if it is optimal at every time.
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IMPORTANT FURTHER DEVELOPMENTS HAVE BEEN DONE
IN THE LAST DECADES CONCERNING:

• Nonlinear problems;
Lie brackets: Think on how park or unpark your car...

• Stochastic models;
Human beings introduce more uncertainty in already uncertain
systems...

• Infinite dimensional systems = Partial Di↵erential Equations
(PDE), also referd to as Distributed Parameter Systems.
When the number of degrees of freedom is too large one is
obliged to deal with models in Continuum Mechanics....
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IS PDE CONTROL RELEVANT?

The answer is, definitely, YES.
Let us mention some examples in which the wave equation is
involved in a way or another.

• Noise reduction in cavities and vehicles.
Typically, the models involve the wave equation for the
acoustic waves coupled with some other equations modelling
the dynamics of the boundary structure, the action of
actuators, possibly through smart mechanisms and materials.
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• Quantum control and Computing.
Laser control in Quantum mechanical and molecular systems
to design coherent vibrational states.
In this case the fundamental equation is the Schrödinger one.
Most of the theory we shall develop here applies in this case
too. The Schrödinger equation may be viewed as a wave
equation with inifnite speed of propagation.

P. Brumer and M. Shapiro, Laser Control of Chemical
reactions, Scientific American, March, 1995, pp.34-39.
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• Seismic waves, earthquakes.

F. Cotton, P.-Y. Bard, C. Berge et D. Hatzfeld, Qu’est-ce qui
fait vibrer Grenoble?, La Recherche, 320, Mai, 1999, 39-43.
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• Flexible structures.

SIAM Report on “Future Directions in Control Theory. A
Mathematical Perspective”, W. H. Fleming et al., 1988.
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An many others...

Control in an information rich World, SIAM, R. Murray Ed., 2003.
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CONTROL THEORY is full of challenging, di�cult and interesting
mathematical problems.

Control is continuously enriched by the permanent interaction with
applications.

This interaction works in both directions:

mathematical control theory provides the understanding
allowing to improve real-life control mechanisms;

Applications provide and bring new mathematical problems of
increasing complexity.
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Biomedicine
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Aerospace industry
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Optimal shape design in aerodynamics
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Eolic energy generation
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Finite-dimensional control

Let n,m 2 N⇤ and T > 0. Consider the following finite
dimensional system:

⇢
x 0(t) = Ax(t) + Bu(t), t 2 (0,T ),

x(0) = x0.
(2)

In (2), A is a real n ⇥ n matrix, B is a real n ⇥m matrix and x0 a
vector in Rn. The function x : [0,T ] �! Rn represents the state
and u : [0,T ] �! Rm the control. Both are vector functions of n
and m components respectively depending exclusively on time t.
Obviously, in practice m  n. The most desirable goal is, of
course, controlling the system by means of a minimum number m
of controls.
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Given an initial datum x0 2 Rn and a vector function
u 2 L2(0,T ;Rm), system (2) has a unique solution
x 2 H1(0,T ;Rn) characterized by the variation of constants
formula:

x(t) = eAtx0 +

Z t

0
eA(t�s)Bu(s)ds, 8t 2 [0,T ]. (3)

System (2) is exactly controllable in time T > 0 if given any
initial and final one x0, x1 2 Rn there exists u 2 L2(0,T ,Rm) such
that the solution of (2) satisfies x(T ) = x1.
According to this definition the aim of the control process consists
in driving the solution x of (2) from the initial state x0 to the final
one x1 in time T by acting on the system through the control u.
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Example 1. Consider the case

A =

✓
1 0

0 1

◆
, B =

✓
1

0

◆
. (4)

Then the system
x 0 = Ax + Bu

can be written as ⇢
x 01 = x1 + u
x 02 = x2,

or equivalently, ⇢
x 01 = x1 + u
x2 = x02 e

t ,

where x0 = (x01 , x
0
2 ) are the initial data.

This system is not controllable since the control u does not act on
the second component x2 of the state which is completely
determined by the initial data x02 .
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Example 2. By the contrary, the equation of the harmonic
oscillator is controllable

x 00 + x = u. (5)

The matrices A and B are now respectively

A =

✓
0 1

�1 0

◆
, B =

✓
0

1

◆
.

Once again, we have at our disposal only one control u for both
components x and y of the system. But, unlike in Example 1, now
the control acts in the second equation where both components
are present.

E. Zuazua Historical introduction & Finite-dimensional control



Historical introduction Finite-dimensional control Problem formulation Observability The rank condition Bang-bang Switching Switching + bang-bang Stabilization Conclusions References

Define the set of reachable states

R(T , x0) = {x(T ) 2 Rn : x solution of (2) with u 2 (L2(0,T ))m}.
(6)

The exact controllability property is equivalent to the fact that
R(T , x0) = Rn for any x0 2 Rn.
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Let A⇤ be the adjoint matrix of A, i.e. the matrix with the
property that hAx , yi = hx ,A⇤yi for all x , y 2 Rn. Consider the
following homogeneous adjoint system of (2):

⇢
�'0 = A⇤', t 2 (0,T )
'(T ) = 'T .

(7)

This is an equivalent condition for exact controllability .

Lemma

An initial datum x0 2 Rn of (2) is driven to zero in time T by
using a control u 2 L2(0,T ) if and only if

Z T

0
hu,B⇤'idt + hx0,'(0)i = 0, 8'. (8)
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Proof:

Let 'T be arbitrary in Rn and ' the corresponding solution of (7).
By multiplying (2) by ' and (7) by x we deduce that

hx 0,'i = hAx ,'i+ hBu,'i; �hx ,'0i = hA⇤', xi.

Hence,
d

dt
hx ,'i = hBu,'i

which, after integration in time, gives that

hx(T ),'T i � hx0, '(0)i =
Z T

0
hBu,'idt =

Z T

0
hu,B⇤'idt. (9)

We obtain that x(T ) = 0 if and only if (8) is verified for any
'T 2 Rn.
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Identity (8) is in fact an optimality condition for the critical points
of the quadratic functional J : Rn ! R,

J('T ) =
1

2

Z T

0
| B⇤' |2 dt + hx0,'(0)i

where ' is the solution of the adjoint system (7) with initial data
'T at time t = T .
More precisely:

Lemma

Suppose that J has a minimizer b'T 2 Rn and let b' be the solution
of the adjoint system (7) with initial data b'T . Then

u = B⇤ b' (10)

is a control of system (2) with initial data x0.
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Proof:

If b'T is a point where J achieves its minimum value, then

lim
h!0

J (b'T + h'T )� J (b'T )

h
= 0, 8'T 2 Rn.

This is equivalent to

Z T

0
hB⇤ b',B⇤'idt + hx0,'(0)i = 0, 8'T 2 Rn,

which, in view of Lemma 1, implies that u = B⇤ b' is a control for
(2).
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But minimizing the functional J requires of its coercivity.
System (7) is said to be observable in time T > 0 if there exists
c > 0 such that

Z T

0
| B⇤' |2 dt � c | '(0) |2, (11)

for all 'T 2 Rn, ' being the corresponding solution of (7).
In the sequel (11) will be called the observation or observability
inequality. It guarantees that the solution of the adjoint problem
at t = 0 is uniquely determined by the observed quantity B⇤'(t)
for 0 < t < T .
The following remark is very important in the context of finite
dimensional control.
Unfortunately this is not true for infinite-dimensional systems
(PDE, distributed parameter systems).
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Inequality (11) is equivalent to the following unique continuation
principle:

B⇤'(t) = 0, 8t 2 [0,T ] ) 'T = 0. (12)

This is an uniqueness or unique continuation property.
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UNIQUE CONTINUATION ! OBSERVABILITY INEQUALITY
! CONTROLLABILITY

WITH A CONSTRUCTIVE PROCEDURE TO BUILD
CONTROLS BY MINIMIZING A COERCIVE FUNCTIONAL.
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What about the observability property? Are there algebraic
conditions on the state matrix A and the control one B for it to be
true?
The following classical result is due to R. E. Kalman and gives a
complete answer to the problem of exact controllability of finite
dimensional linear systems.

Theorem

System (2) is exactly controllable in some time T if and only if

rank [B , AB , · · · ,An�1B] = n. (13)

Consequently, if system (2) is controllable in some time T > 0 it is
controllable in any time.
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Proof of Theorem 3: “ )” Suppose that
rank([B , AB , · · · ,An�1B]) < n.
Then the rows of the controllability matrix [B ,AB , · · · ,An�1B] are
linearly dependent and there exists a vector v 2 Rn, v 6= 0 such
that

v⇤[B , AB , · · · ,An�1B] = 0.

Then v⇤B = v⇤AB = · · · = v⇤ An�1B = 0. From Cayley-Hamilton
Theorem we deduce that there exist constants c1, · · · , cn such
that, An = c1An�1 + · · ·+ cnI and therefore v⇤AnB = 0, too. In
fact, it follows that v⇤AkB = 0 for all k 2 N and consequently
v⇤eAtB = 0 for all t as well. But, from the variation of constants
formula, the solution x of (2) satisfies

x(t) = eAtx0 +

Z t

0
eA(t�s)Bu(s)ds. (14)
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Therefore

hv , x(T )i = hv , eAT x0i+
Z T

0
hv , eA(T�s)Bu(s)ids = hv , eAT x0i.

Hence, hv , x(t)i is independent of t. This shows that the
projection of the solution x on v is independent of the value of the
control u. Hence, the system is not controllable.
The conservation property for the quantity hv , xi we have just
proved holds for any vector v for which
[B⇤, B⇤A⇤, · · · ,B⇤[A⇤]n�1]v = 0. Thus, if the rank of the matrix
[B , AB , · · · ,An�1B] is n � k , the reachable set that x(T ) runs is
an a�ne subspace of Rn of dimension n � k .
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“ (” Suppose now that rank([B , AB , · · · ,An�1B]) = n. It is
su�cient to show that system (7) is observable.
Assume B⇤' = 0 and '(t) = eA

⇤(T�t)'T , it follows that
B⇤eA

⇤(T�t)'T ⌘ 0 for all 0  t  T . By computing the
derivatives of this function in t = T we obtain that

B⇤[A⇤]k'T = 0 8k � 0.

But since rank(
⇥
B , AB , · · · ,An�1B

⇤
) = n we deduce that

Ker(
⇥
B⇤, B⇤A⇤, · · · ,B⇤(A⇤)n�1

⇤
) = {0}

and therefore 'T = 0. Hence, (12) is verified and the proof of
Theorem 3 is now complete.
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The set of controllable pairs (A,B) is open and dense.

• Most systems are controllable;

• The controllability property is robust, i. e. it is invariant
under small perturbations of A and/or B .

When controllability holds,

k u kL2(0,T ) C |eAT x0 � x1| (15)

for any initial data x0 and final objective x1.
Linear scalar equations of any order provide examples of systems
that are controllable with only one control: k

x (k) + a1x
(k�1) + . . .+ ak�1x = u.

Exercise: Check that the Kalman condition is fulfilled in this case.
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Bang-bang

Let us consider the particular case

B 2 Mn⇥1, (16)

i. e. m = 1, in which only one control u : [0,T ] ! R is available
and B is a column vector.
To build bang-bang controls it is convenient to consider the
quadratic functional:

Jbb('
0) =

1

2

Z T

0
| B⇤' | dt

�2
+ hx0,'(0)i (17)

where ' is the solution of the adjoint system (7) with initial data
'T .
The same argument as above shows that Jbb is also continuous
and coercive. It follows that Jbb attains a minimum in some point
b'T 2 Rn.
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The optimality condition (the Euler-Lagrange equations) its
minimizers satisfy:

Z T

0
| B⇤ b' | dt

Z T

0
sgn (B⇤ b')B⇤ (t)dt + hx0,'(0)i = 0

for all 'T 2 R, where ' is the solution of the adjoint system (7)
with initial data 'T . The control we are looking for is

u =

Z T

0
| B⇤ b' | dt sgn (B⇤ b')

where b' is the solution of (7) with initial data b'T .
The control is of bang-bang form, and takes only two values
±
R T
0 | B⇤ b' | dt switching finitely many times when the function

B⇤ b' changes sign. It has minimal L1(0,T ) norm.
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The control u2 = B⇤ b' obtained by minimizing the functional J has
minimal L2(0,T ) norm among all possible controls. Analogously,

the control u1 =
R T
0 | B⇤ b' | dtsgn (B⇤ b') obtained by minimizing

the functional Jbb has minimal L1(0,T ) norm among all possible
controls.
Proof: Let u be an arbitrary control for (2). Then (8) is verified
both by u and u2 for any 'T . By taking 'T = b'T (the minimizer
of J) in (8) we obtain that

Z T

0
< u,B⇤ b' > dt = � < x0, b'(0) >,

||u2||2L2(0,T ) =

Z T

0
< u2,B

⇤ b' > dt = � < x0, b'(0) > .
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Hence,

||u2||2L2(0,T ) =

Z T

0
< u,B⇤ b' > dt  ||u||L2(0,T )||B⇤ b'||

= ||u||L2(0,T )||u2||L2(0,T )

and the first part of the proof is complete.
For the second part a similar argument may be used. Indeed, let
again u be an arbitrary control for (2). Then (8) is verified by u
and u1 for any 'T . By taking 'T = b'T (the minimizer of Jbb) in
(8) we obtain that

Z T

0
B⇤ b'udt = � < x0, b'(0) >,

||u1||2L1(0,T ) =

✓Z T

0
|B⇤ b'|dt

◆2

=

Z T

0
B⇤ b'u1dt = � < x0, b'(0) > .
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Hence,

||u1||2L1(0,T ) =

Z T

0
B⇤ b' udt 

 ||u||L1(0,T )

Z T

0
|B⇤ b'|dt = ||u||L1(0,T )||u1||L1(0,T )

and the proof finishes.
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Switching control

Consider the finite dimensional linear control system
⇢

x 0(t) = Ax(t) + u1(t)b1 + u2(t)b2
x(0) = x0.

(18)

x(t) =
�
x1(t), . . . , xN(t)

�
2 RN is the state of the system, A is a

N ⇥ N�matrix, u1 = u1(t) and u2 = u2(t) are two scalar controls
an b1, b2 are given control vectors in RN .
More general and complex systems may also involve switching in
the state equation itself:

x 0(t) = A(t)x(t) + u1(t)b1 + u2(t)b2, A(t) 2 {A1, ...,AM}.
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Controllability

Given a control time T > 0 and a final target x1 2 RN we look for
control pairs

�
u1, u2

�
such that the solution of (18) satisfies

x(T ) = x1. (19)

In the absence of constraints, controllability holds if and only if the
Kalman rank condition is satisfied

rank
h
B , AB , . . . ,AN�1B

i
= N (20)

with B =
�
b1, b2

�
.

We look for switching controls:

u1(t)u2(t) = 0, a.e. t 2 (0, T ). (21)

Under the rank condition above, these switching controls always
exist.
To develop systematic strategies allowing to build switching
controllers.
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The controllers of a system endowed with di↵erent actuators are
said to be of switching form when only one of them is active in
each instant of time.
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The classical theory guarantees that the standard controls (u1, u2)
may be built by minimizing the functional

J
�
'0

�
=

1

2

Z T

0

⇥
|b1 · '(t)|2 + |b2 · '(t)|2

⇤
dt � x1 · '0 + x0 · '(0),

among the solutions of the adjoint system

⇢
�'0(t) = A⇤'(t), t 2 (0, T )
'(T ) = '0.

(22)

The rank condition for the pair (A,B) is equivalent to the
following unique continuation property for the adjoint system
which su�ces to show the coercivity of the functional:

b1 · '(t) = b2 · '(t) = 0, 8t 2 [0,T ] ! ' ⌘ 0.
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Preassigned switching

Given a partition ⌧ = {t0 = 0 < t1 < t2 < ... < t2N = T} of the
time interval (0,T ), consider the functional

J⌧
�
'0

�
=

1

2

N�1X

j=0

Z t2j+1

t2j

|b1 · '(t)|2dt +
1

2

N�1X

j=0

Z t2j+2

t2j+1

|b2 · '(t)|2dt

�x1 · '0 + x0 · '(0).
Under the same rank condition this functional is coercive too. In
fact, in view of the time-analiticity of solutions, the above unique
continuation property implies the apparently stronger one:

b1·'(t) = 0 t 2 (t2j , t2j+1); b2·'(t) = 0 t 2 (t2j+1, t2j+2) ! ' ⌘ 0

and this one su�ces to show the coercivity of J⌧ . Thus, J⌧ has an
unique minimizer '̌ and this yields the controls

u1(t) = b1·'̌(t), t 2 (t2j , t2j+1); u2(t) = b2·'̌(t), t 2 (t2j+1, t2j+2)

which are obviously of switching form.
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A new functional for automatic switching
Consider now, without an a priori partition of [0,T ]:

Js('
0) =

1

2

Z T

0
max

⇣��b1 · '(t)
��2,

��b2 · '(t)
��2
⌘
dt�x1·'0+x0·'(0).

(23)

Theorem

Assume that the pairs (A, b2 � b1) and (A, b2 + b1) satisfy the
rank condition. Then, for all T > 0, Js achieves its minimum.
Furthermore, the switching controllers

⇢
u1(t) = '̃(t) · b1 when

��'̃(t) · b1
�� >

��'̃(t) · b2
��

u2(t) = '̃(t) · b2 when
��'̃(t) · b2

�� >
��'̃(t) · b1

�� (24)

where '̃ is the solution of (22) with datum '̃0 at time t = T ,
control the system.
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1 The rank condition on the pairs
�
A, b2 ± b1

�
is a necessary

and su�cient condition for the controllability of the systems

x 0 + Ax =
�
b2 ± b1

�
u(t). (25)

This implies that the system with controllers b1 and b2 is
controllable too but the reverse is not true.

2 The rank conditions on the pairs
�
A, b2 ± b1

�
are needed to

ensure that the set

�
t 2 (0, T ) :

��'(t) · b1
�� =

��'(t) · b2
�� (26)

is of null measure, which ensures that the controls in (24) are
genuinely of switching form.
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Sketch of the proof

There are two key points:
a) Showing that the functional Js is coercive, i. e.,

lim
k'0k!1

Js('0)

k '0 k = 1,

which guarantees the existence of minimizers.
Coercivity is immediate since

|'(t) · b1|2 + |'(t) · b2|2  2max
⇥
|'(t) · b1|2, |'(t) · b2|2

⇤

and, consequently, the functional Js is bounded below by a
functional equivalent to the classical one J.
b) Showing that the controls obtained by minimization are of
switching form.
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This is equivalent to proving that the set

I = {t 2 (0, T ) : |'̃ · b1| = |'̃ · b2|}

is of null measure.
Assume for instance that the set
I+ = {t 2 (0, T ) : '̃(t) · (b1 � b2) = 0} is of positive measure, '̃
being the minimizer of Js . The time analyticity of '̃ · (b1 � b2)
implies that I+ = (0, T ). Accordingly '̃ · (b1 � b2) ⌘ 0 and,
consequently, taking into account that the pair (A, b1 � b2)
satisfies the Kalman rank condition, this implies that '̃ ⌘ 0. This
would imply that

J('0) � 0, 8'0 2 RN

which may only happen in the trivial situation in which
x1 = eAT x0, a trivial situation that we may exclude.
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The Euler-Lagrange equations associated to the minimization of Js
take the form
Z

S1

'̃(t)·b1  (t)·b1dt+
Z

S2

'̃(t)·b2  (t)·b2dt�x1· 0+x0· (0) = 0,

for all  0 2 RN , where

⇢
S1 = {t 2 (0, T ) : |'̃(t) · b1| > |'̃(t) · b2|},
S2 = {t 2 (0, T ) : |'̃(t) · b1| < |'̃(t) · b2|}.

(27)

In view of this we conclude that

u1(t) = '̃(t) · b1 1S1(t), u2(t) = '̃(t) · b2 1S2(t), (28)

where 1S1 and 1S2 stand for the characteristic functions of the sets
S1 and S2, are such that the switching condition holds and the
corresponding solution satisfies the final control requirement.
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Slight variants of these arguments lead to switching controls of
di↵erent nature, in particular to switching bang-bang controls.
For instance, when minimizing the functional

Jsb('
0) =

1

2

Z T

0
max

�
|'(t) · b1|, |'(t) · b2|

�
dt

�2
�x1·'0+x0·'(0),

the controls take the form

u1(t) = � sgn
�
'̃(t) · b1

�
1S1(t); u2(t) = � sgn

�
'̃(t) · b2

�
1S2(t).

where

� =

Z T

0
max

⇣
|'̃(t) · b1|, |'̃(t) · b2|

⌘
dt.
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Optimality

The switching controls we obtain this way are of minimal

L2
⇣
0, T ; R2

⌘
-norm, the space R2 being endowed with the `1

norm, i. e. with respect to the norm

||(u1, u2)||L2(0,T ; `1) =
h Z T

0
(|ũ1|+ |ũ2|)2dt

i1/2
.

Switching bang-bang controls are of minimal L1
⇣
0, T ; R2

⌘
-norm
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Stabilisation

The controls we have obtained so far are the so called open loop
controls. In practice, it is interesting to get closed loop or feedback
controls, so that its value is realted in real time with the state
itself.
In this section we assume that A is a skew-adjoint matrix, i. e.
A⇤ = �A. In this case, < Ax , x >= 0. Consider the system

⇢
x 0 = Ax + Bu
x(0) = x0.

(29)

When u ⌘ 0, the energy of the solution of (29) is conserved.
Indeed, by multiplying (29) by x , if u ⌘ 0, one obtains

d

dt
|x(t)|2 = 0. (30)
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Hence,
|x(t)| = |x0|, 8t � 0. (31)

The problem of stabilization can be formulated in the following
way. Suppose that the pair (A,B) is controllable. We then look for
a matrix L such that the solution of system (29) with the feedback
control law

u(t) = Lx(t) (32)

has a uniform exponential decay, i.e. there exist c > 0 and
! > 0 such that

|x(t)|  ce�!t |x0| (33)

for any solution.
Note that, according to the law (32), the control u is obtained in
real time from the state x .
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In other words, we are looking for matrices L such that the solution
of the system

x 0 = (A+ BL)x = Dx (34)

has an uniform exponential decay rate.
Remark that we cannot expect more than (33). Indeed, for
instance, the solutions of (34) may not satisfy x(T ) = 0 in finite
time T . Indeed, if it were the case, from the uniqueness of
solutions of (34) with final state 0 in t = T , it would follow that
x0 ⌘ 0.

Theorem

If A is skew-adjoint and the pair (A,B) is controllable then
L = �B⇤ stabilizes the system, i.e. the solution of

⇢
x 0 = Ax � BB⇤x

x(0) = x0
(35)

has an uniform exponential decay (33).
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Proof

With L = �B⇤ we obtain that

1

2

d

dt
|x(t)|2 = � < BB⇤x(t), x(t) >= � | B⇤x(t) |2 0.

Hence, the norm of the solution decreases in time.
Moreover,

|x(T )|2 � |x(0)|2 = �2

Z T

0
| B⇤x |2 dt. (36)

To prove the uniform exponential decay it is su�cient to show that
there exist T > 0 and c > 0 such that

|x(0)|2  c

Z T

0
| B⇤x |2 dt (37)

for any solution x of (35). Indeed, from (36) and (37) we would
obtain that

|x(T )|2 � |x(0)|2  �2

c
|x(0)|2 (38)
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and consequently
|x(T )|2  �|x(0)|2 (39)

with

� = 1� 2

c
< 1. (40)

Hence,

|x(kT )|2  �k |x0|2 = e(ln�)k |x0|2 8k 2 N. (41)

Now, given any t > 0 we write it in the form t = kT + �, with
� 2 [0,T ) and k 2 N and we obtain that

|x(t)|2  |x(kT )|2  e�|ln(�)|k |x0|2 =

= e�|ln(�)|( t
T )e |ln(�)|

�
T |x0|2  1

� e
� |ln(�)|

T t |x0|2.
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We have obtained the desired decay result (33) with

c =
1

�
, ! =

| ln(�) |
T

. (42)

To prove (37) we decompose the solution x of (35) as x = '+ y
with ' and y solutions of the following systems:

⇢
'0 = A'
'(0) = x0,

(43)
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and ⇢
y 0 = Ay � BB⇤x

y(0) = 0.
(44)

Remark that, since A is skew-adjoint, (43) is exactly the adjoint
system (7) except for the fact that the initial data are taken at
t = 0.
As we have seen in the proof of Theorem 3, the pair (A,B) being
controllable, the following observability inequality holds for system
(43):

|x0|2  C

Z T

0
| B⇤' |2 dt. (45)

Since ' = x � y we deduce that

|x0|2  2C

Z T

0
| B⇤x |2 dt +

Z T

0
| B⇤y |2 dt

�
.
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On the other hand, it is easy to show that the solution y of (44)
satisfies:

1

2

d

dt
| y |2= �hB⇤x , B⇤yi  |B⇤x | |B⇤| |y |  1

2

�
|y |2 + |B⇤|2|B⇤x |2

�
.

From Gronwall’s inequality we deduce that

| y(t) |2 |B⇤|2
Z t

0
et�s | B⇤x |2 ds  |B⇤|2eT

Z T

0
| B⇤x |2 dt

(46)
and consequently
Z T

0
| B⇤y |2 dt  |B |2

Z T

0
| y |2 dt  T |B |4eT

Z T

0
| B⇤x |2 dt.

Finally, we obtain that

| x0 |2 2C

Z T

0
| B⇤x |2 dt+C |B⇤|4eTT

Z T

0
| B⇤x |2 dt  C 0

Z T

0
| B⇤x |2 dt

and the proof of Theorem 5 is complete.
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Example

Consider the damped harmonic oscillator:

mx 00 + Rx + kx 0 = 0, (47)

where m, k and R are positive constants.
Note that (47) may be written in the equivalent form

mx 00 + Rx = �kx 0

which indicates that an applied force, proportional to the velocity
of the point-mass and of opposite sign, is acting on the oscillator.

E. Zuazua Historical introduction & Finite-dimensional control



Historical introduction Finite-dimensional control Problem formulation Observability The rank condition Bang-bang Switching Switching + bang-bang Stabilization Conclusions References

It is easy to see that the solutions of this equation have an
exponential decay property. Indeed, it is su�cient to remark that
the two characteristic roots have negative real part. Indeed,

mr2 + R + kr = 0 , r± =
�k ±

p
k2 � 4mR

2m

and therefore

Re r± =

(
� k

2m if k2  4mR

� k
2m ±

q
k2

4m � R
2m if k2 � 4mR .

We observe here the classical overdamping phenomenon.
Contradicting a first intuition it is not true that the decay rate
increases when the value of the damping parameter k increases.
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Arbitrary decay rate

If (A,B) is controllable, we have proved the uniform stability
property of the system (29), under the hypothesis that A is
skew-adjoint. However, this property holds even if A is an arbitrary
matrix. More precisely, we have:

Theorem

If (A,B) is controllable then it is also stabilizable. Moreover, it is
possible to prescribe any complex numbers �1, �2,...,�n as the
eigenvalues of the closed loop matrix A+ BL by an appropriate
choice of the feedback matrix L so that the decay rate may be
made arbitrarily fast.

This result is not in contradiction with the behavior we observed
above on the harmonic oscillator (the overdamping phenomenon).
In order to obntian the arbitrarily fast decay one needs to use all
components of the state on the feedback law!
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Conclusions

We have shown that

• Controllability and observabilitiy are equivalent notions
(Wiener’s cybernetics);

• Both hold for all T if and only if the Kalman rank condition is
fulfilled.

• The controls may be obtained as minimizers of suitable
quadratic functionals over the space of solutions of the adjoint
system.

• There are very many controls: smooth ones, in bang-bang
form,...

• When the system is endowed with various actuators one may
establish automatic strategies to switch from one to another

• Controllable systems are stabillizable by means of closed loop
or feedback controls.
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