
Minimal order controllers for
nonlinear output regulation

speaker: George WEISS
joint work with: Vivek NATARAJAN
both from Tel Aviv University, Israel

Control and Systems Theory Seminar, Bath
December 4, 2015



Informal problem statement

Informal statement: Given a stabilizable plant and a totally
unstable exosystem, the

error feedback regulator problem

is to design a stabilizing controller (for the plant) which
guarantees the tracking of certain reference signals by the plant
output, even when the plant is driven by external disturbance
signals. The reference and disturbance signals are both
functions of the exosystem state. The input of the controller is
the tracking error and its output is the control input to the plant.

Best known example: for linear systems, under suitable
conditions, the PI controller solves the error feedback regulator
problem for an exosystem generating constant reference and
disturbance signals. If we are lucky, it works even for nonlinear
systems - we hope to make this more clear in the sequel.



The plant and the exosystem

To make a rigorous statement of the error feedback regulator
problem (one of the many possible versions), we consider a
nonlinear finite-dimensional smooth plant

ẋ = f (x ,u,w) , y = g(x ,u,w) , (1)

with state x(t) ∈ X ⊂ Rn, control input u(t) ∈ U ⊂ R and output
y(t) ∈ Y ⊂ R, where X , U and Y are open sets that contain the
origin of the appropriate spaces. The exogenous disturbance
signal w in (1) is the state of the linear exosystem

ẇ = Sw , (2)

with w(t) ∈ W ⊂ R2p+1, where W is open, invariant under eSt

(t ≥ 0) and 0 ∈ W . We assume that the functions
f : X × U × W → Rn and g : X × U × W → Y are of class C2

and f (0,0,0) = 0, g(0,0,0) = 0.



The plant and the exosystem - continued

S =


α0 0 0 · · · 0
0 S1 0 . . . 0
0 0 S2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Sp

 , α0 = 0,

Sj =

[
0 αj

−αj 0

]
, αj > 0 ∀ j ∈ {1,2, . . . p} .

Hence the exosystem can generate a constant and sinusoids.
The reference signal is yr = q(w), where q : W → Y is
assumed to be of class C2 with q(0) = 0. The tracking error is

e(t) = y(t)− yr (t) = g(x ,u,w)− q(w) = h(x ,u,w) . (3)

Clearly h(x ,u,w) : X × U × W → Ye is a C2 map satisfying
h(0,0,0) = 0. Here Ye ⊂ R is open and Y ⊂ Ye.



The linearization of the plant
We define the real matrices

A =

[
∂f
∂x

]
(0,0,0)

, B =

[
∂f
∂u

]
(0,0,0)

, P =

[
∂f
∂w

]
(0,0,0)

,

C =

[
∂h
∂x

]
(0,0,0)

, D =

[
∂h
∂u

]
(0,0,0)

, Q =

[
∂h
∂w

]
(0,0,0)

.

We will need the following linearization of the plant (1) and the
error (3) (linearized at (x ,u,w) = (0,0,0)):

ẋ = Ax + Bu + Pw , (4)

el = Cx + Du + Qw . (5)

The transfer function of the linear system (4), (5) from the
control input u to the linearized error el is

G(s) = C(sI − A)−1B + D , s ∈ ρ(A) .



The controller

Consider the controller
ξ̇ = η(ξ, e) , u = θ(ξ) , (6)

with state ξ(t) ∈ Xc ⊂ Rnc , input e and output u, where Xc is
open and contains 0. The functions η : Xc × Ye → Rnc and
θ : Xc → U are C2 maps satisfying η(0,0) = 0 and θ(0) = 0.
The closed-loop system consisting of the plant (1), the
exosystem (2) and the controller (6) will be shown in a figure a
little later. We define the matrices

F =

[
∂η

∂ξ

]
(0,0)

, G =

[
∂η

∂e

]
(0,0)

, K =

[
∂θ

∂ξ

]
0
, (7)

which determine the linearization of the controller. The order of
this controller is, by definition, nc .



More on the controller, and an assumption

Thus, the linearized controller is described by

ξ̇ = Fξ + Ge , u = K ξ .

Assumption. The matrix A is stable (i.e., Reλ < 0 for all
λ ∈ σ(A)) and the pair of matrices

(
[ C Q ] ,

[
A P
0 S

])
is detectable.

The above detectability assumption tells us that, assuming
u = 0, we can see the entire exosystem state from the error
signal (a nonzero exosystem state cannot cause a zero error).
In the linear case, if the above detectability assumption does
not hold, then we can simply replace the exosystem with a
smaller one (we throw out the non-observable eigenvalues of
S). In the nonlinear case this is not always possible.

If A is not stable, then we have to perform a preliminary
stabilization step. The stability assumption on A can be relaxed,
as we shall see later.



The error feedback regulator problem

This diagram shows the closed-loop system of the plant and the
controller, driven by the exosystem S. The problem is to ensure
that the closed loop system with w = 0 is locally exponentially
stable and for small enough initial states, e(t)→0.



Formal problem statement
Definition. The controller (6) is said to solve the local error
feedback regulator problem for the plant (1), the exosystem (2) and
the error (3) if:

1. The equilibrium (x , ξ) = (0,0) of the unforced closed-loop
system

ẋ = f (x , θ(ξ),0) , ξ̇ = η(ξ, h(x , θ(ξ),0)) ,

is locally exponentially stable.
2. The forced closed-loop system

ẋ = f (x , θ(ξ),w) , ẇ = Sw , ξ̇ = η(ξ, h(x , θ(ξ),w)) , (8)

is such that for each initial condition (x(0), ξ(0),w(0)) in a
neighborhood of (0,0,0) in X × Xc × W , it has a unique global
(in time t ≥ 0) solution (x , ξ,w) and the corresponding error e
defined in (3) satisfies

lim
t→+∞

e(t) = lim
t→+∞

h(x(t), θ(ξ(t)),w(t)) = 0 . (9)



Background and history

The regulator problem, and its robust version, for linear
finite-dimensional plants and exosystems was addressed in
Francis and Wonham (1975) and Francis (1977) using
geometric methods. The solvability of the problem was
characterized in terms of the solvability of certain matrix
equations, known in the literature as the regulator equations.
The internal model principle, which states that for robust
regulation the dynamic structure of the exosystem (suitably
duplicated) must be incorporated into the controller, was
introduced in Francis and Wonham (1975).

The regulator problem for nonlinear finite-dimensional plants
and exosystems was addressed in Isidori and Byrnes (1990) in
a local setting, i.e., the proposed controller ensured that its
closed-loop system with the plant is locally exponentially stable
and that tracking is achieved for sufficiently small initial
conditions of the plant, the controller and the exosystem.



Background and history - continued

In Isidori and Byrnes (1990) the nonlinear regulator
equations, a generalization of the regulator equations in Francis
(1977), were introduced along with the notion of zero dynamics
to describe the solvability of the nonlinear regulator equations.
Since the early 1990’s many researchers have extended these
results, mainly by developing controllers that solve the nonlinear
robust regulator problem in local setting, e.g. Priscoli (1993,
1997), Byrnes, Priscoli, Isidori, Kang (1997), in the semi-global
setting, e.g. Khalil (1994), Isidori (1997), Serrani, Isidori and
Marconi (2000), and in the global setting, e.g. Serrani and
Isidori (2000), Chen and Huang (2005), Xi and Ding (2007).

The above works assume that the exosystem is perfectly
known; nonlinear regulator problems with an uncertain
exosystem have been considered in Isidori, Marconi and Praly
(2012), Li and Khalil (2012) etc. There is a large literature for
the linear infinite-dimensional regulator problem.



A classical result of Isidori and Byrnes (1990)
Theorem. Let the pair (A,B) be stabilizable and let the detectability
condition in the earlier Assumption hold. Then there exists a
controller of the form (6) that solves the local error feedback regulator
problem if and only if there exist an open set W o ⊂ W containing
zero and C2 maps π : W o → X and γ : W o → U , with π(0) = 0
and γ(0) = 0, satisfying the nonlinear regulator equations

∂π

∂w
Sw = f (π(w), γ(w),w) , (10)

h(π(w), γ(w),w) = 0 . (11)

Moreover, in this case there exist open sets Z ⊂ X × Xc and
W oo ⊂ W o, both containing zero, such that for any (x0, ξ0) ∈ Z and
any w0 ∈ W oo, the closed-loop system (8) has a global (in time
t ≥ 0) solution (x , ξ,w) with x(0) = x0, ξ(0) = ξ0, w(0) = w0 and

lim
t →∞

∥x(t)− π(w(t))∥ = 0 , lim
t →∞

∥u(t)− γ(w(t))∥ = 0 .



Comments on the theorem
The standard reference for this result is the book of Isidori

(1995). The function g in (1) is considered there to be
independent of u. Earlier references do not present a rigorous
assessment of the smoothness of the maps π and γ. Under the
assumption that the plant and controller functions are of class
C2, we have shown that the maps π and γ are also of class C2.
Many intermediate results are of high interest.

The linearized version of the regulator equations is

ΠS = AΠ+ BΓ + P , CΠ+ DΓ + Q = 0 ,
where

Π =

[
∂π

∂w

]
w=0

, Γ =

[
∂γ

∂w

]
w=0

.

The control law u(t) = Γw(t) solves the linear state feedback
regulator problem for the linear plant (4), the exosystem (2) and
the linearized error el(t) from (5). This means that if
u(t) = Γw(t), then el(t) → 0 exponentially as t → ∞ for all
initial conditions x(0) and w(0).



Our aims
In this paper we focus on finding a minimal order controller

that solves the nonlinear error feedback regulator problem in a
local setting. Specifically, we will construct controllers whose
order is the same as that of the exosystem. The order of the
controllers in the papers mentioned earlier, even in the absence
of uncertain plant parameters, is typically equal to or larger
than that of the exosystem and the plant combined. A key
reason for this is the sequential control design approach they
adopt: First an internal model (whose order can be larger than
that of the exosystem) is designed and then the loop containing
the internal model and the plant is stabilized using an additional
controller. In contrast we will design a stabilizing internal model
directly. The search for minimal order controllers is of practical
value from an implementation standpoint. For a discussion on
the lower bound for the order of any controller that solves the
linear robust regulator problem see Davison and Goldenberg
(1975), Desoer and Wang (1978).



Our aims - continued
Our work is motivated by an alternate approach to the linear

regulator problem, first proposed in Davison (1976) for stable
finite-dimensional linear plants. In this approach, the control
and observation operators of the internal model (whose order is
r × m, where r is the number of outputs and m is the
exosystem order) are chosen to ensure that its closed-loop
system with the plant is stable. This approach was extended in
Hämäläinen and Pohjolainen (2000), Rebarber and Weiss
(2003) to construct finite-dimensional controllers that solve the
regulator problem for stable linear infinite-dimensional plants.

The Davison controller is appealing because you do not have
to solve the regulator equations and only little information about
the plant is needed (the direction of G(iαj) for 0 ≤ j ≤ p). We
will extend this approach (the Davison controller) to nonlinear
finite-dimensional plants that are SISO from control input to
output. Unfortunately, in the nonlinear case, we must solve the
regulator equations, which in most cases are PDEs.



Restating an old result on the linear regulator problem

Remember that G(s) = C(sI − A)−1B + D is the transfer
function of the linearized plant from u to e.

Proposition. Assume that A is stable and for each j ∈ {0,1, . . . p},
G(iαj) ̸= 0. Then, there exist vectors Bc , C⊤

c ∈ R2p+1 such that the
linear controller

żc = Szc + Bcel , u = Cczc , (12)

for the linearized plant (4), (5) renders the closed-loop system stable,
i.e.,

A =

[
A BCc

BcC S + BcDCc

]
(13)

is a stable matrix. For any such Bc , Cc , the controller in (12) solves
the linear error feedback regulator problem for the linearized plant
(4), the exosystem (2) and the linearized error (5), and moreover in
this case the linearized error el(t) converges to zero exponentially.



Comments on the last proposition
The above proposition can be derived easily from Theorem

1.1 in Rebarber and Weiss (2003), which tells us also how to
find Bc and Cc : Choose Kj ∈ C with Re [G(iαj)Kj ] > 0 for
j ∈ {0,1, . . . p}, and such that K0 ∈ R. Denote

Bc = [b0,b1, . . . b2p]
⊤ , Cc = [c0, c1, . . . c2p] .

Then A will be stable if

c0b0 = − εK0 and (c2j−1 + ic2j)(b2j−1 − ib2j) = − 2εKj (14)

for 1 ≤ j ≤ p, where ε > 0 is sufficiently small.
The transfer function of the above controller is

C(s) = − ε

K0

s
+ 2

p∑
j=1

(Re Kj)s − (Im Kj)αj

s2 + α2
j

 .



Our main result
Theorem. Let the earlier Assumption hold. Suppose that there exist
C2 maps π : W o → X and γ : W o → U , where W o is an open
neighborhood of zero in W , that satisfy the nonlinear regulator
equations (10) and (11), with π(0) = γ(0) = 0. Then G(iαj) ̸= 0 for
all j ∈ {0,1, . . . p} and there exist Bc ∈ R2p+1 and a possibly
nonlinear C2 map θ : Xc → U, where Xc is an open neighborhood of
zero in W , such that θ(0) = 0 and the controller

ξ̇ = Sξ + Bce , u = θ(ξ) , (15)

solves the local error feedback regulator problem for the plant (1), the
exosystem (2) and the error (3). Moreover, this controller is minimal,
i.e., it is of the lowest possible order among all the controllers of the
form (6) that solve this error feedback regulator problem.

The vector Bc can be chosen such that

lim
t →∞

∥ξ(t)− w(t)∥ = 0 , θ = γ .



Comments on the main result

Remark. The transfer function of the controller in (12) has poles
at ±iαj (j ∈ {0,1, . . . p}). The necessity of the condition
G(iαj) ̸= 0 for the solvability of the local error feedback
regulator problem can be seen also from the following fact: in a
stable closed-loop system there cannot be an unstable
pole-zero cancelation in the product of the plant and controller
transfer functions. This is well-known but not easy to find in the
literature, see for instance Anderson and Gevers (1981).

Remark. We have assumed that the state operator A of the
linearized plant is stable. This assumption is used only to
guarantee the existence of vectors Bc ,C⊤

c ∈ R2p+1 such that A
in (13) is stable. Therefore, instead of the stability of A, we
could have directly assumed the existence of such vectors. The
latter assumption is more general, as can be seen on very
simple examples involving 2x2 matrices.



A example: control of a boost converter
We consider the output voltage regulation for the boost power

converter shown in the figure. A constant but unknown input
voltage v > 0 is transformed into a higher voltage z1 that feeds
a load R. Due to the fast switching, there will be high frequency
ripple on z1, which becomes negligible for very high switching
frequency, and we neglect this ripple. The control problem is to
make z1 track a reference value, in spite of the sinusoidal
disturbance current ie. The controller generates the high
frequency binary signal q with duty cycle D ∈ [0,1].



The operating point of the boost converter

The state variables z1, z2 and the inputs v and ie are
considered practically equal to their short-time averaged
values. It is easy to derive the equations corresponding to the
averaged variables:

Cż1 = − ie − z1

R
+Dz2 , Lż2 = − rz2 + v −Dz1 . (16)

We consider an operating point (an equilibrium state)
corresponding to the inputs v = v0 > 0, ie = 0, D = D0 ∈ (0,1).
The corresponding equilibrium state [z10 z20]

⊤ can be
computed by setting ż1 = 0 and ż2 = 0 in (16), which leads to

z10 =
D0

r
R +D2

0
v0 , z20 =

1
R

r
R +D2

0
v0 .

It is assumed that this is a desirable equilibrium point, i.e., z10 is
exactly the reference output voltage.



The boost converter - rewriting it into our framework
The input voltage v may deviate from v0 (for instance,

batteries running on low charge), but this deviation is
considered to be a constant at the time scale of interest. The
disturbance current i0 is considered to be sinusoidal, with
known frequency α > 0. (For instance, this disturbance might
be caused by a single-phase DC/AC power converter delivering
current to an AC load, in which case α would be twice the grid
frequency.) The state and input variables will be the deviations
of the original variables from their values at the operating point:

x1 = z1 − z10 , x2 = z2 − z20 , w1 = v − v0 , u = D −D0 .

Using (16), and the notation w2 = ie, the deviations satisfy the
equations:

ẋ1 = − x1

RC
+

D0 + u
C

x2 +
z20

C
u − 1

C
w2 ,

ẋ2 = − D0 + u
L

x1 −
r
L

x2 −
z10

L
u +

1
L

w1 .



The error feedback regulator problem for the boost
The disturbance signal w1 is an unknown constant while

w2(t) = a cos(αt + ϕ), where a and ϕ are unknown. We
assume that w1 and w2 are generated by the exosystem

ẇ = Sw , w =

w1
w2
w3

 , S =

0 0 0
0 0 α
0 −α 0

 . (17)

We want to regulate x1 to zero and therefore the error is

e = x1 . (18)

It is well known that it is difficult to control the higher voltage in
a boost converter because of the unstable zero dynamics
(which can be seen from the presence of a right-half plane zero
in the transfer function of the linearization from u to x1).

Denote x =
[ x1

x2

]
. We can rewrite this system in the form of

(1) and (3), by defining the appropriate functions f and h.



The boost converter - verifying the assumptions
The linearization of the plant and the error around (0,0,0) is

as in (4)–(5), with

A =

[
− 1

RC
D0
C

−D0
L − r

L

]
, B =

[ z20
C

−z10
L

]
, P =

[
0 − 1

C 0
1
L 0 0

]
,

C =
[
1 0

]
, D = 0 , Q =

[
0 0 0

]
.

It is easy to see (from traceA < 0 and detA > 0) that A is
stable. The detectability assumption contained in our
assumption can be verified (for any combination of parameter
values) using the Hautus test.

The nonlinear regulator equations (10), with the notation
π =

[
π1

π2

]
, are

α
∂π1

∂w2
w3 − α

∂π1

∂w3
w2 = − π1

RC
+

D0 + γ

C
π2 +

z20

C
γ − 1

C
w2 ,

α
∂π2

∂w2
w3 − α

∂π2

∂w3
w2 = − D0 + γ

L
π1 − r

L
π2 − z10

L
γ +

1
L

w1 .



The regulator equations reduced to a PDE
The regulator equation (11) is π1 = 0. Using this, we rewrite

the above as

0 =
D0 + γ

C
π2 +

z20

C
γ − 1

C
w2 , (19)

α
∂π2

∂w2
w3 − α

∂π2

∂w3
w2 = − r

L
π2 − z10

L
γ +

1
L

w1 . (20)

Substituting for γ from (20) into (19) we get(
D0 +

L
z10

[
−α∂π

2

∂w2
w3 + α

∂π2

∂w3
w2 −

r
L
π2 +

1
L

w1

])
π2

+ z20
L

z10

[
−α∂π

2

∂w2
w3 + α

∂π2

∂w3
w2 −

r
L
π2 +

1
L

w1

]
− w2 = 0 .

(21)

This is a first order quasilinear PDE in the unknown function
π2 : R3 → R, with no boundary conditions, only a one-point
condition: π2(0) = 0.



Solving the PDE

We will solve the PDE (21) in a neighborhood of 0 ∈ R3. Our
approach is to determine π2 on circles of the following type: w1
is constant, w2 = ρ cos τ and w3 = ρ sin τ , where ρ > 0 is a
constant and τ ∈ [0,2π). The motivation for our approach is
that on such circles, the PDE (21) becomes an ODE. (In fact,
these circles are the projections of the characteristic curves of
(21) in R4, onto the space R3 with coordinates w1, w2 and w3.)
For each fixed w1 and ρ, we define a function ψ on [0,2π) by

ψ(τ) = π2(w1, ρ cos τ, ρ sin τ) . (22)

It follows by the chain rule that

dψ
dτ

= − ∂π2

∂w2
ρ sin τ +

∂π2

∂w3
ρ cos τ = − ∂π2

∂w2
w3 +

∂π2

∂w3
w2 .



Solving the PDE - continued
Using the previous expression, (21) can be rewritten as

dψ
dτ

=
rψ2 + (rz20 − w1 −D0z10)ψ − z20w1 + z10ρ cos τ

αL(ψ + z20)
. (23)

This ODE has to be solved for ψ that satisfies the periodic
boundary condition ψ(0) = ψ(2π). From the function ψ,
corresponding to different values of w1 and ρ, we will then
construct the function π2 using (22).

For details of how the solutions look, see our paper.
Important point: we can approximate the solution WITHOUT
SOLVING THE PDE by using several additional harmonics in
the internal model. This is a bit like repetitive control. Then,
each oscillator in the internal model will learn by itself what it
has to do, like in the linear case, and it will adapt itself to a
changing plant.

THANK YOU!


