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Preface

The evolution of the state of many systems modeled by linear partial differential
equations (PDEs) or linear delay-differential equations can be described by operator
semigroups. The state of such a system is an element in an infinite-dimensional
normed space, whence the name “infinite-dimensional linear system”.

The study of operator semigroups is a mature area of functional analysis, which is
still very active. The study of observation and control operators for such semigroups
is relatively more recent. These operators are needed to model the interaction
of a system with the surrounding world via outputs or inputs. The main topics
of interest about observation and control operators are admissibility, observability,
controllability, stabilizability and detectability. Observation and control operators
are an essential ingredient of well-posed linear systems (or more generally system
nodes). In this book we deal only with admissibility, observability and controllability.
We deal only with operator semigroups acting on Hilbert spaces.

This book is meant to be an elementary introduction into the topics mentioned
above. By “elementary” we mean that we assume no prior knowledge of finite-
dimensional control theory, and no prior knowledge of operator semigroups or of
unbounded operators. We introduce everything needed from these areas. We do
assume that the reader has a basic understanding of bounded operators on Hilbert
spaces, differential equations, Fourier and Laplace transforms, distributions and
Sobolev spaces on n-dimensional domains. Much of the background needed in these
areas is summarized in the Appendices, often with proofs.

Another meaning of “elementary” is that we only cover results for which we can
provide complete proofs. The abstract results are supported by a large number of
examples coming from PDEs, worked out in detail. We mention some of the more
advanced results, which require advanced tools from functional analysis or PDEs,
in our bibliographic comments. One of the glaring omissions of the book is that we
do not cover anything based on microlocal analysis.

The concepts of controllability and observability have been set at the center of
control theory by the work of R. Kalman in the 1960’s and soon they have been
generalized to the infinite-dimensional context. Among the early contributors we
mention D.L. Russell, H. Fattorini, T. Seidman, A.V. Balakrishnan, R. Triggiani,
W. Littman and J.-L. Lions. The latter gave the field an enormous impact with his
book [156], which is still a main source of inspiration for many researchers.

Unlike in finite-dimensional control theory, for infinite-dimensional systems there
are many different (and not equivalent) concepts of controllability and observabil-
ity. The strongest concepts are called exact controllability and exact observability,
respectively. Exact controllability in time τ > 0 means that any final state can be
reached, starting from the initial state zero, by a suitable input signal on the time
interval [0, τ ]. The dual concept of exact observability in time τ means that if the
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input is zero, the initial state can be recovered in a continuous way from the output
signal on the time interval [0, τ ]. We shall establish the exact observability or exact
controllability of various (classes of) systems using a variety of techniques. We shall
also discuss other concepts of controllability and observability.

Exact controllability is important because it guarantees stabilizability and the ex-
istence of a linear quadratic optimal control. Dually, exact observability guarantees
the existence of an exponentially converging state estimator and the existence of
a linear quadratic optimal filter. Moreover, exact (or final state) observability is
useful in identification problems. To include these topics into this book we would
have needed at least double the space and ten times the time, and we gave up on
them. There are excellent books dealing with these subjects, such as (in alphabeti-
cal order) Banks and Kunisch [13], Bensoussan, Da Prato, Delfour and Mitter [17],
Curtain and Zwart [39], Luo, Guo and Morgul [163] and Staffans [209].

Researchers in the area of observability and controllability tend to belong to either
the abstract functional analysis school or to the PDE school. This is true also for the
authors, as MT feels more at home with PDEs and GW with functional analysis. By
our collaboration we have attempted to combine these two approaches. We believe
that such a collaboration is essential for an efficient approach to the subject. More
precisely, the functional analytic methods are important to formulate in a precise way
the main concepts and to investigate their interconnections. When we try to apply
these concepts and results to systems governed by PDEs, we generally have to face
new difficulties. To solve these difficulties, quite refined techniques of mathematical
analysis might be necessary. In this book the main tools to tackle concrete PDE
systems are multipliers, Carleman estimates and non-harmonic Fourier analysis, but
results from even more sophisticated fields of mathematics (micro-local analysis,
differential geometry, analytic number theory) have been used in the literature.

While we were working on this book, Birgit Jacob from the University of Delft
(The Netherlands) with Hans Zwart from the University of Twente (The Nether-
lands) have achieved an important breakthrough on exact observability for normal
semigroups. Birgit has communicated to us their results, so that we could include
them (without proof) in the bibliographic notes on Chapter 6.

We are grateful to Emmanuel Humbert from the University of Nancy (France)
for accepting to contribute to an appendix on differential calculus. The material in
Chapter 14 is to a great extent his work.

Bernhard Haak from the University of Bordeaux has contributed significantly to
Section 5.6. Moreover, Proposition 5.4.7 is due to him.

Large parts of the manuscript have been read by our colleagues Karim Ramdani,
Takéo Takahashi (both from Nancy) and Xiaowei Zhao (from London) who made
many suggestions for improvements. The two figures in Chapter 7, the figure in
Chapter 11 and the first figure in Chapter 15 were drawn by Karim Ramdani. Jorge
San Martin (from Santiago de Chile) contributed in an important manner to the
calculations in Section 15.1. Luc Miller (from Paris) made useful comments on
Chapter 6. Sorin Micu (from Craiova) and Jean-Pierre Raymond (from Toulouse)
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made very useful remarks on Sections 9.2 and 15.2, respectively. Gérald Tenenbaum
and François Chargois (both from Nancy) suggested us corrections and simplifica-
tions in Sections 8.4 and 14.2. Birgit Jacob, in addition to her help described earlier,
has made useful bibliographic comments on Chapters 5 and 6. Other valuable bib-
liographic comments have been sent to us by Jonathan Partington (from Leeds).
Qingchang Zhong (from Liverpool) pointed out some small mistakes and typos. We
thank them all for their patience and help.

We gratefully acknowledge the financial support for the countless visits of the
authors to each other, from to the Control and Power Group at Imperial College
London, INRIA Lorraine, the Elie Cartan Institute at the University of Nancy and
the School of Electrical Engineering at Tel Aviv University.

The authors, October 2008, Nancy and Tel Aviv
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Chapter 1

Observability and controllability
for finite-dimensional systems

1.1 Norms and inner products

In this section we recall some basic concepts and results concerning normed vector
spaces. Our aim is very modest: to list those facts which are needed in Chapter 1
(the treatment of controllability and observability for finite-dimensional systems).
We do not give proofs - our aim is only to clarify our terminology and notation. A
proper treatment of this material can be found in many books, of which we mention
Brown and Pearcy [23], Halmos [86] and Rudin [194]. Introductions to functional
analysis that stress the connections with and applications in systems theory are
Nikolskii [178], Partington [181] and Young [240].

Throughout this book, the notation

N , Z , R , C

stands for the sets of natural numbers (starting with 1), integer numbers, real
numbers and complex numbers, respectively. We denote Z+ = {0, 1, 2, . . .} and
Z∗ = Z \ {0}. For the remaining part of this chapter, we assume that the reader is
familiar with the basic facts about vector spaces and mathematical analysis.

Let X be a complex vector space. A norm on X is a function from X to [0,∞),
denoted ‖x‖, which satisfies the following assumptions for every x, z ∈ X and for
every λ ∈ C: (1) ‖x + z‖ 6 ‖x‖ + ‖z‖, (2) ‖λx‖ = |λ| · ‖x‖, (3) if x 6= 0, then
‖x‖ > 0. A vector space on which a norm has been specified is called a normed
space. If X is a normed space and x ∈ X, sometimes we write ‖x‖X (or we use
other subscripts) instead of ‖x‖, if we want to avoid a confusion arising from the
fact that the same x belongs also to another normed space.

Let X be a complex vector space. An inner product on X is a function from
X × X to C, denoted 〈x, z〉, which satisfies the following assumptions for every
x, y, z ∈ X and every λ ∈ C: (1) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉, (2) 〈λx, z〉 = λ〈x, z〉,

11



12 Finite-dimensional systems

(3) 〈x, z〉 = 〈z, x〉, (4) if x 6= 0, then 〈x, x〉 > 0. A vector space on which an inner
product has been specified is called an inner product space.

Let X be an inner product space. The norm induced by the inner product is the
function ‖x‖ =

√
〈x, x〉. It is easy to see that

‖x + y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 ∀ x, y ∈ X. (1.1.1)

Using here y = −(〈x, z〉/‖z‖2)z, it follows that

|〈x, z〉| 6 ‖x‖ · ‖z‖ ∀ x, z ∈ X, (1.1.2)

which is called the Cauchy-Schwarz inequality. This, together with (1.1.1) implies
that ‖x + z‖ 6 ‖x‖+ ‖z‖ holds, so that this function is indeed a norm (in the sense
defined earlier). Not every norm is induced by an inner product.

The simplest example is to take X = Cn with the usual inner product given by
〈x, z〉 =

∑n
k=1 xkzk. The norm induced by this inner product is called the Euclidean

norm:

‖x‖ =

(
n∑

k=1

|xk|2
) 1

2

.

If we imagine the above example with n→∞, we obtain the space called l2. This
consists of all the sequences (xk) with xk ∈ C such that

∑
k∈N |xk|2 < ∞. The usual

inner product on l2 is given by

〈x, z〉 =
∑

k∈N
xkzk .

Another important example is the space L2(J ; U), where J ⊂ R is an interval and U
is a finite-dimensional inner product space. This space consists of all the measurable
functions u : J →U for which

∫
J
‖u(t)‖2dt < ∞. In this space we do not distinguish

between two functions u and v if
∫

J
‖u(t)− v(t)‖dt = 0. Thus, L2(J ; U) is actually

a space of equivalence classes of functions. The inner product on L2(J ; U) is

〈u, v〉 =

∫

J

〈u(t), v(t)〉dt.

Now let X be a normed space. A sequence (xk) with terms in X is called conver-
gent if there exists x0 ∈ X such that lim ‖xk − x0‖ = 0. In this case we also write
lim xk = x0 or xk→x0 and we call x0 the limit of the sequence (xk). It is easy to
see that if a limit x0 exists then it is unique and ‖x0‖ = lim ‖xk‖.

Let X be a normed space. The closure of a set L ⊂ X, denoted clos L, is the set
of the limits of all the convergent sequences with terms in L. We have

L ⊂ clos L = clos clos L.
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L is called closed if clos L = L. If V is a subspace of X then also clos V is a
subspace. Every finite-dimensional subspace of X is closed.

A sequence (xk) with terms in X is called a Cauchy sequence if lim ‖xk−xj‖ = 0.
Equivalently, for each ε > 0 there exists Nε ∈ N such that for every k, j ∈ N with
k, j > Nε we have ‖xk − xj‖ 6 ε. It is easy to see that every convergent sequence
is a Cauchy sequence. However, the converse statement is not true in every normed
space X. The normed space X is called complete if every Cauchy sequence in X is
convergent. In this case, X is also called a Banach space. If the norm of a Banach
space is induced by an inner product, then the space is also called a Hilbert space.

For example, l2 and L2(J ; U) (with the norms induced by their usual inner prod-
ucts) are Hilbert spaces. Every finite-dimensional normed space is complete.

Assume that X is a Hilbert space and M ⊂ X. The set of all the finite linear
combinations of elements of M is denoted by span M (this is the smallest subspace
of X that contains M). The orthogonal complement of M is defined by

M⊥ = {x ∈ X | 〈m,x〉 = 0 for all m ∈ M} ,

and this is a closed subspace of X. We have

M⊥⊥ = clos span M . (1.1.3)

The Riesz projection theorem says that if X is a Hilbert space, V is a closed
subspace of X and x ∈ X, then there exist unique v ∈ V and w ∈ V ⊥ such that
x = v + w. If x, v and w are as above then clearly ‖x‖2 = ‖v‖2 + ‖w‖2 and v is
called the projection of x onto V .

A set M ⊂ X is called orthonormal if for every e, f ∈ M we have ‖e‖ = 1 and
f 6= e implies 〈e, f〉 = 0. It is easy to see that such a set is linearly independent.
An orthonormal basis in X is an orthonormal set B with the property B⊥ = {0}.
If an orthonormal basis is finite, then it is also a basis in the usual sense of linear
algebra, but this is not true in general (because not every vector can be written as
a finite linear combination of the basis vectors).

Let X and Y be normed spaces. A function T : X→ Y is called a linear operator
if it satisfies the following assumptions for every x, z ∈ X and for every λ ∈ C: (1)
T (x+z) = T (x)+T (z), (2) T (λx) = λT (x). We normally write Tx instead of T (x).
A linear operator T : X→Y is called bounded if

sup{‖Tx‖ | x ∈ X, ‖x‖ 6 1} < ∞ .

This is equivalent to the fact that T is continuous, i.e., xn→x0 implies Txn→Tx0.
It is easy to verify that if X is finite-dimensional then every linear operator from X
to some other normed space Y is continuous.

The set of all the bounded linear operators from X to Y is denoted by L(X, Y ).
If Y = X then we normally write L(X) instead of L(X, X). It is easy to see that
L(X,Y ) is a vector space, if we define the addition of operators by (T + S)x =
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Tx + Sx, and the multiplication of an operator with a number by (λT )x = λ(Tx).
Moreover, for T ∈ L(X, Y ) and S ∈ L(Y, Z), the product ST is an operator in
L(X, Z) defined as the composition of these functions.

The operator norm on L(X,Y ) is defined as follows:

‖T‖ = sup
‖x‖61

‖Tx‖ .

This is indeed a norm, as defined earlier. Moreover, if T ∈ L(X, Y ) and S ∈ L(Y, Z),
then ‖ST‖ 6 ‖S‖ · ‖T‖. If Y is a Banach space, then so is L(X,Y ).

If T ∈ L(X, Y ) then the null-space (sometimes called the kernel) and the range
of T are subspaces of X and Y defined, respectively, by

Ker T = {x ∈ X | Tx = 0} , Ran T = {Tx | x ∈ X} .
Ker T is always closed. T is called one-to-one if Ker T = {0} and it is called onto
if Ran T = Y . The operator T is invertible iff it is one-to-one and onto. In this
case, there exists a linear operator T−1 : Y →X such that T−1T = I (the identity
operator on X) and TT−1 = I (the identity operator on Y ). If X and Y are Banach
spaces and T ∈ L(X,Y ) is invertible, then it can be proved (using a result called
“the closed graph theorem”) that the inverse operator is bounded: T−1 ∈ L(Y, X),
see Section 12.1 in Appendix I for more details.

Let X be a Hilbert space and denote X ′ = L(X,C). The elements of X ′ are also
called bounded linear functionals on X. On X ′ we define the multiplication with a
number in an unusual way, not as we would normally do on a space of operators: if
ξ ∈ X ′ and λ ∈ C,

(λξ)x = λ(ξx) ∀ x ∈ X.

We use the operator norm on X ′. Then X ′ is a Hilbert space, called the dual space
of X. We define the mapping JR : X→X ′ as follows:

(JRz)x = 〈x, z〉 ∀ x ∈ X. (1.1.4)

Due to the special definition of multiplication with a number on X ′, the mapping JR

is a linear operator. Moreover, it is easy to see from the Cauchy-Schwarz inequality
that ‖JRz‖ = ‖z‖ (in particular, JR ∈ L(X, X ′) and it is one-to-one).

The Riesz representation theorem states that JR is onto. In other words, for every
ξ ∈ X ′ there exists a unique z ∈ X such that JRz = ξ. Hence, JR is invertible. We
often identify X ′ with X, by not distinguishing between z and JRz.

Let X and Y be Hilbert spaces and T ∈ L(X,Y ). The adjoint of T is the operator
T ∗ ∈ L(Y ′, X ′) defined by

(T ∗ξ)x = ξ(Tx) ∀ x ∈ X, ξ ∈ Y ′ . (1.1.5)

If we identify X with X ′ and Y with Y ′ (this is possible, as we have explained a
little earlier) then of course T ∗ ∈ L(Y, X) and (1.1.5) becomes

〈Tx, y〉 = 〈x, T ∗y〉 ∀ x ∈ X, y ∈ Y . (1.1.6)
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It can be checked that (ST )∗ = T ∗S∗, T ∗∗ = T , ‖T ∗‖ = ‖T‖ = ‖T ∗T‖ 1
2 and

Ker T = (Ran T ∗)⊥ , clos Ran T = (Ker T ∗)⊥ . (1.1.7)

From here it follows easily that

Ker T ∗T = Ker T , clos Ran T ∗T = clos Ran T ∗ . (1.1.8)

Moreover, it can be shown that Ran T ∗T is closed iff Ran T ∗ is closed iff Ran T is
closed (the last equivalence is known as the closed range theorem).

More background on bounded operators will be given in Appendix I.

1.2 Operators on finite-dimensional spaces

In this section we recall some facts about linear operators acting on finite-
dimensional inner product spaces. As in the previous section (and for the same
reasons), we do not give proofs. Some good references on linear algebra are Bell-
man [16], Gantmacher [70], Golub and Van Loan [72], Horn and Johnson [104, 105],
Lancaster and Tismenetsky [141], Marcus and Minc [168].

In this section X, Y and Z denote finite-dimensional inner product spaces. We
use the same notation for all the norms.

We denote by I the identity operator on any space. If T ∈ L(X, Y ) is invertible,
then dim X = dim Y . If T ∈ L(X,Y ) and dim X = dim Y , then T is invertible iff
it is one-to-one and this happens iff T is onto. If T−1 exists then ‖T−1‖ > ‖T‖−1.

Let T ∈ L(X,Y ) and let T ∗ be its adjoint (as defined in (1.1.6)). If we use
orthonormal bases in X and Y and represent T, T ∗ by matrices, then the matrix of
T ∗ is the complex conjugate of the transpose of the matrix of T . The rank of T is
defined as rank T = dim Ran T and we have rank T ∗ = rank T .

Let A ∈ L(X). A number λ ∈ C is an eigenvalue of A if there exists an x ∈ X,
x 6= 0 such that Ax = λx. In this case, x is called an eigenvector of A. The set
of all eigenvalues of A is called the spectrum of A and it is denoted by σ(A). If
Ã is the matrix of A in some basis in X, then p(s) = det(sI − Ã) is called the
characteristic polynomial of A (and this is independent of the choice of the basis in
X). The set σ(A) consists of the zeros of p. The Cayley-Hamilton theorem states
that p(A) = 0. If l eigenvectors of A correspond to l distinct eigenvalues, then the
set of these eigenvectors is linearly independent. In particular, if A has n = dim X
distinct eigenvalues, then we can find in X a basis consisting of eigenvectors of A.

We have |λ| 6 ‖A‖ for all λ ∈ σ(A), and λ ∈ σ(A) implies λ ∈ σ(A∗). We denote
by ρ(A) the resolvent set of A (the complement of σ(A) in C). The function R
defined by R(s) = (sI − A)−1 is analytic on ρ(A).

An operator Q ∈ L(X, Z) is called isometric if Q∗Q = I (the identity on X).
Equivalently, ‖Qx‖ = ‖x‖ holds for every x ∈ X. Q is called unitary if it is
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isometric and onto (i.e., Ran Q = Z). If Q is unitary then QQ∗ = I (the identity
on Z). If Q ∈ L(X,Z) is isometric and dim X = dim Z, then from Ker Q = {0} we
see that Q is invertible, and hence unitary. If Q ∈ L(X) is unitary, then |λ| = 1
holds for all λ ∈ σ(Q). For example, for every ϕ ∈ R,

Q =

[
cos ϕ − sin ϕ
sin ϕ cos ϕ

]

is unitary in L(C2).

An operator A ∈ L(X) is self-adjoint if A∗ = A. This is equivalent to the fact
that 〈Ax, x〉 ∈ R for all x ∈ X. We denote by diag (λ1, λ2, . . . λn) a matrix in Cn×n

with the numbers λ1, λ2, . . . λn on its diagonal and zero everywhere else.

Proposition 1.2.1. Let A ∈ L(X) be self-adjoint and denote n = dim X. Then
there exists a unitary Q ∈ L(Cn, X) such that

A = QΛQ∗ , where Λ = diag (λ1, λ2, . . . λn) . (1.2.1)

The numbers λk appearing above are the eigenvalues of A and they are real.

It follows from this proposition that in (1.2.1) we have Q = [b1 . . . bn] where
(b1, . . . bn) is an orthonormal basis in X, each bk is an eigenvector of A (corresponding
to the eigenvalue λk) and Λ is the matrix of A in this basis.

An operator P ∈ L(X) is called positive if 〈Px, x〉 > 0 holds for all x ∈ X.
This property is written in the form P > 0. If P > 0 then P = P ∗, so that the
factorization (1.2.1) holds. Moreover, in this case λk > 0. We can define P

1
2 by

the same formula (1.2.1) in which we replace each λk by λ
1
2
k . Then P

1
2 > 0 and

P
1
2 P

1
2 = P . If A0, A1 ∈ L(X) are self-adjoint, we write A0 6 A1 (or A1 > A0) if

A1−A0 > 0. Note that for any T ∈ L(U, Y ) we have T ∗T > 0. Moreover, it follows
from the material in the previous section that Ran T ∗T = Ran T ∗.

The square roots of the eigenvalues of T ∗T are called the singular values of T . It
follows from the factorization (1.2.1) applied to A = T ∗T that

‖T‖2 = sup
‖q‖61

〈Λq, q〉 ,

which implies that ‖T‖ is the largest singular value of T . In particular, if T ∗ = T
then its singular values are |λk|, where λk ∈ σ(T ).

Recall from the previous section that if V is a subspace of X then every x ∈ X
has a unique decomposition x = v + w, where v ∈ V and w ∈ V ⊥. Therefore, there
exists an operator PV ∈ L(X) such that PV x = v. We have P 2

V = PV , PV = P ∗
V

(these properties imply PV > 0) and Ran PV = V (hence Ker PV = V ⊥). This
operator is called the orthogonal projector onto V .

An operator P ∈ L(X) is called strictly positive if there exists an ε > 0 such that
P > εI. This property is written in the form P > 0. We have P > 0 iff 〈Px, x〉 > 0
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holds for every non-zero x ∈ X. If P = P ∗ then P > 0 iff all its eigenvalues are
strictly positive. The number ε mentioned earlier can be taken to be the smallest
eigenvalue of P . If P > 0 then P is invertible and P−1 > 0.

Suppose that (b1, . . . bn) is an algebraic basis in X and A ∈ L(X). Denote Q =
[b1 . . . bn], so that Q ∈ L(Cn, X) is invertible. Then the matrix of A in the basis
(b1, . . . bn) is

Ã = Q−1AQ.

In the following theorem we use the notation diag to construct a block diagonal
matrix: if J1, J2, . . . Jl are square matrices, then diag (J1, J2, . . . Jl) is the square
matrix which has the matrices Jk on its diagonal and zero everywhere else.

Theorem 1.2.2. If A ∈ L(X) then there exists an algebraic basis (b1, . . . bn) in X
such that Ã, the matrix of A in this basis, is

Ã = diag (J1, J2, . . . Jl) , Jk ∈ Cdk×dk , Jk = λkI + N (1.2.2)

(where k = 1, 2, . . . l). Here N denotes a square matrix (of any dimension) with 1
directly under the diagonal and 0 everywhere else.

Clearly we must have d1 + d2 . . . + dl = n. It is easy to see that if N ∈ Cdk×dk

then Ndk = 0. We have σ(Jk) = {λk}, whence σ(A) = {λ1, λ2, . . . λl} (there may
be repetitions in the finite sequence (λk)). The matrices Jk are called Jordan blocks.
Each Jordan block has only one independent eigenvector. There is an alternative
dual statement of the last theorem, in which the matrix N is replaced by N∗ (in
N∗, the ones are above the diagonal).

Most matrices A ∈ Cn×n have n independent eigenvectors (this is the case, for
instance, if A has distinct eigenvalues). In this case, choosing the algebraic basis
(b1, . . . bn) to consist of eigenvectors of A, we obtain l = n and dk = 1 in (1.2.2). In
this case, N = 0 and we obtain Ã = diag (λ1, λ2, . . . λn). The factorization (1.2.1)
shows that this is true, in particular, for self-adjoint A. In this very particular case
we have the added advantage that the basis can be chosen orthonormal.

1.3 Matrix exponentials

In this section we recall the main facts about etA, where t ∈ R, X is a finite-
dimensional complex inner product space and A ∈ L(X). In this section, we prove
our statements. Good references that present (also) matrix exponentials are, for
example, Bellman [16], Hirsch and Smale [98], Horn and Johnson [105], Kwakernaak
and Sivan [135], Lancaster and Tismenetsky [141] and Perko [183].

For A ∈ L(X) and t ∈ R, the operator etA is defined by the Taylor series

etA = I + tA +
t2

2!
A2 +

t3

3!
A3 + ...
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which converges for every t ∈ C, but we shall only consider real t. The absolute
convergence of the above series follows from the fact that its k-th term is dominated
by the k-th term of the scalar Taylor series for e|t|·‖A‖:

∥∥∥∥
tk

k!
Ak

∥∥∥∥ 6 |t|k
k!
‖A‖k .

This estimate also proves that

‖etA‖ 6 e|t|·‖A‖ ∀ t ∈ R . (1.3.1)

From the definition it follows by a short argument that

e(t+τ)A = etAeτA , e0A = I

for every t, τ ∈ R. Also from the definition of etA and using also the absolute
convergence of the series, it is easy to derive that

d

dt
etA = AetA = etAA ∀ t ∈ R . (1.3.2)

Example 1.3.1. Take X = C2 and let A ∈ L(X) be defined by its matrix

A =

[
α −ω
ω α

]
, where α, ω ∈ R .

Then from the definition it is not difficult to see that

etA = eαt

[
cos ωt − sin ωt
sin ωt cos ωt

]
.

The following simple observation is often useful: if x ∈ X is an eigenvector of A
corresponding to the eigenvalue λ, then etAx = etλx.

Recall from the previous section that if we represent A by its matrix Ã in some
algebraic basis (b1, . . . bn) then, denoting Q = [b1 . . . bn] we have

Q ∈ L(Cn, X) , A = QÃQ−1 .

In this case it follows from the definition of etA by a simple argument that

etA = QetÃQ−1 ∀ t ∈ R . (1.3.3)

For example, if A is self-adjoint, so that the factorization (1.2.1) holds, then

etA = QetΛQ∗ , where etΛ = diag (etλ1 , etλ2 , . . . etλn) .

According to Theorem 1.2.2 we can always choose the algebraic basis (b1, . . . bn)
such that Ã is as in (1.2.2) (block diagonal with Jordan blocks). Then it is easy to
see that etA is represented (in the same basis) by the block diagonal matrix

etÃ = diag
(
etJ1 , etJ2 , . . . etJl

)
. (1.3.4)
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From Jk = λkI + N ∈ Cdk×dk (see the explanations after (1.2.2)) it follows that

etJk = etλketN , etN = I + tN +
t2

2!
N2 . . . +

tm

m!
Nm ,

where m = dk − 1. The series defining etN is finite because Ndk = 0. It follows that

etJk = etλk




1 0 0 0 · · ·
t 1 0 0 · · ·
t2

2!
t 1 0 · · ·

t3

3!
t2

2!
t 1 · · ·

...
...

...
...




. (1.3.5)

Example 1.3.2. If in a suitable algebraic basis the matrix of A is

Ã =




λ 0 0
0 µ 0
0 1 µ


 where λ, µ ∈ C . (1.3.6)

then the matrix of etA in the same basis is

etÃ =




etλ 0 0
0 etµ 0
0 tetµ etµ


 .

Proposition 1.3.3. Denote s0(A) = sup {Re λ | λ ∈ σ(A)}. Then for every ω >
s0(A) there exists Mω > 1 such that

‖etA‖ 6 Mω eωt ∀ t ∈ [0,∞) .

Proof. From (1.3.5) we see that there exists mk > 1 such that
∥∥etJk

∥∥ 6 mk(1 + |t|m)etRe λk ∀ t ∈ R ,

where m = dk − 1. Going back to (1.3.4) we see that there exists M > 1 such that

‖etÃ‖ 6 M(1 + |t|m0)ets0(A) ∀ t > 0 , (1.3.7)

where m0 = max{d1, d2, . . . dl}−1. Using (1.3.3) together with (1.3.7) implies (after
some reasoning) the estimate in the proposition.

The number s0(A) introduced above is called the spectral bound of A. In the next
proposition we compute the Laplace transform of etA, which is well defined in the
right half-plane determined by s0(A).

Proposition 1.3.4. For every s ∈ C with Re s > s0(A) we have

∞∫

0

e−stetAdt = (sI − A)−1 .
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Proof. Proposition 1.3.3 implies that the Laplace integral above converges. Let us
denote by R(s) the Laplace transform of etA. We know that d

dt
etA = AetA. Applying

the Laplace integral to both sides, we obtain that sR(s) − I = AR(s). From here,
(sI − A)R(s) = I and the formula in the proposition follows.

Remark 1.3.5. For any subspace V ⊂ X the following properties are equivalent:
(1) AV ⊂ V , (2) A∗V ⊥ ⊂ V ⊥, (3) etAV ⊂ V for all t in an interval. Such a subspace
V is called A-invariant. If AV denotes the restriction of A to V , then σ(AV ) ⊂ σ(A).
The proofs of these statements are easy and we omit them.

For any A ∈ L(X), we define its real and imaginary parts by

Re A =
1

2
(A + A∗) , Im A =

1

2i
(A− A∗) .

These are self-adjoint operators and A = Re A + iIm A, so that

Re 〈Ax, x〉 = 〈(Re A)x, x〉 .

The operator A ∈ L(X) is called dissipative if Re A 6 0.

Proposition 1.3.6. If A is dissipative, then ‖etA‖ 6 1 for all t > 0.

Proof. For every x ∈ X and t ∈ R we have, using (1.3.2),

d

dt
‖etAx‖2 = 〈AetAx, etAx〉+ 〈etAx, AetAx〉 = 2〈(Re A)etAx, etAx〉 6 0 ,

so that ‖etAx‖2 is non-increasing. This implies that ‖etAx‖ 6 ‖x‖ for all t > 0.

The operator A ∈ L(X) is called skew-adjoint if Re A = 0. Equivalently, iA is
self-adjoint. For example, the matrix A in Example 1.3.1 is skew-adjoint if α = 0.

Proposition 1.3.7. If A is skew-adjoint, then etA is unitary for all t ∈ R.

Proof. Arguing as in the proof of the previous proposition, we obtain that for
every x ∈ X, ‖etAx‖2 is constant (as a function of t ∈ R). This implies that etA is
isometric, and hence unitary, for all t ∈ R.

1.4 Observability and controllability for finite-dimensional
linear systems

In the remaining part of this chapter we introduce basic concepts concerning linear
time-invariant systems, with emphasis on controllability and observability. We work
with systems that have finite-dimensional input, state and output spaces, but the
style of our presentation is such as to suit generalizations to infinite-dimensional
systems in the later chapters. For good introductory chapters on such systems we
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refer to D’Azzo and Houpis [46], Friedland [68], Ionescu, Oară and Weiss [109],
Kwakernaak and Sivan [135], Maciejowski [164], Rugh [196] and Wonham [237].

Let U,X and Y be finite-dimensional inner product spaces. We denote n = dim X.
A finite-dimensional linear time-invariant (LTI) system Σ with input space U , state
space X and output space Y is described by the equations

{
ż(t) = Az(t) + Bu(t),

y(t) = Cz(t) + Du(t),
(1.4.1)

where u(t) ∈ U , u is the input function (or input signal) of Σ, z(t) ∈ X is its
state at time t, y(t) ∈ Y and y is the output function (or output signal) of Σ.
Usually t is considered to be in the interval [0,∞) (but occasionally other intervals
are considered). In the above equations, A,B,C,D are linear operators such that
A : X → X, B : U → X, C : X → Y and D : U → Y . The differential equation in
(1.4.1) has, for any continuous u and any initial state z(0), the unique solution

z(t) = etAz(0) +

t∫

0

e(t−σ)ABu(σ)dσ. (1.4.2)

This formula defines the state trajectories z(·) also for input signals that are not
continuous, for example for u ∈ L2([0,∞); U). Even for such input functions, z(t) is
a continuous function of the time t. Notice that z(t) does not depend on the values
u(θ) for θ > t, a property called causality.

Definition 1.4.1. The operator A (or the system Σ) is stable if limt→∞ etA = 0.

We see that A is stable iff s0(A) < 0 (this follows from Proposition 1.3.3). Thus,
A is stable iff all its eigenvalues are in the open left half-plane of C.

For any u ∈ L2([0,∞); U) and τ > 0, we denote by Pτu the truncation of u to the
interval [0, τ ]. For any linear system as above we introduce two families of operators
depending on τ > 0, Φτ ∈ L(L2([0,∞); U), X) and Ψτ ∈ L(X, L2([0,∞); Y )), by

Φτ u =

τ∫

0

e(τ−σ)A B u(σ)dσ, (Ψτ x)(t) =

{
C eAtx for t ∈ [0, τ ] ,

0 for t > τ .

Note that if in (1.4.1) we have z(0) = 0, then z(τ) = Φτu. If instead we have
u = 0 and z(0) = x, then Pτy = Ψτx. For this reason, the operators Φτ are called
the input maps of Σ, while Ψτ are called the output maps of Σ.

We have ΦτPτ = Φτ (causality) and PτΨτ = Ψτ .

For the system Σ described by (1.4.1), the dual system Σd is described by

{
żd(t) = A∗zd(t) + C∗yd(t),

ud(t) = B∗zd(t) + D∗yd(t),
(1.4.3)
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where yd(t) ∈ Y is the input function of Σd at time t, zd(t) ∈ X is its state at time
t and ud(t) ∈ U is its output function at time t. We denote by Φd

τ and Ψd
τ the input

and the output maps of Σd.

In order to express the adjoints of the operators Φτ and Ψτ , we need the time-
reflection operators Rτ ∈ L(L2([0,∞); U)) defined for all τ > 0 as follows:

( Rτu)(t) =

{
u(τ − t) for t ∈ [0, τ ],

0 for t > τ.

It will be useful to note that

R∗τ = Rτ and R2τ = Pτ . (1.4.4)

The notation introduced so far in this section will be used throughout the section.

Definition 1.4.2. The system Σ (or the pair (A,C)) is observable if for some τ > 0
we have Ker Ψτ = {0}. The system Σ (or the pair (A,B)) is controllable if for some
τ > 0 we have Ran Φτ = X.

Observability and controllability are dual properties, as the following proposition
and its corollaries show.

Proposition 1.4.3. For all τ > 0 we have Φ∗
τ = RτΨ

d
τ .

Proof. For every z0 ∈ X and u ∈ L2([0,∞); U) we have

〈Φτu, z0〉 =

τ∫

0

〈
e(τ−σ)ABu(σ), z0

〉
dσ

=

τ∫

0

〈
u(σ), B∗e(τ−σ)A∗z0

〉
dσ = 〈u, RτΨ

d
τz0〉 ,

This implies the stated equality.

We can express Φ∗
τ in terms of A and B as follows:

(Φ∗
τ x)(t) = B∗e(τ−t)A∗x ∀ t ∈ [0, τ ] .

Corollary 1.4.4. For all τ > 0 we have Ran Φτ =
(
Ker Ψd

τ

)⊥
.

Proof. According to (1.1.7) and using the previous proposition, we have

(Ran Φτ )
⊥ = Ker Φ∗

τ = Ker RτΨ
d
τ .

Since Ker RτΨ
d
τ = Ker Ψd

τ , we obtain that (Ran Φτ )
⊥ = Ker Ψd

τ . Taking orthogonal
complements and using (1.1.3), we obtain the desired equality.
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Corollary 1.4.5. We have Ran Φτ = X if and only if Ker Ψd
τ = {0}. Thus, (A,B)

is controllable if and only if (A∗, B∗) is observable.

This is an obvious consequence of the previous corollary.

Corollary 1.4.6. We have Ψ∗
τ = Φd

τ Rτ and Ker Ψτ =
(
Ran Φd

τ

)⊥
.

Proof. To prove the first statement, we use Proposition 1.4.3 in which we replace
Σ by Σd, i.e., we replace A by A∗, B by C∗ and U by Y . This yields (Φd

τ )
∗ =

RτΨτ . We apply Rτ to both sides and obtain (using (1.4.4) and PτΨτ = Ψτ ) that
Rτ (Φ

d
τ )
∗ = Ψτ . By taking adjoints (and using again (1.4.4)), we obtain the first

statement of the proposition. The second statement follows from the first by using
(1.1.7) and the fact that Ran Φd

τ Rτ = Ran Φd
τ .

Proposition 1.4.7. We have, for every τ > 0,

Ker Ψτ = Ker




C
CA
CA2

...
CAn−1




. (1.4.5)

Proof. Let z0 ∈ Ker Ψτ . Then the analytic function y(t) = CetAz0 is zero on
the interval [0, τ ], so that its derivatives of any order at t = 0 are all zero, so that
CAkz0 = 0 for all integers k > 0. This implies that z0 is in the null-space of the big
matrix appearing in (1.4.5).

Conversely, suppose that z0 ∈ X is in the null-space of the big matrix in (1.4.5).
This means that CAkz0 = 0 for 0 6 k 6 n − 1. Since the powers Ak for k > n are
linear combinations of the lower powers of A (this is a consequence of the Cayley-
Hamilton theorem mentioned in Section 1.2), it follows that CAkz0 = 0 for all
integers k > 0. Looking at the Taylor series of y(t) = CetAz0, it follows that
y(t) = 0 for all t. Hence, z0 ∈ Ker Ψτ holds for every τ > 0.

Note that (1.4.5) implies that Ker Ψτ is independent of τ . This space is called
the unobservable space of the system Σ (or of the pair (A,C)). It can be derived
from (1.4.5) that Ker Ψτ is the largest subspace of X that is invariant under A and
contained in Ker C.

The following corollary is known as the Kalman rank condition for observability.

Corollary 1.4.8. The pair (A,C) is observable if and only if

rank




C
CA
CA2

...
CAn−1




= n. (1.4.6)
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Indeed, since the big matrix above has n columns, the condition that its null-space
is {0} is equivalent to its rank being n.

Corollary 1.4.9. We have, for every τ > 0,

Ran Φτ = Ran
[
B AB A2B · · · An−1B

]
. (1.4.7)

Proof. Combining Proposition 1.4.4 with Proposition 1.4.7, we obtain

Ran Φτ =




Ker




B∗

B∗A∗

B∗(A∗)2

...
B∗(A∗)n−1







⊥

.

Finally, we compute the above orthogonal complement using (1.1.3) and (1.1.7).

Note that (1.4.7) implies that Ran Φτ is independent of τ . This space is called
the controllable space of the system Σ (or of the pair (A,B)). It can be derived
from (1.4.7) that Ran Φτ is the smallest subspace of X that is invariant under A
and contains Ran B.

The following corollary is known as the Kalman rank condition for controllability.

Corollary 1.4.10. The pair (A,B) is controllable if and only if

rank
[
B AB A2B · · · An−1B

]
= n. (1.4.8)

Indeed, since the big matrix above has n rows, the condition that its range is X
is equivalent to its rank being n.

1.5 The Hautus test and Gramians

In this section we present the Hautus test for controllability or observability and
we introduce controllability and observability Gramians, both in finite time and on
an infinite time interval. While some of the results in the previous section cannot
be extended to infinite-dimensional systems, those in this section all can, and this
will be a main theme of the later chapters.

We use the same notation as in the previous section: U,X and Y are finite-
dimensional inner product spaces, n = dim X, and Σ is an LTI system with input
space U , state space X and output space Y described by (1.4.1).

The following propositions is known as the Hautus test for observability.

Proposition 1.5.1. The pair (A,C) is observable if and only if

rank

[
A− λI

C

]
= n ∀ λ ∈ σ(A) .
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Proof. Denote N = Ker Ψτ for some τ > 0 (we know from Proposition 1.4.7 that
N is independent of τ). Assume that (A,C) is not observable, so that N 6= {0}. It
is easy to see that etAN ⊂ N for all t > 0. According to Remark 1.3.5, this implies
AN ⊂ N . Let AN be the restriction of A to N , so that AN ∈ L(N ). Clearly,
σ(AN ) ⊂ σ(A). Since N 6= {0}, σ(AN ) is not empty. Take λ ∈ σ(AN ) and let
xλ ∈ N be a corresponding eigenvector. Then Cxλ = (Ψτxλ)(0) = 0, so that

[
A− λI

C

]
xλ = 0 ⇒ rank

[
A− λI

C

]
< n.

Conversely, if rank
[

A−λI
C

]
< n for some λ ∈ σ(A), then for some vector xλ ∈ X,

xλ 6= 0 we have (A− λI)xλ = 0 (i.e., xλ is an eigenvector of A) and Cxλ = 0. Then
etAxλ = eλtxλ for all t ∈ R and hence Ψτxλ = 0 for all τ > 0.

Remark 1.5.2. It follows from the last proposition that (A,C) is observable iff
Cz 6= 0 for every eigenvector z of A.

Remark 1.5.3. We can rewrite the last proposition as follows: (A,C) is observable
iff there exists k > 0 such that for every s ∈ C,

‖(sI − A)z‖2 + ‖Cz‖2 > k2‖z‖2 ∀ z ∈ X. (1.5.1)

Indeed, it is clear that (1.5.1) implies the property displayed in the proposition.
Conversely, if the property in the proposition holds, then clearly

[
A− sI

C

]∗ [
A− sI

C

]
> 0 ∀ s ∈ C .

The smallest eigenvalue of the above positive matrix, denoted λ(s), is a continuous
function of s and lims→∞ λ(s) = ∞. Therefore, there exists k > 0 such that
λ(s) > k2 for all s ∈ C. Now it follows that

(sI − A)∗(sI − A) + C∗C > k2I ∀ s ∈ C ,

and from here it is very easy to obtain (1.5.1). We are interested in the formulation
(1.5.1) of the Hautus test because it resembles the infinite-dimensional versions of
this test, which will be discussed in Sections 6.5 and 6.6.

Remark 1.5.4. We mention that with the same techniques that we used in the
proof of the last proposition, with a little extra effort we could have shown that, in
fact, for every A ∈ L(X), C ∈ L(X,Y ) and τ > 0,

Ker Ψτ = span
⋃

λ∈σ(A)

Ker

[
A− λI

C

]
.

Proposition 1.5.5. The pair (A,B) is controllable if and only if

rank
[
A− λI B

]
= n ∀ λ ∈ σ(A) .
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Proof. According to Corollary 1.4.5, (A,B) is controllable iff (A∗, B∗) is observ-
able. According to Proposition 1.5.1, the latter condition is equivalent to

rank

[
A∗ − µI

B∗

]
= n ∀ µ ∈ σ(A∗) .

Since, for every matrix T we have rank T = rank T ∗, and since µ ∈ σ(A∗) iff
µ ∈ σ(A), we obtain the condition stated in the proposition.

Remark 1.5.6. The dual version of Remark 1.5.4 states that for every A ∈ L(X),
B ∈ L(U,X) and τ > 0,

Ran Φτ =
⋂

λ∈σ(A)

Ran
[
A− λI B

]
.

For every τ > 0, we define the controllability Gramian Rτ and the observability
Gramian Qτ by

Rτ = ΦτΦ
∗
τ , Qτ = Ψ∗

τΨτ .

Notice that Rτ , Qτ ∈ L(X), Rτ > 0 and Qτ > 0. It follows from (1.1.8) that

Ran Rτ = Ran Φτ , Ker Qτ = Ker Ψτ .

Hence, Rτ is invertible iff (A,B) is controllable and Qτ is invertible iff (A,C) is
observable. Using the definitions of Φτ , Ψτ , Proposition 1.4.3 and Corollary 1.4.6,
we obtain

Rτ =

τ∫

0

etABB∗etA∗ dt, Qτ =

τ∫

0

etA∗C∗CetAdt. (1.5.2)

Proposition 1.5.7. Suppose that (A,B) is controllable and let x ∈ X, τ > 0. If

u = Φ∗
τR

−1
τ x,

then Φτu = x. Moreover, among all the inputs v ∈ L2([0,∞); U) for which Φτv = x,
u is the unique one that has minimal norm.

Proof. Clearly we have Φτu = ΦτΦ
∗
τR

−1
τ x = x. If v ∈ L2([0,∞); U) is such that

Φτv = x then it is clear that v = u + ϕ, where ϕ ∈ Ker Φτ = (Ran Φ∗
τ )
⊥. Since u

and ϕ are orthogonal to each other, ‖v‖2 = ‖u‖2 + ‖ϕ‖2. The minimum of ‖v‖ is
achieved only for ϕ = 0, i.e., for v = u.

Remark 1.5.8. The last proposition shows that for a controllable system, the state
trajectory can be driven from any initial state to any final state in any positive
time. Moreover, the proposition gives a simple (analytic) input function that is
needed to achieve this, and which is of minimal norm. Indeed, to drive the system
Σ from the initial state z(0) to the final state z(τ), according to (1.4.2) we must
solve Φτu = z(τ)− eτAz(0), and this can be solved using the last proposition.
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Corollary 1.5.9. Suppose that (A,B) is controllable. Let F be the set of all the
operators F ∈ L(X,L2([0,∞); U)) for which ΦτF = I. One such operator is F0 =
Φ∗

τR
−1
τ . Moreover, F0 is minimal in the sense that

F ∗
0 F0 6 F ∗F ∀ F ∈ F .

Indeed, this is an easy consequence of Proposition 1.5.7. Note that F ∗
0 F0 = R−1

τ .

The last corollary can be restated in a dual form:

Corollary 1.5.10. Suppose that (A,C) is observable. Let H be the set of all the
operators H ∈ L(L2([0,∞); Y ), X) for which HΨτ = I. One such operator is
H0 = Q−1

τ Ψ∗
τ . Moreover, H0 is minimal in the sense that

H0H
∗
0 6 HH∗ ∀ H ∈ H .

Definition 1.5.11. If A is stable, we define the infinite-time controllability Gramian
R ∈ L(X) and the infinite-time observability Gramian Q ∈ L(X) by

R = lim
τ →∞

Rτ , Q = lim
τ →∞

Qτ .

This definition makes sense, since we can see from (1.5.2) that the above limits
exist and

R =

∞∫

0

etABB∗etA∗ dt, Q =

∞∫

0

etA∗C∗CetAdt.

It is clear that R > Rτ > 0 and Q > Qτ > 0 (for all τ > 0).

Remark 1.5.12. We shall need the following simple fact: If A is stable and z 6= 0,
then limt→−∞ ‖etAz‖ = ∞. Indeed, this follows from

‖z‖ = ‖e−tAetAz‖ 6 ‖e−tA‖ · ‖etAz‖ .

Proposition 1.5.13. If A is stable, then the infinite-time Gramians R and Q are
the unique solutions in L(X) of the equations

AR + RA∗ = −BB∗ , QA + A∗Q = − C∗C .

The equations appearing above are called Lyapunov equations. Thanks to these,
R and Q are easy to compute numerically (as opposed to Rτ and Qτ ).

Proof. Denote Π(t) = etABB∗etA∗ , then

d

dt
Π(t) = AΠ(t) + Π(t)A∗ .

Integrating this from 0 to ∞, and taking into account that Π(t)→ 0, we obtain that
AR + RA∗ = −BB∗. The proof of the formula QA + A∗Q = −C∗C is similar.
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To prove the uniqueness of the solution R, suppose that there is another operator
R′ ∈ L(X) satisfying AR′ + R′A∗ = −BB∗. Introducing ∆ = R − R′, we obtain
A∆ + ∆A∗ = 0, hence by induction An∆ = ∆(−A∗)n for all n ∈ N, whence

etA∆ = ∆e−tA∗ ∀ t ∈ R . (1.5.3)

If x ∈ X is such that ∆x 6= 0 then limt→−∞ ‖etA∆x‖ = ∞, according to Remark
1.5.12. This contradicts the fact that the right-hand side of (1.5.3) tends to zero as
t→ −∞. Thus, we must have ∆x = 0 for all x ∈ X, i.e., ∆ = 0.

The uniqueness of Q is proved similarly.

Proposition 1.5.14. With the notation of the last proposition, (A,B) is controllable
if and only if R > 0. (A,C) is observable if and only if Q > 0.

Proof. If (A, C) is observable then (as already mentioned) Qτ > 0 (for every
τ > 0). Since Q > Qτ , it follows that Q > 0. To prove the converse statement,
suppose that (A,C) is not observable and take x ∈ Ker Ψτ , x 6= 0. Then CetAx = 0
for all t > 0, hence Qx = 0, which contradicts Q > 0.

The proof for R > 0 follows by a similar argument applied to the dual system.



Chapter 2

Operator semigroups

In this chapter and the following one, we introduce the basics about strongly
continuous semigroups of operators on Hilbert spaces, which are also called operator
semigroups for short. We concentrate on those aspects which are useful for the later
chapters. As a result, there will be many glaring omissions of subjects normally
found in the literature about semigroups. For example, we shall ignore analytic
semigroups, compact semigroups, spectral mapping theorems and stability theory.

Bibliographic notes. Of the many good books on operator semigroups we men-
tion Butzer and Berens [28], Davies [44], Engel and Nagel [57], Goldstein [71], Hille
and Phillips [97] (who started it all), Pazy [182], Tanabe [213]. The books Arendt,
Batty, Hieber and Neubrander [8], Bensoussan, Da Prato, Delfour and Mitter [17],
Curtain and Zwart [39], Ito and Kappel [110], Luo, Guo and Morgul [163], Staffans
[209] and Yosida [239] have substantial chapters devoted to this topic.

Prerequisites. In the remainder of this book, we assume that the standard con-
cepts and results of functional analysis are known to the reader. These include the
closed graph theorem, the uniform boundedness theorem, some properties of Hilbert
space valued L2 functions, Fourier and Laplace transforms. This material can be
found in many books, of which we mention Akhiezer and Glazman [2], Bochner and
Chandrasekharan [20], Brown and Pearcy [23], Dautray and Lions [42, 43], Dowson
[52], Dunford and Schwartz [53], Rudin [194, 195], Yosida [239]. Nevertheless, some
sections in our two chapters on operator semigroups are devoted to aspects of func-
tional analysis that are not part of semigroup theory. In particular, we are careful to
introduce all the necessary background about unbounded operators. Some results
concerning bounded operators on Hilbert spaces are given in Appendix I (Chapter
12). The background on Sobolev spaces is recalled in Appendix II (Chapter 13).

Notation. Throughout this chapter, X is a complex Hilbert space with the inner
product 〈·, ·〉 and the corresponding norm ‖ · ‖. If X and Z are Hilbert spaces, then
L(X,Z) denotes the space of bounded linear operators from X to Z, with the usual
(induced) norm. We write L(X) = L(X, X). We use an arrow, as in xn→ x, to
indicate convergence in norm. Sometimes we put a subscript near a norm or an
inner product, such as in ‖z‖X , to indicate which norm or inner product we are
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using. If X and Z are Hilbert spaces, we write the elements of X × Z either in the
form (x, z) (with x ∈ X and z ∈ Z) or [ x

z ]. On X × Z we consider the natural
inner product 〈(x1, z1), (x2, z2)〉 = 〈x1, x2〉+ 〈z1, z2〉. The domain, range and kernel
of an operator T will be denoted by D(T ), Ran T and Ker T , respectively. For any
α ∈ R, we denote Cα = {s ∈ C | Re s > α}. In particular, the right half-plane C0

will appear often in our considerations.

For any open interval J and any Hilbert space U , the Sobolev space H1(J ; U)
consists of those locally absolutely continuous functions z : J →U for which dz

dt
∈

L2(J ; U). The spaceH2(J ; U) is defined similarly, but now we require dz
dt
∈ H1(J ; U).

The space H1
0(J ; U) consists of those functions in H1(J ; U) which vanish at the

endpoints of J (i.e., they have limits equal to zero there). (If J is infinite, then at
the infinite endpoints of J , the limit is zero anyway, for any function in H1(J ; U).)
Occasionally we need also the space

H2
0(J ; U) =

{
h ∈ H2(J ; U) ∩H1

0(J ; U)

∣∣∣∣
dh

dx
∈ H1

0(J ; U)

}
.

For any interval J (not necessarily open), C(J ; X) = C0(J ; X) consists of all the
continuous functions from J to X, while Cm(J ; X) (for m ∈ N) consists of all the
m times differentiable functions from J to X whose derivatives of order 6 m are in
C(J ; X). Functions in Cm(J ; X) are also called functions of class Cm.

2.1 Strongly continuous semigroups and their generators

We have seen in the previous chapter that the family of operators (etA)t>0 (where A
is a linear operator on a finite-dimensional vector space) is important, as it describes
the evolution of the state of a linear system in the absence of an input. If we want
to study systems whose state space is a Hilbert space, then we need the natural
generalization of such a family to a family of operators acting on a Hilbert space.
Different generalizations are possible, but it seems that the right concept is that of
a strongly continuous semigroup of operators. The theory of such semigroups is now
a standard part of functional analysis, but due to its special importance for us, we
devote a chapter to introducing this material from scratch.

Definition 2.1.1. A family T = (Tt)t>0 of operators in L(X) is a strongly contin-
uous semigroup on X if

(1) T0 = I,

(2) Tt+τ = TtTτ for every t, τ > 0 (the semigroup property),

(3) lim
t→ 0, t>0

Ttz = z, for all z ∈ X (strong continuity).

The intuitive meaning of such a family of operators is that it describes the evo-
lution of the state of a process, in the following way: If z0 ∈ X is the initial state
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of the process at time t = 0, then its state at time t > 0 is z(t) = Ttz0. Note that
z(t + τ) = Ttz(τ), so that the process does not change its nature in time.

A simple but very limited class of strongly continuous semigroups is obtained as
follows: Let A ∈ L(X) and put (as in Chapter 1)

Tt = etA =
∞∑

k=0

(tA)k

k!
. (2.1.1)

It is easy to see that this series converges in L(X) for every t > 0 (in fact, for every
t ∈ C), and the function Tt is uniformly continuous, i.e., we have limt→ 0 ‖Tt− I‖ =
0. It is not difficult to prove that the only uniformly continuous semigroups are the
ones defined as in (2.1.1), with A ∈ L(X) (see, for instance, Pazy [182, p. 2] or
Rudin [195, p. 359]). It follows easily from (2.1.1) that

∥∥etA
∥∥ 6 et‖A‖ ∀ t > 0 . (2.1.2)

The growth bound of the strongly continuous semigroup T is the number ω0(T)
defined by

ω0(T) = inf
t∈(0,∞)

1

t
log ‖Tt‖ . (2.1.3)

Clearly ω0(T) ∈ [−∞,∞). The name “growth bound” is justified by the following:

Proposition 2.1.2. Let T be a strongly continuous semigroup on X, with growth
bound ω0(T). Then

(1) ω0(T) = limt→∞ 1
t
log ‖Tt‖,

(2) For any ω > ω0(T) there exists an Mω ∈ [1,∞) such that

‖Tt‖ 6 Mωeωt ∀ t ∈ [0,∞) . (2.1.4)

(3) The function ϕ : [0,∞)×X→X defined by ϕ(t, z) = Ttz is continuous (with
respect to the product topology).

Proof. Let z ∈ X. From the right continuity of the function t 7→ Ttz at t = 0
it follows that there exists a τ > 0 such that this function is bounded on [0, τ ].
Because of the semigroup property, the same function is bounded on [0, T ], for any
T > 0. By applying the uniform boundedness theorem, it follows that the function
t 7→ ‖Tt‖ is bounded for t ∈ [0, T ], for any T > 0.

Now we prove point (1) of the proposition. Let us denote p(t) = log ‖Tt‖. From
the semigroup property we have p(t + τ) 6 p(t) + p(τ). Let us denote by [t] and by
{t} the integer and the fractionary part of t ∈ [0,∞). We have

p(t) = p ([t] + {t}) 6 [t]p(1) + p ({t}) .
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From the first part of this proof we know that p ({t}) is bounded from above. Di-
viding by t and taking lim sup, we get

lim sup
t→∞

p(t)

t
6 p(1) .

The same formula (with the same proof) holds if we replace p with pα, where pα(t) =
p(αt), α ∈ (0,∞). From this we get

lim sup
t→∞

p(t)

t
6 p(α)

α
∀ α > 0 ,

hence lim supt→∞
p(t)

t
6 inft∈(0,∞)

p(t)
t

. The opposite inequality obviously holds, so
that we get

lim
t→∞

p(t)

t
= inf

t∈(0,∞)

p(t)

t
= ω0(T) .

Point (2) follows easily from point (1). Indeed, if ω > ω0(T) then

‖Tt‖ 6 eωt for all t > tω

holds for some tω > 0. Hence, we may put Mω = supt∈[0,tω ] ‖Tt‖ e−ωt.

We turn to point (3). First we prove that for every fixed z0 ∈ X, the function
t→ϕ(t, z0) is continuous. The continuity from the right is clear. To show the con-
tinuity from the left, let tn→ t0 > 0 with tn < t0. Then ‖ϕ(tn, z) − ϕ(t0, z)‖ =
‖Ttn(I − Tt0−tn)z‖ 6 K‖(I − Tt0−tn)z‖, where K is some upper bound for ‖Ttn‖.
Finally, we prove the continuity of ϕ. Let (tn, zn)→ (t0, z0) ∈ [0,∞)×X. Then

Ttnzn − Tt0z0 = Ttn(zn − z0) + Ttnz0 − Tt0z0 ,

which implies that

‖ϕ (tn, zn)− ϕ (t0, z0)‖ 6 K ‖zn − z0‖+ ‖ϕ(tn, z0)− ϕ(t0, z0)‖ ,

where K is again some upper bound for ‖Ttn‖.

Definition 2.1.3. Let T be a strongly continuous semigroup on X, with growth
bound ω0(T). This semigroup is called exponentially stable if ω0(T) < 0.

Definition 2.1.4. The linear operator A : D(A)→X defined by

D(A) =

{
z ∈ X

∣∣∣∣ lim
t→ 0, t>0

Ttz − z

t
exists

}
,

Az = lim
t→ 0, t>0

Ttz − z

t
∀ z ∈ D(A),

is called the infinitesimal generator (or just the generator) of the semigroup T.
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For example, if Tt = etA, as discussed around (2.1.1), then its generator is A.

Proposition 2.1.5. Let T be a strongly continuous semigroup on X, with generator
A. Then for every z ∈ D(A) and t > 0 we have that Ttz ∈ D(A) and

d

dt
Ttz = ATtz = TtAz. (2.1.5)

Proof. If z ∈ D(A), t > 0 and τ > 0, then

Tτ − I

τ
Ttz = Tt

Tτ − I

τ
z→TtAz, as τ → 0 . (2.1.6)

Thus, Ttz ∈ D(A) and ATtz = TtAz. Moreover, (2.1.6) implies that the derivative
from the right of Ttz exists and is equal to ATtz. We have to show that for t > 0,
the left derivative of Ttz also exists and is equal to TtAz. This will follow from

Ttz − Tt−τz

τ
− TtAz = Tt−τ

[
Tτz − z

τ
− Az

]
+ (Tt−τAz − TtAz) .

Indeed, using Proposition 2.1.2 and the first part of this proof, we see that both
terms on the right-hand side above converge to zero as τ → 0.

Proposition 2.1.6. Let T be a strongly continuous semigroup on X, with generator
A. Let z0 ∈ X and for every τ > 0 put

zτ =
1

τ

τ∫

0

Ttz0dt.

Then zτ ∈ D(A) and limτ → 0 zτ = z0.

Proof. The fact that zτ → z0 (as τ → 0) follows from the continuity of the function
t 7→ Ttz0 (since zτ is the average of this function over [0, τ ]). For every τ, h > 0,

Th − I

h
zτ =

1

hτ

τ+h∫

τ

Ttz0dt− 1

hτ

h∫

0

Ttz0dt.

Taking limits as h→ 0, we get that zτ ∈ D(A) and Azτ = 1
τ

(Tτ z0 − z0).

Remark 2.1.7. The above proof also shows the following useful fact:

Tτz − z = A

τ∫

0

Tσzdσ ∀ z ∈ X.

Corollary 2.1.8. If A is as above, then D(A) is dense in X.

Some simple examples of semigroups will be given at the end of Section 2.3.
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2.2 The spectrum and the resolvents of an operator

In this section we collect some general facts about the spectrum, the resolvent
set and the resolvents of a possibly unbounded operator on a Hilbert space X,
without any reference to strongly continuous semigroups of operators. The material
is standard in books or chapters on operator theory, such as Akhiezer and Glazman
[2], Brezis [22], Davies [45], Dowson [52], Kato [127], Yosida [239].

Definition 2.2.1. Let X and Z be Hilbert spaces and let D(A) be a subspace
of X. A linear operator A : D(A)→Z is called closed if its graph, defined by
G(A) =

{[
f

Af

] ∣∣ f ∈ D(A)
}
, is closed in X × Z.

Clearly, A is closed iff for any sequence (zn) in D(A) such that zn→ z (in X) and
Azn→ g (in Z), we have z ∈ D(A) and Az = g. It follows that if A is closed, then
D(A) is a Hilbert space with the graph norm ‖ · ‖gr defined by

‖z‖2
gr = ‖z‖2

X + ‖Az‖2
Z . (2.2.1)

An operator A : D(A)→Z is called bounded if it has a continuous extension to the
closure of D(A). If A is closed, then it follows from the closed graph theorem that
it is bounded iff D(A) is closed. Clearly, every T ∈ L(X, Z) is closed.

Remark 2.2.2. It will be useful to note that if A : D(A)→Z is closed, where
D(A) ⊂ X, and if P ∈ L(X, Z), then also A + P is closed (the domain of A + P is
again D(A)). The proof of this fact is left to the reader.

Definition 2.2.3. If A : D(A) → X, where D(A) ⊂ X, then the resolvent set of
A, denoted ρ(A), is the set of those points s ∈ C for which the operator sI − A :
D(A) → X is invertible and (sI −A)−1 ∈ L(X). The spectrum of A, denoted σ(A),
is the complement of ρ(A) in C. (sI − A)−1 is called a resolvent of A.

Remark 2.2.4. If ρ(A) is not empty, then A is closed. Indeed, if s ∈ ρ(A) then
the graph G(sI − A) is the same as G ((sI − A)−1), except the coordinates are in
reversed order. Thus, sI − A is closed. By Remark 2.2.2, A is closed.

Remark 2.2.5. If A : D(A)→X and β, s ∈ ρ(A), then simple algebraic manipula-
tions show that the following identity holds:

(sI − A)−1 − (βI − A)−1 = (β − s)(sI − A)−1(βI − A)−1 .

This formula is known as the resolvent identity.

Lemma 2.2.6. If T ∈ L(X) is such that ‖T‖ < 1, then I − T is invertible and

(I − T )−1 = I + T + T 2 + T 3 . . . , ‖(I − T )−1‖ 6 1

1− ‖T‖ .

The proof of this lemma is easy and it is left to the reader.



The spectrum and the resolvents of an operator 35

Proposition 2.2.7. Suppose A : D(A) → X, D(A) ⊂ X and β ∈ ρ(A). Denote
rβ = ‖(βI − A)−1‖. If s ∈ C is such that |s− β| < 1

rβ
, then s ∈ ρ(A) and

‖(sI − A)−1‖ 6 rβ

1− |s− β|rβ

. (2.2.2)

Proof. If we knew that s ∈ ρ(A), then according to Remark 2.2.5 we would have

(sI − A)−1
[
I + (s− β)(βI − A)−1

]
= (βI − A)−1 .

If |s − β| < 1
rβ

, then we have ‖(s − β)(βI − A)−1‖ < 1. According to Lemma

2.2.6, the expression in the square brackets above is invertible. The above formula
suggests to define Rs ∈ L(X) (our candidate for (sI − A)−1) by

Rs = (βI − A)−1
[
I + (s− β)(βI − A)−1

]−1
. (2.2.3)

Simple algebraic manipulations show that Rs(sI − A)z = z for all z ∈ D(A) and
(sI − A)Rsz = z for all z ∈ X, hence s ∈ ρ(A) and Rs = (sI − A)−1. Using again
Lemma 2.2.6, it is easy to see that ‖Rs‖ satisfies the estimate (2.2.2).

Remark 2.2.8. From the last proposition it follows that for any A : D(A)→X, the
set ρ(A) is open and hence, σ(A) is closed. It also follows that for every β ∈ ρ(A),
|λ− β| > 1

rβ
for every λ ∈ σ(A), and hence

‖(βI − A)−1‖ > 1

min
λ∈σ(A)

|β − λ| .

Remark 2.2.9. We can use steps from the proof of Proposition 2.2.7 to show that
(sI −A)−1 is an analytic L(X)-valued function of s ∈ ρ(A). Indeed, formula (2.2.3)
together with Lemma 2.2.6 shows that if β ∈ ρ(A) and |s− β| < 1

rβ
, then

(sI − A)−1 = (βI − A)−1

∞∑

k=0

(β − s)k(βI − A)−k .

This is a Taylor series around the point β, proving the analyticity at β. In particular,

(
d

ds

)k

(sI − A)−1 = (−1)kk!(sI − A)−(k+1) ∀ k ∈ N . (2.2.4)

Proposition 2.2.10. If A ∈ L(X), then |λ| 6 ‖A‖ for every λ ∈ σ(A).

Proof. Suppose that |λ| > ‖A‖. Then λI − A = λ
(
I − A

λ

)
. Here, both factors

are invertible, the second because of Lemma 2.2.6. Hence, λ ∈ ρ(A).

For any A ∈ L(X), the number

r(A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A. It follows from the last proposition that r(A) 6
‖A‖. A stronger statement will be proved at the end of this section.



36 Operator semigroups

Lemma 2.2.11. If A ∈ L(X) and r > r(A), then there exists mr > 0 such that

‖An‖ 6 mrr
n ∀ n ∈ N .

Proof. For every α, γ > 0 we denote

Dα = {s ∈ C | |s| < α} , Cγ = {s ∈ C | |s| = γ} .
For α = 1

r(A)
we define the function f : Dα→L(X) by

f(s) = (I − sA)−1 .

By Remark 2.2.9, f is analytic. According to Lemma 2.2.6, for |s| · ‖A‖ < 1 we have
f(s) = I + sA + s2A2 + s3A3 . . .. This, together with Cauchy’s formula from the
theory of analytic functions, implies that for every γ > 0 such that γ · ‖A‖ < 1,

An =
1

2πi

∫

Cγ

f(s)
ds

sn+1
∀ n ∈ N . (2.2.5)

By Cauchy’s theorem the above formula remains valid for every γ ∈ (0, α). Denoting
cγ = maxs∈Cγ ‖f(s)‖, we obtain that ‖An‖ 6 cγ

1
γn . Denoting r = 1

γ
and mr = cγ,

we obtain the desired estimate.

Let A : D(A)→X with D(A) ⊂ X. We define the space D(An) recursively:

D(An) = {z ∈ D(A) | Az ∈ D(An−1)} .
The powers of A, An : D(An)→X are defined in the obvious way.

Proposition 2.2.12. Let A : D(A)→X and let p be a polynomial. Then

σ(p(A)) = p(σ(A)) .

Moreover, if 0 ∈ ρ(A) then σ(A−1) = {0} ∪ 1/σ(A) if D(A) 6= X, and σ(A−1) =
1/σ(A) if D(A) = X.

Proof. Denote the order of p by n. For any λ ∈ C we can decompose λ− p(x) =
(γ1(λ)− x)(γ2(λ)− x) . . . (γn(λ)− x), where p(γj(λ)) = λ. Then we have

λI − p(A) = (γ1(λ)I − A)(γ2(λ)I − A) . . . (γn(λ)I − A) ,

which shows that λ ∈ σ(p(A)) iff γj(λ) ∈ σ(A) for at least one j ∈ {1, 2, . . . n}. The
latter condition is equivalent to λ ∈ p(σ(A)). The statement about A−1 is easy (but
slightly tedious) to prove and this task is left to the reader.

Corollary 2.2.13. Suppose that A : D(A) → X, where D(A) ⊂ X and λ, s ∈ C,
λ 6= s, s ∈ ρ(A). Then the following statements are equivalent:

(1) λ ∈ σ(A).

(2) 1
s−λ

∈ σ((sI − A)−1).
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This follows from the last part of Proposition 2.2.12 by replacing A with λI −A.

Remark 2.2.14. It follows from the last proposition and its corollary that r(An) =
r(A)n and also that for s ∈ ρ(A) we have

r((sI − A)−1) =
1

min
λ∈σ(A)

|s− λ| . (2.2.6)

This together with the fact that ‖T‖ > r(T ) for any T ∈ L(X) provides an alterna-
tive (but more complicated) proof for the estimate in Remark 2.2.8.

The following proposition is known as the Gelfand formula.

Proposition 2.2.15. If A ∈ L(X) then r(A) = lim
n→∞

‖An‖ 1
n .

Proof. According to Remark 2.2.14 we have r(An) = r(A)n, so that r(A)n 6 ‖An‖.
Using Lemma 2.2.11 we obtain that for every r > r(A) there exists mr > 0 such
that

r(A) 6 ‖An‖ 1
n 6 m

1
n
r r ∀ n ∈ N .

This shows that

r(A) 6 lim inf ‖An‖ 1
n , lim sup ‖An‖ 1

n 6 r ∀ r > r(A)

and from here it is easy to obtain the formula in the proposition.

Remark 2.2.16. Suppose that T is a strongly continuous semigroup on X with
growth bound ω0. Then

r(Tt) = eω0t ∀ t ∈ [0,∞) .

Indeed, according to the Gelfand formula, log r(Tt) = limn→∞ 1
n

log ‖Tnt‖. Accord-
ing to part (1) of Proposition 2.1.2, this is equal to ω0t.

Definition 2.2.17. If A : D(A)→X, where D(A) ⊂ X, then λ ∈ C is called an
eigenvalue of A if there exists a zλ ∈ D(A), zλ 6= 0, such that Azλ = λzλ. In
this case, zλ is called an eigenvector of A corresponding to λ. The set of all the
eigenvalues of A is called the point spectrum of A, and it is denoted by σp(A).

The following proposition is an elementary spectral mapping theorem for the point
spectrum of an operator.

Proposition 2.2.18. Suppose that A : D(A) → X, where D(A) ⊂ X and λ, s ∈ C,
λ 6= s, s ∈ ρ(A). Then the following statements are equivalent:

(1) λ ∈ σp(A).

(2) 1
s−λ

∈ σp((sI − A)−1).

If (1), (2) hold, then the eigenvectors of A corresponding to the eigenvalue λ are
the same as the eigenvectors of (sI − A)−1 corresponding to the eigenvalue 1

s−λ
.

Proof. Suppose that (1) holds and let zλ ∈ X be such that zλ 6= 0, Azλ = λzλ.
Then clearly (sI −A)zλ = (s− λ)zλ. Applying (sI −A)−1 to both sides, we obtain
that (sI − A)−1zλ = 1

s−λ
zλ, so that (2) holds. The converse is proved in the same

way, and this argument also shows that the sets of the eigenvectors corresponding
to (1) and (2) are the same.
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2.3 The resolvents of a semigroup generator and
the space D(A∞)

In this section we examine some properties of the resolvents (sI − A)−1 of the
operator A, which is the generator of a strongly continuous semigroup on X, we
introduce the space D(A∞) and we show that it is dense in X.

Proposition 2.3.1. Let T be a strongly continuous semigroup on X, with generator
A. Then for every s ∈ C with Re s > ω0(T) we have s ∈ ρ(A) (hence, A is closed)
and

(sI − A)−1z =

∞∫

0

e−stTtz dt ∀ z ∈ X.

Proof. Suppose that Re s > ω0(T). Then it follows from (2.1.4) (with ω0(T) < ω <
Re s) that the integral in the statement of the proposition is absolutely convergent.
Define Rs ∈ L(X) by Rsz =

∫∞
0

e−stTtzdt. Then for every h > 0 and z ∈ X,

Th − I

h
Rsz =

1

h

∞∫

0

e−st (Tt+hz − Ttz) dt =

=
1

h

∞∫

h

e−s(t−h) Ttzdt− 1

h

∞∫

0

e−stTtzdt =

=
esh − 1

h

∞∫

0

e−stTtzdt− esh

h

h∫

0

e−st Ttzdt.

This implies that

lim
h→ 0

Th − I

h
Rsz = sRsz − z, (2.3.1)

i.e., Rsz ∈ D(A) and (sI − A)Rsz = z. Since Rs commutes with T, for z ∈ D(A),
(2.3.1) can also be written in the form

Rs lim
h→ 0

Th − I

h
z = sRsz − z .

Thus, Rs(sI − A)z = z for z ∈ D(A), so that s ∈ ρ(A) and Rs = (sI − A)−1.

Remark 2.3.2. From the last proposition we see that T is uniquely determined by
its generator A. Indeed, any continuous function which has a Laplace transform is
uniquely determined by this Laplace transform, see Section 12.4.

Corollary 2.3.3. If T is a strongly continuous semigroup on X, with generator A,
and if Mω and ω are as in (2.1.4), then

‖(sI − A)−1‖ 6 Mω

Re s− ω
∀ s ∈ Cω . (2.3.2)



The resolvents of a semigroup generator 39

Proof. This follows from Proposition 2.3.1, by estimating the integral:

‖(sI − A)−1z‖ 6
∞∫

0

e−(Re s)t‖Tt‖ · ‖z‖dt ∀ z ∈ X.

It is often needed to approximate elements of X by elements of D(A) in a natural
way. One approach was given in Proposition 2.1.6, another one is given below.

Proposition 2.3.4. Let D(A) be a dense subspace of X and let A : D(A)→X be
such that there exist λ0 > 0 and m > 0 such that (λ0,∞) ⊂ ρ(A) and

∥∥λ(λI − A)−1
∥∥ 6 m ∀ λ > λ0 . (2.3.3)

Then we have

lim
λ→∞

λ(λI − A)−1z = z ∀ z ∈ X. (2.3.4)

Note that if A is the generator of a strongly continuous semigroup on X, then A
satisfies the assumption in this proposition, according to Corollary 2.3.3.

Proof. Assume that ψ ∈ D(A). Then

λ(λI − A)−1ψ = (λI − A)−1Aψ + ψ.

Now (2.3.3) implies that the first term on the right-hand side converges to zero (as
λ→∞). Thus, (2.3.4) holds for ψ ∈ D(A). If z ∈ X and ψ ∈ D(A), then from

‖λ(λI − A)−1z − z‖ 6 ‖λ(λI − A)−1(z − ψ)‖+ ‖λ(λI − A)−1ψ − ψ‖+ ‖ψ − z‖

we obtain that for all λ > λ0,

‖λ(λI − A)−1z − z‖ 6 (m + 1)‖(z − ψ)‖+ ‖λ(λI − A)−1ψ − ψ‖ .

The first term on the right-hand side can be made arbitrarily small by a suitable
choice of ψ ∈ D(A), because D(A) is dense in X. The second term tends to zero
(as λ→∞), as we have proved earlier. Therefore, the left-hand side can be made
arbitrarily small by choosing λ large enough.

Proposition 2.3.5. Let T be a strongly continuous semigroup on X with generator
A. Let z0 ∈ D(A) and define the function z : [0,∞)→D(A) by z(t) = Ttz0.

Then z is continuous, if we consider on D(A) the graph norm, and we also have
z ∈ C1([0,∞), X). Moreover, z is the unique function with the above properties
satisfying the initial value problem

ż = Az, z(0) = z0 . (2.3.5)
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Proof. According to Proposition 2.1.2 z is continuous as an X-valued function.
We also have Az ∈ C([0,∞), X), because Az(t) = TtAz0 and we can invoke again
Proposition 2.1.2. Using the definition of the graph norm, it follows that z is con-
tinuous as a D(A)-valued function (with the graph norm on D(A)).

According to Proposition 2.1.5, z satisfies (2.3.5). Since Az ∈ C([0,∞), X), it
follows that z ∈ C1([0,∞), X).

We still have to prove the uniqueness of z with the above properties. Let v ∈
C1([0,∞), X) with values in D(A) which is continuous from [0,∞) to D(A) and
such that v̇ = Av, v(0) = z0. For all τ ∈ [0, t],

d

dτ
[Tt−τv(τ)] = Tt−τAv(τ)− Tt−τAv(τ) = 0,

whence
v(t) = Tt−tv(t) = Tt−0v(0) = Ttz0 = z(t) .

For a stronger version of the above uniqueness property see Proposition 4.1.4.

The every n ∈ N, the operator An (and its domain) have been introduced before
Proposition 2.2.12. It is easy to see (using Proposition 2.3.5 and induction) that for
every t > 0, TtD(An) ⊂ D(An). We introduce the space

D(A∞) =
⋂

n∈N
D(An) .

The following proposition is a strengthening of Corollary 2.1.8.

Proposition 2.3.6. If A is the generator of a strongly continuous semigroup on X,
then D(A∞) is dense in X.

Proof. We denote by D(0, 1) the space of all infinitely differentiable functions
on (0, 1) whose support is compact and contained in (0, 1). We denote by T the
semigroup generated by A. For every ϕ ∈ D(0, 1) we define the operator Tϕ by

Tϕz0 =

1∫

0

ϕ(t)Ttz0dt ∀ z0 ∈ X. (2.3.6)

Take z0 ∈ D(A). It follows from Proposition 2.3.5 that the integral in the definition
of Tϕz0 may be considered as an integral in D(A) (with the graph norm) and Tϕz0 ∈
D(A). Using integration by parts, it is now easy to see that we have

ATϕz0 = − Tϕ′z0 ∀ z0 ∈ D(A) .

This shows that the operator ATϕ has a continuous extension to X. Since A is a
closed operator (as we have seen in Proposition 2.3.1), it follows that Tϕz0 ∈ D(A)
for every z0 ∈ X and ATϕ = −Tϕ′ . This identity shows, by induction, that

Ran Tϕ ⊂ D(A∞) .
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For every τ ∈ (0, 1) consider the function ψτ ∈ L2(0, 1) defined by

ψτ (x) =

{
1
τ

if x ∈ (0, τ) ,

0 else.

We define Tψτ by the same formula (2.3.6) (with ψτ in place of ϕ). We know from
Proposition 2.1.6 that for every z0 ∈ X, limτ → 0 Tψτ z0 = z0. Since D(0, 1) is dense
in L2[0, 1], it follows that D(A∞) is dense in X.

Example 2.3.7. Take X = L2[0,∞) and for every t ∈ R and z ∈ X define

(Ttz)(x) = z(x + t) ∀ x ∈ [0,∞) .

Then T is a strongly continuous semigroup, called the unilateral left shift semigroup.
To prove the strong continuity of this semigroup, the easiest approach is to prove it
first for functions z ∈ X ∩ C1[0,∞) which have compact support (i.e., there exists
µ > 0 such that z(x) = 0 for x > µ). Afterwards, the strong continuity of T follows
from the fact that the set of functions z as above is dense in X and ‖Tt‖ = 1 for all
t > 0. (The argument resembles the last part of the proof of Proposition 2.3.4.)

We claim that the generator of T is

A =
d

dx
, D(A) = H1(0,∞) .

A detailed proof of this claim requires some effort. We know from Proposition 2.3.1
that 1 ∈ ρ(A) and, for every z ∈ X,

[(I − A)−1z](x) =

∞∫

0

e−tz(x + t)dt = ex

∞∫

x

e−ξz(ξ)dξ

holds for almost every x ∈ [0,∞). Denoting ϕ = (I − A)−1z, it follows that ϕ is
continuous and the above formula holds for all x > 0. We rearrange the formula:

ϕ(x) = exϕ(0)−
x∫

0

ex−ξz(ξ)dξ ∀ x > 0 .

This shows that ϕ is locally absolutely continuous and ϕ′(x) = ϕ(x)−z(x) holds for
almost every x > 0. Since both ϕ and z are in X, it follows that ϕ′ ∈ X = L2[0,∞),
whence ϕ ∈ H1(0,∞). Thus, D(A) ⊂ H1(0,∞). By the definition of ϕ, we have
Aϕ = ϕ− z. Comparing this with the formula ϕ′ = ϕ− z derived a little earlier, it
follows that

Aϕ = ϕ′ ∀ ϕ ∈ D(A) .

If the inclusion D(A) ⊂ H1(0,∞) were strict, then there would exist ψ ∈ H1(0,∞)
such that ψ 6∈ D(A). Denote z = ψ − ψ′ and put ϕ = (I − A)−1z, then ϕ− ϕ′ = z.
Denoting η = ψ−ϕ we obtain that η ∈ H1(0,∞) and η′ = η, whence η = 0, so that
ψ ∈ D(A), which is a contradiction. Thus we have proved our claim.
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It is easy to see that every λ ∈ C with Re λ < 0 is an eigenvalue of A and a
corresponding eigenvector is zλ(x) = eλx. Since σ(A) is closed, it follows that the
closed left half-plane (where Re s 6 0) is contained in σ(A). On the other hand, we
know from Proposition 2.3.1 that C0 ⊂ ρ(A). Thus, it follows that

σ(A) = {s ∈ C | Re s 6 0} .
A little exercise in differential equations shows that the points on the imaginary axis
are not eigenvalues of A, so that

σp(A) = {s ∈ C | Re s < 0} .

For a detailed discussion of this example and others related to it see also Engel
and Nagel [57, Chapter II]. We shall need several times a slight generalization of
this example to the case when X = L2([0,∞); Y ), where Y is a Hilbert space - this
will be the case, for example, in the proof of Theorem 4.1.6 and of Lemma 6.1.11.

Example 2.3.8. Let τ > 0, take X = L2[0, τ ] and for every t ∈ R and z ∈ X define

(Ttz)(x) =

{
z(x + t) if x + t 6 τ ,

0 else.

Then T is a strongly continuous semigroup. Clearly Tτ = 0 (the semigroup is
vanishing in finite time), so that ω0(T) = −∞. It is not difficult to verify that the
generator of T is

A =
d

dx
, D(A) = {z ∈ H1(0, τ) | z(τ) = 0}

and σ(A) = ∅ (this last fact is impossible for bounded operators A).

Example 2.3.9. Take X = L2(R) and for every t > 0 and z ∈ X define

(Ttz)(x) =
1√
4πt

∞∫

−∞

e−
(x−σ)2

4t z(σ)dσ ∀ x ∈ R .

We put T0 = I. Then T is a strongly continuous semigroup of operators (as we shall
see), called the heat semigroup on R. It is easier to understand this semigroup if
we apply the Fourier transformation F (with respect to the space variable x) to the
definition of T, obtaining that (for almost every ξ ∈ R)

(FTtz) (ξ) = e−ξ2t(F z)(ξ) .

This formula shows clearly that T has the semigroup property and ‖Tt‖ 6 1 for all
t > 0. Moreover, the generator of T can be expressed in terms of Fourier transforms
as follows:

D(A) =



z ∈ L2(R)

∣∣∣∣∣∣

∞∫

−∞

ξ4|(Fz)(ξ)|2dξ < ∞


 ,
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(FAz)(ξ) = − ξ2(Fz)(ξ) . (2.3.7)

From here, applying F−1, we now see that D(A) is in fact the Sobolev space H2(R)
and A = d2

dx2 . Thus, the functions ϕ(t, x) = (Ttz)(x) satisfy the one-dimensional

heat equation, namely ∂ϕ
∂t

= ∂2ϕ
∂x2 . From (2.3.7) we can derive that σ(A) = (−∞, 0].

It is easy to check that this operator has no eigenvalues.

2.4 Invariant subspaces for semigroups

In this section we derive some facts about invariant subspaces for operator semi-
groups, and the restrictions of operator semigroups to invariant subspaces.

Definition 2.4.1. Let T be a strongly continuous semigroup on X, with generator
A. Let V be a subspace of X (not necessarily closed). The part of A in V , denoted
by AV , is the restriction of A to the domain

D(AV ) = {z ∈ D(A) ∩ V | Az ∈ V } .

V is called invariant under T if Ttz ∈ V for all z ∈ V and all t > 0.

The following facts are easy to see: If V is invariant under T, then so is clos V . If
V1 and V2 are invariant under T, then so are V1∩V2 and V1+V2. (The last statement
can be generalized to arbitrary infinite intersections and sums.)

The following proposition will be useful here:

Proposition 2.4.2. If T is a strongly continuous semigroup on X, with generator
A, then

Ttz = lim
n→∞

(
I − t

n
A

)−n

z ∀ t > 0 , z ∈ X. (2.4.1)

Proof. For z ∈ X fixed, we define a continuous function f on [0,∞) by f(t) = Ttz.
We shall denote by f̂ the Laplace transform of f (see Section 12.4). Recall the Post-
Widder formula (Theorem 12.4.4): for every t > 0,

f(t) = lim
n→∞

(−1)n

n!

(n

t

)n+1

f̂ (n)
(n

t

)
.

Since f̂(s) = (sI − A)−1z (see Proposition 2.3.1) and since, by (2.2.4),

f̂ (n)(s) = (−1)nn!(sI − A)−(n+1)z ,

we obtain f(t) = limn→∞
(
I − t

n
A

)−(n+1)
z. Now using (2.3.4) we get (2.4.1).

Proposition 2.4.3. Let T be a strongly continuous semigroup on X, with generator
A. We denote by ρ∞(A) the connected component of ρ(A) containing a right half-
plane. Let V be a closed subspace of X.
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Then the following conditions are equivalent:

(1) V is invariant under T.

(2) For some s0 ∈ ρ∞(A) we have (s0I − A)−1V ⊂ V .

(3) For every s ∈ ρ∞(A) we have (sI − A)−1V ⊂ V .

Moreover, if one (hence, all) of the above conditions holds, then the restriction
of T to V , denoted by TV , is a strongly continuous semigroup on V . We have
A(D(A) ∩ V ) ⊂ V and the generator of TV is the restriction of A to D(A) ∩ V .

Note that under the assumptions in the “moreover” part of the above proposition,
the restriction of A to D(A) ∩ V is AV , the part of A in V .

Proof. (1) ⇒ (2) follows from Proposition 2.3.1, by taking Re s0 > ω0(T).

(2) ⇒ (3): Take z ∈ V and w ∈ V ⊥. The function f(s) = 〈(sI − A)−1z, w〉 is
analytic on ρ∞(A) according to Remark 2.2.9. It is easy to see, using (2.2.4), that all
the derivatives of f at s0 are zero, so that f is zero on an open disk around s0. Since
ρ∞(A) is connected, an analytic function on this domain is uniquely determined by
its restriction to an open subset. Hence, f = 0, so that (sI − A)−1z ∈ V .

(3) ⇒ (1): Take z ∈ V and t > 0. According to (2.4.1),

Ttz = lim
n→∞

n

t

(n

t
I − A

)−n

z .

For n large enough, n
t
∈ ρ∞(A), so that V is invariant for the operator in the limit

above. Since V is closed, it follows that it is invariant also for Tt.

If (1) holds then it is clear that TV is a strongly continuous semigroup on V .
The remaining statements in the “moreover” part of the proposition follow from the
definition of the infinitesimal generator of an operator semigroup.

Proposition 2.4.4. Let V be a Hilbert space such that V ⊂ X, with continuous
embedding (i.e., the identity operator on V is bounded from V to X). Let T be a
strongly continuous semigroup on X, with generator A.

If V is invariant under T and if the restriction of T to V , denoted by TV , is
strongly continuous on V , then the generator of TV is AV (the part of A in V ).

Conversely, if AV is the generator of a strongly continuous semigroup TV on V ,
then V is invariant under T and for each t > 0, TV

t is the restriction of Tt to V .

Proof. Suppose that V is invariant under T and the restriction TV is strongly
continuous. Denote the generator of TV by A. We have to show that A = AV .

Take s ∈ C with Re s > ω0(T). We know from Proposition 2.3.1 that for every
z ∈ V , (sI−A)−1z =

∫∞
0

e−stTtzdt, with integration in V . Because of the continuous
embedding V ⊂ X, integration in X yields the same vector. We conclude that

(sI −A)−1z = (sI − A)−1z ∀ z ∈ V .
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From here it is easy to derive that D(A) = D(AV ) and A = AV .

Conversely, suppose that AV is the generator of a strongly continuous semigroup
TV on V (but we do not know that TV is a restriction of T). It follows that for
Re s > ω0(TV ) we have s ∈ ρ(AV ). If s satisfies also Re s > ω0(T), then from the
definition of AV we see that (sI − AV )−1z = (sI − A)−1z, for all z ∈ V . Using
Proposition 2.3.1 for TV , we get that for all s ∈ C with Re s > max{ω0(TV ), ω0(T)},

(sI − A)−1z =

∞∫

0

e−stTV
t zdt ∀ z ∈ V ,

with integration in V . Because of the continuous embedding V ⊂ X, integration in
X would yield the same vector. Using once again Proposition 2.3.1, this time for T,
we obtain ∞∫

0

e−stTtzdt =

∞∫

0

e−stTV
t zdt ∀ z ∈ V ,

with integration in X on both sides. According to Proposition 12.4.5, we obtain
that TV is the restriction of T to V . In particular, V is invariant under T.

The numbers ω0(TV ) and ω0(T) (that have appeared in the last part of the above
proof) may be different, as the last part of the following example shows.

Example 2.4.5. We define the unilateral right shift semigroup on X = L2[0,∞) by

(Ttz)(x) =

{
z(x− t) if x− t > 0 ,

0 else
∀ z ∈ L2[0,∞) .

It is clear that T satisfies the semigroup property and ‖Tt‖ = 1 for every t > 0. It
is not difficult to verify (using a similar approach as in Example 2.3.7) that indeed
T is strongly continuous. We can check that the generator of this semigroup is

A = − d

dx
, D(A) =

{
z ∈ H1(0,∞) | z(0) = 0

}
= H1

0(0,∞) .

It follows easily from Proposition 2.3.1 that C0 ⊂ ρ(A) and

[(sI − A)−1z](x) =

x∫

0

es(t−x)z(t)dt ∀ s ∈ C0 , x ∈ [0,∞) .

For further comments on this semigroup see Examples 2.8.7 and 2.10.7.

It is clear that for every τ > 0, the closed subspace Ran Tτ is invariant under T.
Another class of closed invariant subspaces can be constructed as follows: Let F be
a finite subset of C0 and consider the closed subspace V consisting of those z ∈ X
for which ẑ(s) = 0 for all s ∈ F . (Here, ẑ denotes the Laplace transform of z.) It
is easy to verify that indeed V is invariant under T. We mention that a complete
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characterization of the closed invariant subspaces for this semigroup is given by the
Beurling-Lax theorem, see for example Partington [181, p. 41].

Now we examine a non-closed invariant subspace. Define V as the space of those
z ∈ X for which ∞∫

0

e2x|z(x)|2dt < ∞ ,

with the norm on V being the square root of the above integral. This is a Hilbert
space and the embedding V ⊂ X is continuous. It is easy to see that V is invariant
under T, and the restriction of T to V , denoted by TV , is strongly continuous on V .
According to Proposition 2.4.4, the generator of TV is AV . The restricted semigroup
grows much faster than the original semigroup:

‖TV
t ‖L(V ) = et ∀ t > 0 .

2.5 Riesz bases

In this section we collect some simple facts about Riesz bases, since these will be
needed in the next section (and later). Good books treating (among other things)
Riesz bases are Akhiezer and Glazman [2], Avdonin and Ivanov [9], Curtain and
Zwart [39], Nikol’skii [177], Partington [180] and Young [241].

The Hilbert space l2 has been introduced in Section 1.1. Let the sequence (ek) be
the standard orthonormal basis in l2. Thus, ek has a 1 in the k-th position and zero
everywhere else. Clearly 〈ek, ej〉 = 1 if k = j, and it is zero else.

Definition 2.5.1. A sequence (φk) in a Hilbert space X is called a Riesz basis in
X if there is an invertible operator Q ∈ L(X, l2) such that Qφk = ek for all k ∈ N.
In this case, the sequence (φ̃k) defined by

φ̃k = Q∗Qφk

is called the biorthogonal sequence to (φk).

The sequence φ̃k is also a Riesz basis, since Q(Q∗Q)−1φ̃k = ek. Note that

〈φk, φ̃j〉 =

{
1 if k = j ,

0 else.
(2.5.1)

Note that (φk) is an orthonormal basis iff φ̃k = φk for all k ∈ N.

We remark that the existence of a Riesz basis in X implies that X is separable.
Riesz bases can be defined also for non-separable spaces by allowing an arbitrary
index set in place of N, but we shall not go into this.

More generally, if (φk) and (φ̃k) are two sequences in X that satisfy (2.5.1), then
we say that (φ̃k) is biorthogonal to (φk).
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Proposition 2.5.2. If (φk), Q and (φ̃k) are as in Definition 2.5.1, then every z ∈ X
can be expressed as

z =
∑

k∈N
〈z, φ̃k〉φk . (2.5.2)

Moreover, denoting m = 1/‖Q−1‖ and M = ‖Q‖, we have

m2‖z‖2 6
∑

k∈N
|〈z, φ̃k〉|2 6 M2‖z‖2 ∀ z ∈ X. (2.5.3)

Note that if (φk) is orthonormal, then Q is unitary and hence m = M = 1.

Proof. The statement corresponding to (2.5.2) for Qz ∈ l2 in place of z, l2 in
place of X and ek = Qφk in place of φk is easy to verify. Apply Q−1 to this equality
in l2, to obtain

z =
∑

k∈N
〈Qz, Qφk〉φk .

Using the definition of φ̃k, we get the formula (2.5.2).

Applying Q to both sides of (2.5.2) and taking norms in l2, we obtain that

‖Qz‖2 =
∑

k∈N
|〈z, φ̃k〉|2 .

Since
1

‖Q−1‖ · ‖z‖ 6 ‖Qz‖ 6 ‖Q‖ · ‖z‖ ,

we obtain the estimates (2.5.3).

Proposition 2.5.3. If (φk) is a Riesz basis in X and (ak) is a sequence in l2, then
the series

∑
k∈N akφk is convergent and

1

M
‖(ak)‖l2 6

∥∥∥∥∥
∑

k∈N
akφk

∥∥∥∥∥ 6 1

m
‖(ak)‖l2 , (2.5.4)

where m,M are the constants from Proposition 2.5.2.

Conversely, suppose that (φk) is a sequence in X with the following property:
There exist m,M with 0 < m 6 M such that for every finite sequence (ak)16k6n,

1

M

(
n∑

k=1

|ak|2
) 1

2

6
∥∥∥∥∥

n∑

k=1

akφk

∥∥∥∥∥ 6 1

m

(
n∑

k=1

|ak|2
) 1

2

. (2.5.5)

Then (φk) is a Riesz basis in H0 = clos span {φk | k ∈ N}.
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Proof. For any p, n ∈ N with p 6 n, it follows from the first half of (2.5.3) that

∥∥∥∥∥
n∑

k=p

akφk

∥∥∥∥∥ 6 1

m
·
√√√√

n∑

k=p

|ak|2 .

From here it is easy to see that the series
∑

k∈N akφk is indeed convergent. Denote
its sum by z. The estimate (2.5.4) follows now easily from (2.5.3).

Assume now that (φk) is a sequence in X such that (2.5.5) holds for every finite
sequence (ak)16k6n. By the same argument as at the beginning of this proof it
follows that for any sequence (ak) ∈ l2, the series

∑
k∈N akφk is convergent. Taking

limits in (2.5.5) we obtain that (2.5.4) holds. It is easy to check that the space of
all the vectors in X that can be written in the form

∑
k∈N akφk, for some (ak) ∈ l2,

is complete. Hence, this space is H0. It follows that the operator Q from H0 to l2

defined by

Q

(∑

k∈N
akφk

)
=

∑

k∈N
akek ∀ (ak) ∈ l2 ,

where (ek) be the standard orthonormal basis in l2, is bounded and invertible. Thus,
(φk) is a Riesz basis in H0.

Proposition 2.5.4. With the notation of Proposition 2.5.2, let (λk) be a sequence
in C. Then the following statements are equivalent:

(1) The sequence (λk) is bounded.

(2) For every z ∈ X, the series

Az =
∑

k∈N
λk 〈z, φ̃k〉φk

is convergent and the operator A thus defined is bounded on X.

Moreover, if the above statements are true, then

sup |λk| 6 ‖A‖ 6 M

m
· sup |λk| . (2.5.6)

Proof. Suppose that (1) holds. It follows from (2.5.3) that for any z ∈ X, the
sequence (〈z, φ̃k〉) is in l2 and its norm is bounded by M‖z‖. Now it follows from
Proposition 2.5.3 that the series in the definition of Az is convergent and

‖Az‖ 6 1

m

(∑

k∈N
|λk〈z, φ̃k〉|2

) 1
2

6 M

m
sup |λk| · ‖z‖ .

Thus, A ∈ L(X) and the second part of (2.5.6) holds.

Conversely, if (2) holds then λk ∈ σp(A). According to Proposition 2.2.10, the
sequence (λk) satisfies the first part of (2.5.6) and hence (1) holds.

We shall also need the following very simple property of Riesz bases.
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Proposition 2.5.5. Let (φk) be a sequence in a Hilbert space X such that it is a
Riesz basis in

H0 = clos span {φk | k ∈ N} .
Let φ0 ∈ X be such that φ0 6∈ H0.

Then the sequence (φ0, φ1, φ2, . . .) is a Riesz basis in H1 = H0 + {λφ0 | λ ∈ C}.
Recall the following simple property of normed spaces: If V, W are subspaces of

a normed space, then V + W = {v + w | v ∈ V, w ∈ W} is also a subspace. If V is
closed and W is finite-dimensional, then V + W is closed. Thus, in particular, H1

in the last proposition is closed, and hence a Hilbert space.

Proof. It is easy to see that every z ∈ H1 has a unique decomposition z = λφ0+h,
where λ ∈ C and h ∈ H0. Define a linear functional ξ : H1→C by ξz = λ. This
functional is bounded, because Ker ξ = H0 is closed.

Let Q0 ∈ L(H0, l
2) be the invertible operator from Definition 2.5.1 corresponding

to the Riesz basis (φk). We define the operator Q ∈ L(H1, l
2) by

Qz = (ξz, (Q0z)1, (Q0z)2, (Q0z)3, . . .) .

It is clear that Qφk = ek+1 for all k ∈ {0, 1, 2, . . .}. Clearly Q is bounded (because
ξ and Q0 are bounded). Finally, Q is invertible, because

Q−1(a1, a2, a3, . . . ) = a1φ0 + Q−1
0 (a2, a3, a4, . . . ) .

2.6 Diagonalizable operators and semigroups

In this section we introduce diagonalizable operators, which can be described
entirely in terms of their eigenvalues and eigenvectors, thus having a very simple
structure. If a semigroup generator is diagonalizable then so is the semigroup. Many
examples of semigroups discussed in the PDEs literature are diagonalizable.

Definition 2.6.1. Let A : D(A)→X, where D(A) ⊂ X. A is called diagonalizable
if ρ(A) 6= ∅ and there exists a Riesz basis (φk) in X consisting of eigenvectors of A.

Note that if A is diagonalizable then D(A) is dense in X. Indeed, D(A) must
contain all the finite linear combinations of the eigenvectors of A. Note also that,
by Remark 2.2.4, every diagonalizable operator is closed.

The structure of bounded diagonalizable operators has been described in Propo-
sition 2.5.4. For unbounded operators we must be careful with the definition of the
domain and the situation is described in the following two propositions.

Proposition 2.6.2. Let (φk) be a Riesz basis in X and let (φ̃k) be the biorthogonal
sequence to (φk). Let (λk) be a sequence in C which is not dense in C. Define an

operator Ã : D(Ã)→X by

D(Ã) =

{
z ∈ X

∣∣∣∣∣
∑

k∈N

(
1 + |λk|2

) |〈z, φ̃k〉|2 < ∞
}

, (2.6.1)
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Ãz =
∑

k∈N
λk〈z, φ̃k〉φk ∀ z ∈ D(Ã) . (2.6.2)

Then Ã is diagonalizable, we have σp(Ã) = {λk | k ∈ N}, σ(Ã) is the closure of

σp(Ã) and for every s ∈ ρ(Ã) we have

(sI − Ã)−1z =
∑

k∈N

1

s− λk

〈z, φ̃k〉φk ∀ z ∈ X. (2.6.3)

Proof. The condition z ∈ D(Ã) implies that the sequence (ak) = (λk〈z, φ̃k〉) is

in l2(N). It follows from Proposition 2.5.3 that the definition of Ã makes sense,

meaning that the series defining Ãz is convergent for every z ∈ D(Ã). It is easy to

see that σp(Ã) = {λk | k ∈ N}. Take a number s in the complement of the closure

of σp(Ã). Then the sequence (|s− λk|) is bounded from below, and it follows from
Proposition 2.5.4 that the operator Rs defined below is bounded on X:

Rsz =
∑

k∈N

1

s− λk

〈z, φ̃k〉φk ∀ z ∈ X.

It is easy to see that Rs(sI − Ã)z = z for all z ∈ D(Ã). On the other hand, it is

not difficult to see that for every z ∈ X, Rsz ∈ D(Ã). Then a simple computation
shows that

(sI − Ã)Rsz = z ∀ z ∈ X.

This implies that s ∈ ρ(A) and (sI − Ã)−1 = Rs.

Proposition 2.6.3. Let A : D(A)→X be diagonalizable. Let (φk) be a Riesz basis
consisting of eigenvectors of A. Let (φ̃k) be the biorthogonal sequence to (φk) and
denote the eigenvalue corresponding to the eigenvector φk by λk. Then

D(A) =

{
z ∈ X

∣∣∣∣∣
∑

k∈N

(
1 + |λk|2

) |〈z, φ̃k〉|2 < ∞
}

, (2.6.4)

Az =
∑

k∈N
λk〈z, φ̃k〉φk ∀ z ∈ D(A) . (2.6.5)

Proof. Let s ∈ ρ(A). According to Proposition 2.2.18, (sI − A)−1 is a diago-

nalizable (and bounded) operator with the sequence of eigenvalues
(

1
s−λk

)
and the

corresponding sequence of eigenvectors (φk). Applying (sI − A)−1 to both sides of
(2.5.2), we get that

(sI − A)−1z =
∑

k∈N

1

s− λk

〈z, φ̃k〉φk ∀ z ∈ X. (2.6.6)

Define the operator Ã by (2.6.1) and (2.6.2). Comparing (2.6.6) with (2.6.3) we

see that (sI − A)−1 = (sI − Ã)−1, and hence A = Ã.
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Remark 2.6.4. Combining the last two propositions, we see that if A is diagonal-
izable then σ(A) is the closure of σp(A). Applying Proposition 2.5.4 to (2.6.6), we
obtain that for every s ∈ ρ(A),

1

inf
k∈N

|s− λk| 6 ‖(sI − A)−1‖ 6 M

m
· 1

inf
k∈N

|s− λk| .

The first inequality above is also an immediate consequence of the more general
estimate given in Remark 2.2.8.

Proposition 2.6.5. With the notation of Proposition 2.6.3, A is the generator of a
strongly continuous semigroup T on X if and only if

sup
k∈N

Re λk < ∞ . (2.6.7)

If this is the case, then
sup
k∈N

Re λk = ω0(T) (2.6.8)

and for every t > 0,

Ttz =
∑

k∈N
eλkt 〈z, φ̃k〉φk ∀ z ∈ X. (2.6.9)

A semigroup as in the last proposition is called diagonalizable.

Proof. Suppose that (2.6.7) holds. It follows from Proposition 2.5.4 that for each
t > 0, (2.6.9) defines a bounded operator Tt on X. It is easy to see that this family of
operators satisfies the semigroup property and it is uniformly bounded for t ∈ [0, 1].
It is clear that the function t→Ttz is continuous if z is a finite linear combination
of the eigenvectors φk. Since such combinations are dense in X, it follows that
T = (Tt)t>0 is a strongly continuous semigroup on X. It is also easy to see that
the growth bound of T is given by the formula (2.6.8). Denote the generator of this

semigroup by Ã. It is easy to check that Ãφk = λkφk for all k ∈ N. Thus Ã is a
diagonalizable operator, so that its domain is given by (2.6.4). Hence Ã = A.

Conversely, suppose that A generates a semigroup. According to Proposition
2.3.1, ρ(A) contains a right half-plane and this implies (2.6.7).

Example 2.6.6. Let (λk) be a sequence in C such that

sup
k∈N

Re λk = α < ∞ .

Put X = l2 and let A : D(A)→X be defined by

(Az)k = λkzk , D(A) =

{
z ∈ l2(N) |

∑

k∈N
(1 + |λk|2)|zk|2 < ∞

}
.
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According to Proposition 2.6.2, A is a diagonalizable operator with the sequence of
eigenvectors (ek), which is the standard basis of l2. By the same proposition, σ(A)
is the closure in C of the set σp(A) = {λk | k ∈ N} and we have

((sI − A)−1z)k =
zk

s− λk

∀ s ∈ ρ(A) . (2.6.10)

According to Proposition 2.6.5 A is the generator of the semigroup

(Ttz)k = eλktzk ∀ k ∈ N
and the growth bound of this semigroup is ω0(T) = α.

Such a semigroup is called a diagonal semigroup, and A is also called diagonal. We
shall use the notation A = diag (λk) for such an A. Every diagonalizable semigroup
T is similar to a diagonal semigroup, the similarity operator being Q from Definition
2.5.1. This means that (QTtQ

−1)t>0 is a diagonal semigroup.

Proposition 2.6.7. Assume that A : D(A)→X is diagonalizable, and its sequence
of eigenvalues (λk) satisfies, for some a, b, p > 0,

Re λk 6 0 , |Im λk| 6 a + b|Re λk|p ∀ k ∈ N .

Let T be the semigroup generated by A. Then

Ttz ∈ D(A∞) ∀ z ∈ X, t > 0 .

Proof. Let (φk) be a Riesz basis in X consisting of eigenvectors of A, let (φ̃k) be
the biorthogonal sequence and assume that Aφk = λkφk. To prove that Ttz ∈ D(A)
for all z ∈ X and t > 0, according to Proposition 2.6.3 we have to show that

∑

k∈N
(1 + |λk|2) · |〈Ttz, φ̃k〉|2 < ∞ ∀ z ∈ X, t > 0 . (2.6.11)

According to Proposition 2.6.5 we have

〈Ttz, φ̃k〉 = eλkt 〈z, φ̃k〉 ∀ z ∈ X, t > 0 .

It is easy to see that under the assumptions of the proposition, for every t > 0, the
sequence ((1 + |λk|2)|eλkt|2) is bounded, because Re λk 6 0 and

(1 + |λk|2)|eλkt|2 6 (1 + |Re λk|2 + (a + b|Re λk|p)2)e2Re λkt .

Recall from Proposition 2.5.2 that
∑

k∈N |〈z, φ̃k〉|2 < ∞. Combining these facts, we
obtain that (2.6.11) holds, so that Ran Tt ⊂ D(A) for all t > 0.

We prove by induction that for every n ∈ {0, 1, 2, . . .}, the following statement
holds: Ran Tt ⊂ D(A2n

) for every t > 0. Assume that this statement holds for some
n ∈ {0, 1, 2, . . .} (and every t > 0). Choose β ∈ ρ(A), then it follows that

(βI − A)2nT t
2
z ∈ X ∀ z ∈ X, t > 0 .



Diagonalizable operators and semigroups 53

Apply T t
2

to both sides, then we obtain that

(βI − A)2nTtz ∈ D(A2n

) ∀ z ∈ X, t > 0 .

Apply (βI −A)−2n
to both sides, which shows that Ran Tt ⊂ D(A2n+1

), so that the
induction works. Now it is obvious that Ran Tt ⊂ D(A∞).

Example 2.6.8. Here we construct the semigroup associated to the equations mod-
eling the heat propagation in a rod of length π and with zero temperature at both
ends. The connection between this semigroup and the corresponding partial differ-
ential one dimensional heat equation will be explained in Remark 2.6.9.

Let X = L2[0, π] and let A be defined by

D(A) = H2(0, π) ∩H1
0(0, π),

Az =
d2z

dx2
∀ z ∈ D(A) .

For k ∈ N, let φk ∈ D(A) be defined by

φk(x) =

√
2

π
sin (kx) ∀ x ∈ (0, π) .

Then (φk) is an orthonormal basis in X and we have

Aφk = − k2φk ∀ k ∈ N .

Simple considerations about the differential equation Az = f , with f ∈ L2[0, π],
show that 0 ∈ ρ(A). Thus we have shown that A is diagonalizable.

According to Proposition 2.6.5, A is the generator of a strongly continuous semi-
group T on X given by

Ttz =
∑

k∈N
e−k2t〈z, φk〉φk ∀ t > 0, z ∈ X. (2.6.12)

It is now clear that this semigroup is exponentially stable. Moreover, according to
Proposition 2.6.7, we have Ttz ∈ D(A∞) for all z ∈ X and t > 0. For generalizations
of this example see Sections 3.5 and 3.6.

Remark 2.6.9. The interpretation in terms of PDEs of the semigroup constructed
in Example 2.6.8 is the following: for w0 ∈ H2(0, π)∩ H1

0(0, π) there exists a unique
function w continuous from [0,∞) to H2(0, π)∩H1

0(0, π) (endowed with the H2(0, π)
norm) and continuously differentiable from [0,∞) to L2[0, π], satisfying





∂w

∂t
(x, t) =

∂2w

∂x2
(x, t), x ∈ (0, π), t > 0,

w(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = w0(x), x ∈ (0, π).

(2.6.13)
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Indeed, by setting z(t) = w(·, t), it is easy to check that w satisfies the above
conditions iff z is continuous with values in D(A) (endowed with the graph norm),
continuously differentiable with values in X and it satisfies the equations

ż(t) = Az(t) ∀t > 0, z(0) = w0 .

Since A generates a semigroup on X, we can apply Proposition 2.3.5 to obtain the
existence and uniqueness of z (and consequently of w) with the above properties.
Moreover, from (2.6.12) it follows that w has the exponential decay property

‖w(·, t)‖L2[0,π] 6 e−t‖w0‖L2[0,π] ∀ t > 0 .

Example 2.6.10. If we model heat propagation in a rod of length π, with zero
heat flux at the left end and with the temperature zero imposed at the right end,
we obtain equations which differ from (2.6.13) only by a boundary condition:





∂w

∂t
(x, t) =

∂2w

∂x2
(x, t), x ∈ (0, π), t > 0,

∂w

∂x
(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = w0(x), x ∈ (0, π) .

(2.6.14)

Let X = L2[0, π] and let A be defined by

D(A) =

{
z ∈ H2(0, π)

∣∣∣∣
dz

dx
(0) = z(π) = 0

}
,

Az =
d2z

dx2
∀ z ∈ D(A) .

It is easy to check the following properties:

• If z(t) = w(·, t), then w satisfies (2.6.14) iff z is continuous with values in D(A)
(endowed with the graph norm), continuously differentiable with values in X
and it satisfies the equations

ż(t) = Az(t) ∀t > 0 , z(0) = w0 .

• The family of functions (ϕk)k∈N defined by

ϕk(x) =

√
2

π
cos

[(
k − 1

2

)
x

]
∀ k ∈ N, x ∈ (0, π) ,

consists of eigenvectors of A, it is an orthonormal basis in X and the corre-
sponding eigenvalues are

λk = −
(

k − 1

2

)2

∀ k ∈ N .
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• 0 ∈ ρ(A).

Consequently, A is diagonalizable and, according to Proposition 2.6.5, A is the
generator of a strongly continuous semigroup T on X given by

Ttz =
∑

k∈N
e−(k− 1

2
)2t〈z, ϕk〉ϕk ∀ t > 0, z ∈ X. (2.6.15)

Note that this semigroup is also exponentially stable.

Remark 2.6.11. Everything we have said in this section remains valid if we replace
N with another countable index set, such as Z. Sometimes it is more convenient to
work with a different index set, as the following example shows.

Example 2.6.12. Let X = L2[0, 1]. For α ∈ R we define A : D(A)→X by

D(A) =
{
z ∈ H1(0, 1) | z(1) = eαz(0)

}
,

Az =
dz

dx
∀ z ∈ D(A) .

For k ∈ Z we set λk = α + 2kπi and we define φk ∈ D(A) by

φk(x) = eαxe2kπix ∀ x ∈ (0, 1) .

Then

Aφk = λkφk ∀ k ∈ Z .

Define the operator Q ∈ L(X) by

(Qz)(x) = e−αxz(x) ∀ x ∈ (0, 1) .

Then it is clear that Q is invertible and (Qφk) is an orthonormal basis in X. Hence,
(φk) is a Riesz basis in X.

For α 6= 0, elementary considerations show that 0 ∈ ρ(A). For α = 0, similar
considerations show that 1 ∈ ρ(A). Hence, regardless of α, A is diagonalizable.

According to Proposition 2.6.5, A is the generator of a strongly continuous semi-
group on X. Note that for t ∈ [0, 1], Tt is described by the formula

(Ttz)(x) =

{
z(x + t) if t + x 6 1,

eαz(x + t− 1) else .

For other simple examples of diagonalizable semigroups (corresponding to the
string equation) see Examples 2.7.13 and 2.7.15.
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Example 2.6.13. This example shows the importance of imposing the condition
ρ(A) 6= ∅ in the definition of a diagonalizable operator. We show that without this
condition, the operator cannot be represented as in Proposition 2.6.3.

Let X = L2[0, π] and let the operator A be defined by

D(A) = H2(0, π) , Az =
d2z

dx2
∀ z ∈ D(A) .

For k ∈ N, let φk ∈ D(A) be defined as in Example 2.6.8. Then (φk) is an orthonor-
mal basis in X and (as in Example 2.6.8) we have

Aφk = − k2φk ∀ k ∈ N .

Simple considerations about the differential equation Az = sz show that every
s ∈ C is an eigenvalue of A, so that A is not diagonalizable in the sense of Definition
2.6.1. The formula (2.6.5) does not hold for A. Indeed, consider the constant
function z(x) = 1 for all x ∈ (0, π). Then Az = 0 but the formula (2.6.5) would
yield a non-zero series (which is not convergent in X).

Let us denote by A1 the diagonalizable operator introduced in Example 2.6.8
(there, this operator was denoted by A). Then clearly A is an extension of A1. More
precisely, if we denote by V the space of affine functions on (0, π), then dim V = 2
and D(A) = D(A1) + V . Hence, the graph G(A) is the sum of G(A1) and a two-
dimensional space. Since A1 is closed, it follows that also A is closed.

2.7 Strongly continuous groups

An operator T ∈ L(X) is called left-invertible if there exists T−1
left ∈ L(X) such

that T−1
leftT = I. It is easy to see that this is equivalent to the existence of m > 0

such that
‖Tz‖ > m‖z‖ ∀ z ∈ X.

For this reason, left-invertible operators are also called bounded from below.

T ∈ L(X) is called right-invertible if there exists an operator T−1
right ∈ L(X) such

that TT−1
right = I. It is easy to see that this is equivalent to Ran T = X (i.e., T is

onto). Indeed, this follows from Proposition 12.1.2 with F = I.

Definition 2.7.1. Let T be a strongly continuous semigroup on X. T is called
left-invertible (respectively, right-invertible) if for some τ > 0, Tτ is left-invertible
(respectively, right-invertible). The semigroup is called invertible if it is both left-
invertible and right-invertible.

Proposition 2.7.2. Let T be a strongly continuous semigroup on X.

If T is right-invertible, then Tt is right-invertible for every t > 0.

If T is left-invertible, then Tt is left-invertible for every t > 0.
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Proof. In order to prove the first statement, let τ > 0 be such that Tτ is onto.
Let t > 0 and let n ∈ N be such that t 6 nτ . Clearly, Tnτ is onto. Put ε = nτ − t.
Then from Tnτ = TtTε we see that Tt is onto, so that the first statement holds.

Let τ > 0 be such that Tτ is bounded from below. Let t > 0 and let n ∈ N be
such that t 6 nτ . Clearly, Tnτ is bounded from below. Put ε = nτ − t. Then from
Tnτ = TεTt we see that Tt is bounded from below.

Definition 2.7.3. Let X be a Hilbert space. A family T = (Tt)t∈R of operators
in L(X) is a strongly continuous group on X if it has properties (1) and (3) from
Definition 2.1.1 and (instead of property (2)) it has the group property

Tt+τ = TtTτ for every t, τ ∈ R.

The generator of such a group is defined in the same way as for semigroups.

Proposition 2.7.4. Let T be a strongly continuous semigroup on X and assume
that for some θ > 0, Tθ is invertible. Then Tt is invertible for every t > 0 and T
can be extended to a strongly continuous group by putting T−t = T−1

t .

Proof. The fact that Tt is invertible for every t > 0 follows from Proposition
2.7.2. To verify the group property for the extended family, we multiply the formula
expressing the semigroup property with T−τ and/or we take the inverse of both
sides, in order to cover all the possible cases.

Remark 2.7.5. Note that in the definition of a strongly continuous group, the only
continuity assumption is the right continuity of Ttz at t = 0 (for every z ∈ X).
However, using the group property and part (3) of Proposition 2.1.2, it follows that
the function ϕ(t, z) = Ttz is continuous on R×X (with the product topology).

Remark 2.7.6. If T is a strongly continuous group on X, with generator A, then
the family S defined by St = T−t is another such group, and its generator is −A.
Indeed, let Ã be the generator of S. For z ∈ D(Ã) we have

Ãz = lim
t→ 0, t>0

1

t
(Stz − z) = lim

t→ 0, t>0

1

t
Tt(Stz − z) = lim

t→ 0, t>0
−1

t
(Ttz − z) ,

which shows that −A is an extension of Ã. Similarly we can show (using also the

previous remark) that −Ã is an extension of A, so that in fact Ã = −A.

Remark 2.7.7. Let T be a strongly continuous group on X, with generator A.
Then σ(A) is contained in a vertical strip in C. Indeed, let us again denote St = T−t

so that, by the previous remark, S is strongly continuous group with generator −A.
We know from Proposition 2.3.1 that all s ∈ C with Re s > ω0(T) are in ρ(A), and
all s ∈ C with Re s > ω0(S) are in ρ(−A). Hence,

−ω0(S) < Re λ < ω0(T) ∀ λ ∈ σ(A) .

Moreover, by Corollary 2.3.3, (sI − A)−1 is uniformly bounded for s in any right
half-plane to the right of ω0(T) and in any left half-plane to the left of −ω0(S).



58 Operator semigroups

Proposition 2.7.8. Suppose that A : D(A)→X is the generator of a strongly
continuous semigroup T on X, and −A is the generator of a strongly continuous
semigroup S on X. Extend the family T to all of R by putting T−t = St, for all
t > 0. Then T is a strongly continuous group on X.

Proof. For z ∈ D(A) and t > 0 we compute, using Proposition 2.1.5,

d

dt
TtStz = ATtStz + Tt(−A)Stz = 0 .

This implies that TtStz = z for all t > 0. By a similar argument, StTtz = z for all
t > 0. Since D(A) is dense in X, we conclude that Tt is invertible and its inverse is
St. By Proposition 2.7.4 T can be extended to a strongly continuous group in the
manner described in the proposition.

Remark 2.7.9. If T is a diagonalizable semigroup as in Proposition 2.6.5, then
it is invertible iff inf Re λk > −∞. In this case, the extension of T to a strongly
continuous group is still given by (2.6.9). All this is easy to verify.

An operator T ∈ L(X) is called isometric if T ∗T = I. Equivalently, ‖Tx‖ = ‖x‖
holds for all x ∈ X. A strongly continuous semigroup T on X is called isometric
if Tt is isometric for every t > 0. (Requiring that Tt is isometric for one t > 0 is
not equivalent.) It is clear that an isometric semigroup is left-invertible. A simple
example of an isometric semigroup will be given in Section 2.8.

An operator U ∈ L(X) is called unitary if UU∗ = U∗U = I. Equivalently, U
is isometric and onto (this characterization of unitary operators avoids refering to
U∗). A strongly continuous semigroup T on X is called unitary if Tt is unitary for
every t > 0. It is clear that a unitary semigroup can be extended to a group, which
is then called a unitary group. In Section 3.8 we shall give a simple characterization
of the generators of unitary groups (the theorem of Stone). Three simple examples
of unitary groups will be given in this section.

Remark 2.7.10. If there is in X an orthonormal basis formed by eigenvectors of A,
then T is unitary iff Re λ = 0 for all λ ∈ σ(A). This is easy to check, by expressing
T in terms of its eigenvalues and eigenfunctions, as in (2.6.9).

Example 2.7.11. Take X = L2(R) and for every t ∈ R and z ∈ X define

(Ttz)(x) = z(t + x) ∀ x ∈ R .

Then T is a unitary group, called the bilateral left shift group. (The arguments used
for this example resemble those used for Example 2.3.7.) It is not difficult to verify
that the generator of T is A = d

dx
, defined on the Sobolev space D(A) = H1(R),

and we have σ(A) = iR (the imaginary axis).

Now let us consider on X the equivalent norm ‖ · ‖e defined by

‖z‖2
e =

0∫

−∞

|z(x)|2dx + 4

∞∫

0

|z(x)|2dx
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(with this norm, X is still a Hilbert space). The same group T introduced earlier
will now have (with respect to the new norm) the properties

‖Tt‖ = 1 for t > 0 , ‖Tt‖ = 2 for t < 0 .

Example 2.7.12. The semigroups in Example 2.6.12 are invertible. In particular,
for α = 0 we obtain a unitary group:

(Ttz)(x) = z(t+̇x) ∀ x ∈ [0, 1], t ∈ R,

where +̇ denotes addition modulo 1. This T is called the periodic left shift group. Its
generator is A = d

dx
, defined on D(A) = H1

P (0, 1) = {z ∈ H1(0, 1) | z(0) = z(1)} ,
and σ(A) = {2kπi, k ∈ Z}. The eigenvectors of A (given in Example 2.6.12)
become the standard orthonormal basis in X used for Fourier series.

Example 2.7.13. In this example we construct the semigroup associated to the
equations modeling the vibration of an elastic string of length π which is fixed at
both ends. The connection between this semigroup and a one-dimensional wave
equation (also called the string equation) will be explained in Remark 2.7.14.

Denote X = H1
0(0, π)× L2[0, π], which is a Hilbert space with the scalar product

〈[
f1

g1

]
,

[
f2

g2

]〉
=

π∫

0

df1

dx
(x)

df2

dx
(x)dx +

π∫

0

g1(x)g2(x)dx.

We define A : D(A) → X by

D(A) =
[H2(0, π) ∩H1

0(0, π)
]×H1

0(0, π) ,

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) .

We denote by Z∗ the set of all non-zero integers. For n ∈ Z∗, denote ϕn(x) =√
2
π

sin(nx). It is known from the theory of Fourier series that the family (ϕn)n∈N is

an orthonormal basis in L2[0, π]. This implies that the family (φn)n∈Z∗ defined by

φn =
1√
2

[
1
in

ϕn

ϕn

]
∀ n ∈ Z∗ , (2.7.1)

is an orthonormal basis in X. Indeed, it is easy to see that this family is orthonormal
in X. If z =

[
f
g

] ∈ X is such that 〈z, φn〉 = 0 for all n ∈ Z∗, then the same is true

for z =
[

f
g

]
(here we have used that φn = −φ−n). It follows that Re z and Im z are

also orthogonal to φn, for every n ∈ Z∗. Since

Re 〈Re z, φn〉 =
1√
2
〈Re g, ϕn〉 ∀ n ∈ N ,
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we obtain that Re g = 0. By looking at Re 〈Im z, φn〉, we obtain similarly that

Im g = 0. Thus, g = 0. By looking at Im 〈Re z, φn〉 = 1√
2
〈d(Re f)

dx
, dϕ

dx
〉 for all n ∈ N,

we obtain that d(Re f)
dx

is constant. By a similar argument, d(Im f)
dx

is constant. Thus,
f is an affine function. Since f(0) = f(π) = 0, we obtain f = 0. We have shown
that z = 0, so that the family (φn)n∈Z∗ is an orthonormal basis in X.

The vectors φn from (2.7.1) are eigenvectors of A and the corresponding eigenval-
ues are λn = in, with n ∈ Z∗. Moreover, it is easy to check that 0 ∈ ρ(A), so that A
is diagonalizable. According to Remark 2.7.10 the operator A generates a unitary
group T on X. According to Proposition 2.6.5 T is given by

Tt

[
f
g

]
=

∑

n∈Z∗
eint

〈[
f
g

]
, φn

〉
φn ∀

[
f
g

]
∈ X.

From the above relation it follows that

Tt

[
f
g

]
=

1√
2

∑

n∈Z∗
eint

(
i

n

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

)
φn . (2.7.2)

We shall encounter a generalization of this example in Propositions 3.7.6 and 3.7.7.
The existence of an orthonormal basis in X formed of eigenvectors of A follows from
the abstract theory, but here we have given an elementary direct proof.

Remark 2.7.14. The interpretation in terms of PDEs of the semigroup constructed
in Example 2.7.13 is the following: for f ∈ H2(0, π) ∩ H1

0(0, π) and g ∈ H1
0(0, π),

there exists a unique continuous w : [0,∞) → H2(0, π) ∩ H1
0(0, π) (endowed with

the H2(0, π) norm), continuously differentiable from [0,∞) to H1
0(0, π), satisfying





∂2w

∂t2
(x, t) =

∂2w

∂x2
(x, t), x ∈ (0, π), t > 0,

w(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x), x ∈ (0, π).

(2.7.3)

Indeed, by setting

z(t) =




w(·, t)

∂w

∂t
(·, t)


 ,

it is easy to check that w satisfies the above conditions iff z is continuous with values
in D(A) (endowed with the graph norm), continuously differentiable with values in
X and it satisfies the equations

ż(t) = Az(t) ∀t > 0, z(0) =

[
f
g

]
.
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Since we have shown in Example 2.7.13 that A generates a semigroup on X, we
can apply Proposition 2.3.5 to obtain the existence and uniqueness of z (and conse-
quently of w) with the above properties. Moreover, since the semigroup generated
by A can be extended to a unitary group, it follows that the solution w of (2.7.3) is
defined for t ∈ R and it has the “conservation of energy” property

∥∥∥∥
∂w

∂t
(·, t)

∥∥∥∥
2

L2[0,π]

+

∥∥∥∥
∂w

∂x
(·, t)

∥∥∥∥
2

L2[0,π]

= ‖g‖2
L2[0,π] +

∥∥∥∥
df

dx

∥∥∥∥
2

L2[0,π]

∀ t ∈ R .

Example 2.7.15. In this example we construct the semigroup associated to the
equations modeling the vibrations of an elastic string which is fixed at the end
x = π while at the end x = 0 it is free to move perpendicularly to the axis of
the sting, so that its slope is zero. We indicate how this semigroup is related to
the string equation. Since the considerations below are similar to those in Example
2.7.13 and in Remark 2.7.14, we state the results without proof.

Denote

H1
R(0, π) =

{
f ∈ H1(0, π) | f(π) = 0

}
.

Then X = H1
R(0, π)× L2[0, π] is a Hilbert space with the scalar product

〈[
f1

g1

]
,

[
f2

g2

]〉
=

π∫

0

df1

dx
(x)

df2

dx
(x)dx +

π∫

0

g1(x)g2(x)dx. (2.7.4)

We define A : D(A) → X by

D(A) =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
×H1

R(0, π) ,

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) .

For n ∈ N, denote ϕn(x) =
√

2
π

cos
[(

n− 1
2

)
x
]

and µn = n− 1
2
. If −n ∈ N we set

ϕn = −ϕ−n and µn = −µ−n. Then the family

φn =
1√
2

[
1

iµn
ϕn

ϕn

]
∀ n ∈ Z∗ , (2.7.5)

is an orthonormal basis in X formed by eigenvectors of A and the corresponding
eigenvalues are λn = iµn, with n ∈ Z∗. Moreover, it is easy to check that 0 ∈ ρ(A),
so that A is diagonalizable. By using Remark 2.7.10 and Proposition 2.6.5 we get
that A generates a unitary group T on X, denoted T, which is given by

Tt

[
f
g

]
=

∑

n∈Z∗
eiµnt

〈[
f
g

]
, φn

〉
φn ∀

[
f
g

]
∈ X.
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From the above relation it follows that

Tt

[
f
g

]
=

1√
2

∑

n∈Z∗
eiµnt

(
i

µn

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

)
φn . (2.7.6)

The interpretation in PDEs terms of the above semigroup is the following: For every[
f
g

] ∈ D(A), the initial and boundary value problem




∂2w

∂t2
(x, t) =

∂2w

∂x2
(x, t), x ∈ (0, π), t > 0,

∂w
∂x

(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x), x ∈ (0, π),

(2.7.7)

admits an unique solution

w ∈ C([0,∞);H2(0, π)) ∩ C1([0,∞);H1(0, π))

which is given by
[

w(·, t)
∂w

∂t
(·, t)

]
= Tt

[
f
g

]
∀

[
f
g

]
∈ D(A) .

2.8 The adjoint semigroup

Let A : D(A)→X be a densely defined operator (by this we mean that D(A) is
dense in X). The adjoint of A, denoted A∗, is an operator defined on the domain

D(A∗) =

{
y ∈ X

∣∣∣∣∣ sup
z∈D(A), z 6=0

|〈Az, y〉|
‖z‖ < ∞

}
.

Equivalently, y ∈ D(A∗) iff the functional z→〈Az, y〉 is bounded. Since D(A) has
been assumed to be dense, this functional has a unique bounded extension to all of
X. By the Riesz representation theorem, there exists a unique w ∈ X such that
〈Az, y〉 = 〈z, w〉. Then we define A∗y = w, so that

〈Az, y〉 = 〈z, A∗y〉 ∀ z ∈ D(A), y ∈ D(A∗) .

This is similar to the familiar case when A ∈ L(X) and hence A∗ ∈ L(X).

We denote the orthogonal complement of a subspace V ⊂ X by V ⊥. This is a
closed subspace of X (regardless if V is closed or not). It is easy to verify that for
every densely defined A, the graph of A∗ (as defined in Definition 2.2.1) is

G(A∗) =

[
0 I
−I 0

]
G(A)⊥ =

([
0 I
−I 0

]
G(A)

)⊥
. (2.8.1)

This implies that the operator A∗ is closed (see also Rudin [195, pp. 334-335]).
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Proposition 2.8.1. If A : D(A)→X is densely defined and closed, then D(A∗) is
dense in X and A∗∗ = A.

Proof. If D(A∗) were not dense, then we could find a z ∈ X such that z 6= 0,
[ z
0 ] ∈ G(A∗)⊥. According to (2.8.1) and using the fact that G(A) is closed,

G(A∗)⊥ =

[
0 I
−I 0

]
G(A) ,

so that we obtain [ 0
z ] ∈ G(A), which is absurd.

The formula A∗∗ = A follows easily by applying (2.8.1) twice.

Remark 2.8.2. Let A : D(A)→X be densely defined. Using the definition of A∗,
it is easy to check that

(Ran A)⊥ = Ker A∗ , (Ran A∗)⊥ ⊃ Ker A.

If moreover A is closed, then using the fact that A∗∗ = A, we obtain

(Ran A∗)⊥ = Ker A.

Remark 2.8.3. If C : D(C)→Y is densely defined in X and closed, and if Y is
finite-dimensional, then C ∈ L(X, Y ). Indeed, according to Proposition 2.8.1 C∗ is
densely defined in Y , so that in fact C∗ is defined on all of Y , which implies (since
dim Y < ∞) that C∗ ∈ L(Y, X). Since (again by Proposition 2.8.1) C = C∗∗, we
obtain that D(C) = X and C is bounded.

Proposition 2.8.4. Let A : D(A)→X be a densely defined operator and let s ∈
ρ(A). Then s ∈ ρ(A∗) and [

(sI − A)−1
]∗

= (sI − A∗)−1 . (2.8.2)

Proof. First we show that Ran [(sI − A)−1]∗ ⊂ D(A∗) and

(sI − A∗)[(sI − A)−1]∗ = I . (2.8.3)

Take f ∈ X and denote z = [(sI − A)−1]
∗
f . For every y ∈ D(A),

〈Ay, z〉 =
〈
(sI − A)−1Ay, f

〉
=

〈
s(sI − A)−1y, f

〉− 〈y, f〉 .

Since (sI − A)−1 ∈ L(X), the right-hand side above is bounded with respect to y.
By the definition of A∗, we obtain that z ∈ D(A∗). Moreover,

〈Ay, z〉 =
〈
sy,

[
(sI − A)−1

]∗
f
〉− 〈y, f〉 = 〈sy, z〉 − 〈y, f〉 ,

i.e., 〈(sI −A)y, z〉 = 〈y, f〉 for all y ∈ D(A). This implies that (sI −A∗)z = f , so
that (2.8.3) holds, in particular sI − A∗ is onto.
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Since ρ(A) is not empty, we know that A is closed, hence sI − A is closed and
Remark 2.8.2 applies to it:

Ker (sI − A∗) = [Ran (sI − A)]⊥ = {0} .
Thus, (sI − A∗) is one-to-one, hence it is invertible and we denote its inverse by
(sI − A∗)−1. This operator maps X onto D(A∗) but we do not know yet that it
is bounded. Applying (sI − A∗)−1 to both sides of (2.8.3), we obtain that (2.8.2)
holds. In particular, now we see that (sI − A∗)−1 is bounded, so that s ∈ ρ(A∗).

Proposition 2.8.5. Let T be a strongly continuous semigroup on X. Then the
family of operators T∗ = (T∗t )t>0 is also a strongly continuous semigroup on X, and
its generator is A∗.

Proof. It is clear that T∗ satisfies T∗0 = I and the semigroup property (the first
two properties in Definition 2.1.1). We have to prove the strong continuity of the
family T∗. For any v ∈ D(A∗), w ∈ X and τ > 0 we have, using Remark 2.1.7,

〈(T∗τ − I)v, w〉 = 〈v, (Tτ − I)w〉 =

〈
v, A

τ∫

0

Tσwdσ

〉
=

〈
A∗v,

τ∫

0

Tσwdσ

〉
.

Let M > 1 be such that ‖Tσ‖ 6 M for all σ ∈ [0, 1]. Then the above formula shows
that for τ 6 1 we have |〈(T∗τ − I)v, w〉| 6 Mτ ‖A∗v‖ · ‖w‖, whence

‖T∗τv − v‖ 6 Mτ ‖A∗v‖ ∀ v ∈ D(A∗), τ ∈ [0, 1] . (2.8.4)

Let ε > 0 and z ∈ X. Since D(A∗) is dense, we can find v ∈ D(A∗) such that
‖z − v‖ 6 ε

2(M+1)
. According to (2.8.4), we can find τε ∈ (0, 1] such that

‖T∗τv − v‖ 6 ε

2
∀ τ 6 τε .

Then for τ 6 τε we have

‖T∗τz − z‖ 6 ‖T∗τz − T∗τv‖+ ‖T∗τv − v‖+ ‖v − z‖
6 (M + 1)‖v − z‖+ ‖T∗τv − v‖ 6 ε

2
+ ε

2
= ε.

This shows that T∗ is strongly continuous.

It remains to be shown that the generator of T∗ is A∗. Let us denote the generator
of T∗ by Ad. According to Proposition 2.3.1 we have, for every w ∈ X,

(sI − Ad)−1w =

∞∫

0

e−stT∗t w dt for Re s > ω0(T)

(we have used the obvious fact that ω0(T∗) = ω0(T)). On the other hand, taking
the inner product of both sides of the formula in Proposition 2.3.1 with w ∈ X and
replacing s by s̄, by a simple argument we obtain that

[
(s̄I − A)−1

]∗
w =

∞∫

0

e−stT∗t w dt for Re s > ω0(T) .
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The last two formulas show that (sI −Ad)−1 = [(s̄I − A)−1]
∗
. According to Propo-

sition 2.8.4 we obtain that for Re s > ω0(T) we have (sI − Ad)−1 = (sI − A∗)−1.
This shows that Ad = A∗.

The semigroup T∗ appearing above is called the adjoint semigroup of T.

For the following proposition, the reader should recall the concepts of Riesz basis,
biorthogonal sequence and diagonalizable operator, discussed in Section 2.6.

Proposition 2.8.6. Let A : D(A) → X be a diagonalizable operator. Let (φk) be a
Riesz basis consisting of eigenvectors of A, let (φ̃k) be the biorthogonal sequence to
(φk) and denote the eigenvalue corresponding to the eigenvector φk by λk. Then A∗

is a diagonalizable operator with the eigenvectors φ̃k and eigenvalues λk.

Proof. Using the representation of A from Proposition 2.6.3, taking the inner
product of both sides with φ̃k, we obtain

〈Az, φ̃k〉 = λk〈z, φ̃k〉 ∀ z ∈ D(A) . (2.8.5)

This shows that φ̃k ∈ D(A∗) and A∗φ̃k = λk φ̃k. We know from Section 2.6 that (φ̃k)
is a Riesz basis in X. Finally, we know from Proposition 2.8.4 that ρ(A∗) is not
empty. Thus, A∗ is diagonalizable.

The last proposition together with Proposition 2.6.3 implies that if A is diagonal-
izable then

D(A∗) =

{
z ∈ X

∣∣∣∣∣
∑

k∈N

(
1 + |λk|2

) |〈z, φk〉|2 < ∞
}

,

A∗z =
∑

k∈N
λk 〈z, φk〉φ̃k ∀ z ∈ D(A∗) .

In particular, if A = diag (λk) (see Section 2.6), then A∗ = diag (λk).

Example 2.8.7. We list the adjoints of most of the semigroups encountered in
earlier examples. We leave it to the reader to verify that these are indeed the
corresponding adjoint semigroups and their generators.

For the unilateral left shift semigroup of Example 2.3.7, the adjoint semigroup is
the unilateral right shift semigroup from Example 2.4.5. The unilateral right shift
semigroup is isometric. Let us denote by A the generator of the unilateral left shift,
then the generator of the unilateral right shift (given in Example 2.4.5) is A∗. Thus,
in this case, A is an extension of −A∗ (but σ(A∗) = σ(A), a left half-plane).

For the vanishing left shift semigroup on L2[0, τ ] discussed in Example 2.3.8, the
adjoint is the vanishing right shift semigroup:

(T∗t z)(x) =

{
z(x− t) if x− t > 0 ,

0 else,
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with generator

A∗ = − d

dx
, D(A∗) = {z ∈ H1(0, τ) | z(0) = 0} .

The adjoint of the heat semigroup on L2(R) introduced in Example 2.3.9 is the
same semigroup (and hence A∗ = A). The same is true for the heat conduction
semigroups on L2[0, π] discussed in Examples 2.6.8 and 2.6.10.

The semigroups in the examples of Section 2.7 are unitary, hence their adjoint
semigroups are the same as their inverse semigroups and thus the corresponding
generators are −A. There is no need to write down formulas.

2.9 The embeddings V ⊂ H ⊂ V ′

In this section we explain what it means that two Hilbert spaces are dual with
respect to a pivot space. This concept plays an important role in the theory PDEs
as well as in the theory of infinite-dimensional linear systems.

Definition 2.9.1. If V and Z are Hilbert spaces, then an operator J ∈ L(V, Z) is
called an isomorphism from V to Z, also called a unitary operator from V to Z, if
J∗J = I (the identity on V ) and JJ∗ = I (the identity on Z).

It is easy to verify that J ∈ L(V, Z) is unitary iff (a) ‖Jv‖ = ‖v‖ for all v ∈ V (this
property means that J is isometric) and (b) Ran J = Z. Note that the isometric
property of J is equivalent to

〈Jv, Jw〉Z = 〈v, w〉V ∀ v, w ∈ V .

For J as in the last definition, usually we employ the term “isomorphism” when
we intend to identify the spaces V and Z, and we use the term “unitary operator”
otherwise. Both situations will arise in this section.

For any Hilbert space V , we denote by V ′ its dual (the space of all bounded linear
functionals on V ). We denote by 〈ϕ, z〉V,V ′ the functional z ∈ V ′ applied to ϕ ∈ V ,
so that 〈ϕ, z〉V,V ′ is linear in ϕ and antilinear in z (similarly to the inner product on
a Hilbert space). We define the pairing also in reversed order:

〈z, ϕ〉V ′,V = 〈ϕ, z〉V,V ′ ,

so that again, the pairing is linear in the first component. The norm on V ′ is

‖z‖V ′ = sup
ϕ∈V, ‖ϕ‖V 61

|〈z, ϕ〉V ′,V | ∀ z ∈ V ′ .

For V and V ′ as above, there is a natural operator JR : V →V ′ defined by

〈ϕ, JRv〉V,V ′ = 〈ϕ, v〉V ∀ ϕ, v ∈ V .
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According to the Riesz representation theorem, this JR is an isomorphism (this has
been discussed in Section 1.1). Often, but not always, we identify V with V ′, by not
distinguishing between v and JRv (for all v ∈ V ).

We denote by V ′′ the bidual of V , which is the dual of V ′. Clearly, J2
R is an

isomorphism from V to V ′′. The isomorphism J2
R is “more natural” than JR, in

the sense that it can be generalized to many Banach spaces (called reflexive Banach
spaces), while the isomorphism JR is specific to Hilbert spaces. For any Hilbert
space V , we identify V with V ′′, by not distinguishing between v and J2

Rv.

If V and H are Hilbert spaces such that V ⊂ H, we say that the embedding V ⊂ H
is continuous if the identity operator on V is in L(V,H). Equivalently, there exists
an m > 0 such that ‖v‖H 6 m‖v‖V holds for all v ∈ V .

Proposition 2.9.2. Let V and H be Hilbert spaces such that V ⊂ H, densely and
with continuous embedding. Define a function ‖ · ‖∗ on H by

‖z‖∗ = sup
ϕ∈V, ‖ϕ‖V 61

|〈z, ϕ〉H | ∀ z ∈ H.

Then ‖ · ‖∗ is a norm on H. Let V ∗ denote the completion of H with respect to
this norm. Define the operator J : V ∗→V ′ as follows: for any z ∈ V ∗,

〈Jz, ϕ〉V ′,V = lim
n→∞

〈zn, ϕ〉H ∀ ϕ ∈ V ,

where (zn) is a sequence in H such that zn→ z in V ∗.

Then J is an isomorphism from V ∗ to V ′.

Proof. It is easy to show that ‖ · ‖∗ is a norm on H. It is also easy (but tedious)
to prove that the definition of 〈Jz, ϕ〉V ′,V is correct, i.e., the limit exists and it is
independent of the choice of the sequence (zn), as long as zn→ z in V ∗.

Let us show that Jz ∈ V ′, i.e., that 〈Jz, ϕ〉V ′,V depends continuously on ϕ ∈ V .
From the definition of ‖ · ‖∗ we see that

|〈z, ϕ〉H | 6 ‖z‖∗ · ‖ϕ‖V ∀ z ∈ H, ϕ ∈ V .

This implies that for any z ∈ V ∗ and any ϕ ∈ V ,

|〈Jz, ϕ〉V ′,V | = limn→∞ |〈zn, ϕ〉H |
6 limn→∞ ‖zn‖∗ · ‖ϕ‖V = ‖z‖∗ · ‖ϕ‖V .

This shows that Jz ∈ V ′ and, moreover, ‖Jz‖V ′ 6 ‖z‖∗, so that J ∈ L(V ∗, V ′). It
is clear from the definition of J that

〈Jz, ϕ〉V ′,V = 〈z, ϕ〉H ∀ z ∈ H, ϕ ∈ V , (2.9.1)

hence ‖Jz‖V ′ = ‖z‖∗ for all z ∈ H. Since H is dense in V ∗ and J is continuous, we
conclude that ‖Jz‖V ′ = ‖z‖∗ remains valid for all z ∈ V ∗.
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It remains to show that J is onto. For this, it is enough to show that Ran J
is dense in V ′ (because the previous conclusion implies that Ran J is closed). If
Ran J were not dense, then we could find ϕ ∈ V ′′ = V such that ϕ 6= 0 and
〈Jz, ϕ〉V ′,V = 0 for all z ∈ V ∗. Choose z = ϕ, then according to (2.9.1) we get
〈Jϕ, ϕ〉V ′,V = ‖ϕ‖2

H > 0. This contradiction shows that Ran J is dense, so that J
is an isomorphism from V ∗ to V ′.

In the sequel, if V, H and V ∗ are as in the last proposition, then we identify V ∗

with V ′, by not distinguishing between z and Jz (for all z ∈ V ∗). Thus, we have

V ⊂ H ⊂ V ′ ,

densely and with continuous embeddings. When V ′ is identified with V ∗ (as above),
then we call V ′ the dual of V with respect to the pivot space H. Also, the norm ‖ · ‖∗
on H defined as in the last proposition is called the dual norm of ‖ · ‖V with respect
to the pivot space H. We shall often need these concepts.

We mention that V is uniquely determined by V ′: it consists of those ϕ ∈ H for
which the product 〈z, ϕ〉H , regarded as a function of z, has a continuous extension
to V ′. We also call V the dual of V ′ with respect to the pivot space H.

Proposition 2.9.3. Let V and H be Hilbert spaces such that V ⊂ H, densely and
with continuous embedding, and let L ∈ L(H). We denote by V ′ the dual of V with
respect to the pivot space H.

(1) If LV ⊂ V , then the restriction of L to V is in L(V ).

(2) If L∗V ⊂ V , then L has a unique extension L̃ ∈ L(V ′).

Proof. To prove (1), we notice that as an operator from V to V , L is closed (we
have used the continuous embedding of V into H). Therefore, by the closed graph
theorem, L is bounded as an operator from V to V .

Now we prove (2). To avoid confusion, we use a different notation, namely Ld,
for the restriction of L∗ to V . We use (1) to conclude that Ld ∈ L(V ). Hence,
Ld∗ ∈ L(V ′) (see (1.1.5)). We claim that Ld∗ is an extension of L, i.e., that Ld∗z = Lz
holds for all z ∈ H. For this, it will be enough to show that

〈Ld∗z, ϕ〉V ′,V = 〈Lz, ϕ〉V ′,V ∀ z ∈ H, ϕ ∈ V .

It is clear from (2.9.1) that the right-hand side above can also be written as 〈Lz, ϕ〉H .
Hence, the formula that we have to prove can be rewritten as

〈z, Ldϕ〉V ′,V = 〈Lz, ϕ〉H ∀ z ∈ H, ϕ ∈ V .

Applying once more (2.9.1), this time to the left-hand side above, we obtain an
equivalent identity which is obviously true. Thus, L̃ = Ld∗ is an extension of L.

The uniqueness of L̃ follows from the density of H in V ′.
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2.10 The spaces X1 and X−1

Here we introduce the spaces X1 and X−1, which are important in the theory of
unbounded control and observation operators. X will denote a Hilbert space.

Proposition 2.10.1. Let A : D(A)→X be a densely defined operator with ρ(A) 6=
∅. Then for every β ∈ ρ(A), the space D(A) with the norm

‖z‖1 = ‖(βI − A)z‖ ∀ z ∈ D(A)

is a Hilbert space, denoted X1. The norms generated as above for different β ∈ ρ(A)
are equivalent to the graph norm (defined in (2.2.1)). The embedding X1 ⊂ X is
continuous. If L ∈ L(X) is such that LD(A) ⊂ D(A), then L ∈ L(X1).

Proof. The fact that ρ(A) 6= ∅ implies that A is closed, hence D(A) is a Hilbert
space with the graph norm ‖·‖gr defined in (2.2.1). We show that for every β ∈ ρ(A),
‖ · ‖1 is equivalent to ‖ · ‖gr. It is easy to see that for some c > 0 we have

‖z‖1 6 c‖z‖gr ∀ z ∈ D(A) .

The proof of this estimate uses the fact that (a + b)2 6 2(a2 + b2) holds for all
a, b ∈ R. To prove the estimate in the opposite direction, we use again this simple
fact about real numbers, as follows:

‖z‖2
gr = ‖z‖2 + ‖(βI − A)z − βz‖2

6 ‖z‖2 + 2 (‖(βI − A)z‖2 + β2‖z‖2) .

From here, using the estimate

‖z‖ 6 ‖(βI − A)−1‖ · ‖(βI − A)z‖ , (2.10.1)

we obtain that ‖z‖gr 6 k‖z‖1 for some k > 0 independent of z ∈ D(A). Thus we
have shown that the various norms ‖ · ‖1 are equivalent to ‖ · ‖gr.

The continuity of the embedding X1 ⊂ X follows from (2.10.1).

Now consider L ∈ L(X) such that L maps D(A) into itself. Then by part (1) of
Proposition 2.9.3 we have that L is continuous on X1.

Let A be as in Proposition 2.10.1, then clearly A∗ has the same properties. Thus,
we can define Xd

1 = D(A∗) with the norm

‖z‖d
1 =

∥∥(βI − A∗)z
∥∥ ∀ z ∈ D(A∗) ,

where β ∈ ρ(A∗), or equivalently, β ∈ ρ(A), and this is a Hilbert space.

Proposition 2.10.2. Let A be as in Proposition 2.10.1 and take β ∈ ρ(A). We
denote by X−1 the completion of X with respect to the norm

‖z‖−1 =
∥∥(βI − A)−1z

∥∥ ∀ z ∈ X. (2.10.2)
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Then the norms generated as above for different β ∈ ρ(A) are equivalent (in partic-
ular, X−1 is independent of the choice of β). Moreover, X−1 is the dual of Xd

1 with
respect to the pivot space X (as defined in the previous section).

If L ∈ L(X) is such that L∗D(A∗) ⊂ D(A∗), then L has a unique extension to an
operator L̃ ∈ L(X−1).

Proof. Choose the same β to define the norm on Xd
1 (we know from the previous

proposition, applied to A∗, that the choice of β in the definition of ‖ · ‖d
1 is not

important). For every z ∈ X we have, using Proposition 2.8.4,

‖z‖−1 = ‖(βI − A)−1z‖ = supx∈X, ‖x‖61 |〈(βI − A)−1z, x〉|
= supx∈X, ‖x‖61 |〈z, (βI − A∗)−1x〉|
= supϕ∈Xd

1 , ‖ϕ‖d
161 |〈z, ϕ〉| .

This shows that the norm ‖ · ‖−1 is the dual norm of ‖ · ‖d
1 with respect to the pivot

space X. Since ‖ · ‖d
1 changes into an equivalent norm if we change β (according

to the previous proposition), the same is true for ‖ · ‖−1. It follows that X−1 is
independent of β and it is the dual space of Xd

1 with respect to the pivot space X.

The statement concerning L now follows from part (2) of Proposition 2.9.3.

At the end of this section we shall determine the space X−1 for several examples
of semigroup generators.

For the following proposition, recall the concept of a unitary operator between
two Hilbert spaces, introduced at the beginning of the previous section.

Proposition 2.10.3. Let A : D(A)→X be a densely defined operator with ρ(A) 6=
∅, let β ∈ ρ(A), let X1 be as in Proposition 2.10.1 and let X−1 be as in Proposi-
tion 2.10.2. Then A ∈ L(X1, X) and A has a unique extension Ã ∈ L(X, X−1).
Moreover,

(βI − A)−1 ∈ L(X, X1) , (βI − Ã)−1 ∈ L(X−1, X)

(in particular, β ∈ ρ(Ã)), and these two operators are unitary.

Proof. From the definition of ‖z‖1 it is clear that (βI − A) ∈ L(X1, X) (it is
actually norm-preserving). Since X1 is continuously embedded in X, it follows that
also A ∈ L(X1, X), as claimed. By a similar argument, A∗ ∈ L(Xd

1 , X). Let us
denote by Ã the adjoint of A∗ ∈ L(Xd

1 , X), so that (according to the previous
proposition) Ã ∈ L(X,X−1). (Here, we identify X with its dual.) We claim that Ã
is an extension of A. Indeed, this follows from

〈Ãz, q〉X−1,Xd
1

= 〈z, A∗q〉X = 〈Az, q〉X ∀ z ∈ D(A), q ∈ D(A∗) ,

which shows that Ãz = Az for all z ∈ D(A). The uniqueness of an extension of A
to X follows from the fact that D(A) is dense in X.
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Denote R = (βI − A)−1 ∈ L(X, X1). We have

‖Rz‖ = ‖z‖−1 ∀ z ∈ X,

which shows that R has a unique extension R̃ ∈ L(X−1, X), and R̃ is norm-
preserving. From the formulas

(βI − Ã)R̃z = z = R̃(βI − Ã)z ∀ z ∈ D(A)

and the fact that D(A) is dense in X (and hence also in X−1) we conclude that in
fact the above formulas hold for every z ∈ X. Thus, β ∈ ρ(Ã) and (βI − Ã)−1 = R̃.

We have seen earlier that (βI − Ã)−1 ∈ L(X−1, X) is norm-preserving. It is easy
to see that also (βI − A)−1 ∈ L(X, X1) is norm-preserving. Since these operators
are obviously invertible, it follows that they are unitary.

Suppose that A is the generator of a strongly continuous semigroup T on X. It
follows from Propositions 2.10.1 and 2.10.2 that for every t > 0, Tt has a restriction
which is in L(X1) and a unique extension T̃t which is in L(X−1). We now show that
these new families of operators are similar to the original semigroup:

Proposition 2.10.4. We use the notation from Proposition 2.10.3, and assume
that A generates a strongly continuous semigroup T on X. The restriction of Tt

to X1 (considered as an operator in L(X1)) is the image of Tt ∈ L(X) through the
unitary operator (βI−A)−1 ∈ L(X, X1). Therefore, these operators form a strongly
continuous semigroup on X1, whose generator is the restriction of A to D(A2).

The operator T̃t ∈ L(X−1) is the image of Tt ∈ L(X) through the unitary op-
erator (βI − Ã) ∈ L(X, X−1). Therefore, these extended operators form a strongly
continuous semigroup T̃ = (T̃t)t>0 on X−1, whose generator is Ã.

Proof. The fact that Tt (considered as an operator in L(X1)) is the image of
Tt ∈ L(X) through the unitary operator (βI − A)−1 ∈ L(X, X1) can be written as
follows:

Ttz = (βI − A)−1Tt(βI − A)z ∀ z ∈ X1 ,

which is obviously true. The corresponding statement for T̃t reads

T̃tz = (βI − Ã)Tt(βI − Ã)−1z ∀ z ∈ X−1 ,

and this is also easy to check by first considering z ∈ X and then using the density
of X in X−1. The generators of the two new semigroups are the images of the old
generator A through the same two unitary operators.

In the sequel, we denote the restriction (extension) of Tt described above by the
same symbol Tt, since this is unlikely to lead to confusions. Similarly, the operator
Ã introduced in Proposition 2.10.3 will be denoted in the sequel by A.



72 Operator semigroups

Remark 2.10.5. The construction of X1 and X−1 can be iterated, in both direc-
tions, so that we obtain the infinite sequence of spaces

... X2 ⊂ X1 ⊂ X ⊂ X−1 ⊂ X−2 ...

each inclusion being dense and with continuous embedding. For each k ∈ Z, the
original semigroup T has a restriction (or an extension) to Xk which is the image of
T through the unitary operator (βI−A)−k ∈ L(X, Xk). The space X−2 occasionally
arises in the proof of theorems in infinite-dimensional systems theory. We are not
aware of the occurence of higher order extended spaces.

Remark 2.10.6. As we have explained before Proposition 2.10.2, in the construc-
tion of X1 we may replace A with A∗ and β with β, obtaining the space Xd

1 . Similarly,
in the construction of X−1, we may replace A with A∗ and β with β, obtaining a
space denoted by Xd

−1. For these spaces, we obtain similar results as in the last two
propositions (with the adjoint semigroup T∗ in place of T). In particular,

Xd
1 ⊂ X ⊂ Xd

−1 ,

densely and with continuous embeddings. As before, we denote the extensions of A∗

and of T∗t (to X and to Xd
−1) by the same symbols, so that A∗ ∈ L(X,Xd

−1). Note
that Xd

−1 is the dual of X1 with respect to the pivot space X.

Example 2.10.7. We determine here the spaces X−1 and Xd
−1 for the unilateral

left shift semigroup from Example 2.3.7, so that X = L2[0,∞), A = d
dx

and D(A) =
H1(0,∞). As mentioned in Example 2.8.7, we have D(A∗) = {z ∈ H1(0,∞) | z(0) =
0} = H1

0(0,∞). According to Proposition 2.10.2, X−1 is the dual of Xd
1 = D(A∗)

with respect to the pivot space X. According to Definition 13.4.7 in the Appendix
II, we obtain that X−1 = H−1(0,∞). From Proposition 2.3.1 we have

[
(I − A)−1z

]
(x) =

∞∫

0

e−tz(x + t)dt ∀ z ∈ X,

and the norm ‖z‖−1 (corresponding to β = 1 in (2.10.2)) is of course the L2-norm
of the above function. We are not aware of any simpler way to express this norm.

The space Xd
−1 is the dual of D(A), so that Xd

−1 = (H1(0,∞))
′
. To express the

norm ‖z‖d
−1 we note that [(I − A∗)−1z](x) =

∫ x

0
et−xz(t)dt (see Example 2.4.5).

Applying the Fourier transformation F , we obtain

(‖z‖d
−1)

2 =
1

2π

∫

R

|(F z)(ξ)|2
1 + ξ2

dξ ∀ z ∈ X.

Example 2.10.8. We consider the heat semigroup from Example 2.3.9, so that
X = L2(R), A = d2

dx2 , D(A) = H2(R) and, as mentioned in Example 2.8.7, A∗ = A.
According to Proposition 2.10.2, X−1 is the dual of Xd

1 = H2(R) with respect to the
pivot space L2(R). According to Theorem 13.5.4 in the Appendix II,H2(R) = H2

0(R)
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so that (using Definition 13.4.7 from the Appendix II) X−1 = H−2(R). The norm
on X−1 can be expressed in terms of the Fourier transform as follows:

‖z‖2
−1 =

1

2π

∫

R

|(F z)(ξ)|2
(1 + ξ2)2

dξ .

This corresponds to taking β = 1 in (2.10.2).

Example 2.10.9. If X = l2 and A is diagonal, as in Example 2.6.6, so that (Az)k =
λkzk, then it is easy to verify (using (2.6.10)) that for any fixed β ∈ ρ(A)

‖z‖2
−1 =

∑

k∈N

|zk|2
|β − λk|2 ∀ z ∈ X.

It follows that X−1 is the space of all the sequences z = (zk) for which

∑

k∈N

|zk|2
1 + |λk|2 < ∞ .

Moreover, the square-root of above series gives an equivalent norm on X−1.

Proposition 2.10.10. Let A : D(A)→X be the generator of a strongly continuous
semigroup T on X. If z ∈ X is such that for some ε > 0

sup
t∈(0,ε)

∥∥∥∥
Ttz − z

t

∥∥∥∥ < ∞ ,

then z ∈ D(A).

Proof. Denote xn = n(T 1
n
z − z), then (xn) is a bounded sequence in X by

assumption. By Alaoglu’s theorem (see Lemma 12.2.4 in Appendix I), there exists
a subsequence (xnk

) that converges weakly to a vector x0 ∈ X, as in (12.2.3). On
the other hand, it follows from Proposition 2.10.4 that lim xn = Az in X−1. Since
(by Proposition 2.10.2) X−1 is the dual of Xd

1 with respect to the pivot space X, it
follows that

lim〈xn, ϕ〉 = 〈Az, ϕ〉X−1,Xd
1

∀ ϕ ∈ Xd
1 .

Comparing this with (12.2.3), we see that

〈x0, ϕ〉X−1,Xd
1

= 〈Az, ϕ〉X−1,Xd
1

∀ ϕ ∈ Xd
1 ,

whence x0 = Az, so that Az ∈ X. Take β ∈ ρ(A), then we obtain (βI − A)z ∈ X,
which clearly implies that z ∈ D(A).

Remark 2.10.11. In this book, when we work with a semigroup T acting on a
state space X, then by default we identify X with its dual X ′ (see the text after
(1.1.4)). However, sometimes it is more convenient not to do this. For example,
if T is defined on the Sobolev space X = H−1(Ω), where Ω is a bounded open set
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in Rn, then our intuition may be better tuned to regard X ′ = H1
0(Ω) as the dual

space, which corresponds to duality with respect to the pivot space L2(Ω). This
also corresponds better to arguments involving integration by parts. (We refer to
Section 13.4 in Appendix II for the definitions of these Sobolev spaces.)

The material in the Sections 2.8 to 2.10 can be adjusted easily for he situation
when X is not identified with X ′ (however, we always identify X ′′ with X). Then
the adjoint of an operator A : D(A)→X, where D(A) is dense in X, is a closed
operator A∗ : D(A∗)→X ′, where D(A∗) ⊂ X ′. If A generates a semigroup T on X,
then A∗ generates the adjoint semigroup T∗ on X ′. The spaces Xd

1 and Xd
−1 (see

Remark 2.10.6) are such that

Xd
1 ⊂ X ′ ⊂ Xd

−1 . (2.10.3)

To understand the relationship between the spaces in (2.10.3) and the spaces X1 ⊂
X ⊂ X−1, we need to generalize the concept of duality with respect to a pivot space
(from Section 2.9) as follows:

Suppose that V and H are Hilbert spaces such that V ⊂ H, densely and with
continuous embedding. We do not identify H with its dual H ′. Then the dual of V
with respect to the pivot space H is the completion of H ′ with respect to the norm

‖z‖∗ = sup
ϕ∈V, ‖ϕ‖V 61

|〈z, ϕ〉H′,H | ∀ z ∈ H.

After this generalization, we may regard Xd
−1 as the dual of X1 with respect to

the pivot space X, and similarly we may regard X−1 as the dual of Xd
1 with respect

to the pivot space X ′.

2.11 Bounded perturbations of a generator

In this section, A : D(A)→X is the generator of a strongly continuous semigroup
T on X and P ∈ L(X). Our aim is to show that also A + P is the generator of a
strongly continuous semigroup on X. We call P a perturbation of the generator.

Lemma 2.11.1. Suppose that ω ∈ R and M > 1 are such that

‖Tt‖ 6 Meωt ∀ t > 0 . (2.11.1)

Then for α = ω + M‖P‖ we have Cα ⊂ ρ(A + P ).

Proof. For every s ∈ ρ(A) we have the factorization

sI − A− P = (sI − A)[I − (sI − A)−1P ] . (2.11.2)

According to Corollary 2.3.3 we have ‖(sI − A)−1‖ 6 M
Re s−ω

for all s ∈ Cω. Thus,
for s ∈ Cα we have ‖(sI − A)−1P‖ < 1. This implies, according to Lemma 2.2.6,
that the second factor on the right-hand side of (2.11.2) has a bounded inverse.
Since now s ∈ ρ(A), it follows that for s ∈ Cα we have s ∈ ρ(A + P ) and

(sI − A− P )−1 = [I − (sI − A)−1P ]−1(sI − A)−1 .
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Theorem 2.11.2. Assume again (2.11.1) and put α = ω + M‖P‖. Then A + P :
D(A)→X is the generator of a strongly continuous semigroup TP satisfying

‖TP
t ‖ 6 Meαt ∀ t > 0 . (2.11.3)

Proof. We define the sequence of families of bounded operators (Sn) acting on X
by induction: S0

t = Tt (for all t > 0) and for all n ∈ N,

Sn
t z =

t∫

0

Tt−σP Sn−1
σ zdσ ∀ z ∈ X, t > 0 .

It is easy to check that these families of operators are strongly continuous, meaning
that limt→ t0 Sn

t z = Sn
t0
z for all t0 > 0, z ∈ X and n ∈ {0, 1, 2, . . .}.

It is easy to show by induction that

‖Sn
t ‖ 6 Mn+1‖P‖neωt tn

n!
∀ n ∈ N , t > 0 . (2.11.4)

This implies that the following series is absolutely convergent in L(X):

TP
t =

∞∑
n=0

Sn
t ∀ t > 0 . (2.11.5)

Indeed, we have

‖TP
t ‖ 6 Meωt

∞∑
n=0

(M‖P‖t)n

n!
= MeωteM‖P‖t ,

and this also shows that the family TP satisfies (2.11.3). Moreover, it follows from
the estimates (2.11.4) that the series in (2.11.5) converges uniformly on bounded
intervals. This uniform convergence together with the strong continuity of the terms
Sn implies that the family of operators TP is strongly continuous.

Let us show that the family of operators TP satisfies the integral equation

TP
t z = Ttz +

t∫

0

Tt−σP TP
σ zdσ ∀ z ∈ X, t > 0 . (2.11.6)

Indeed, this follows from

TP
t z = Ttz +

∞∑
n=1

t∫

0

Tt−σP Sn−1
σ zdσ = Ttz +

t∫

0

Tt−σP

∞∑
n=1

Sn−1
σ zdσ,

where we have used the local uniform convergence of the series in (2.11.5)
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It is easy to see that for every z ∈ X, the function t 7→ TP
t z has a Laplace

transform defined (at least) for all s ∈ Cα, so that we can define R(s) ∈ L(X) by

R(s)z =

∞∫

0

e−st TP
t zdt ∀ z ∈ X, s ∈ Cα .

If we apply the Laplace transformation to (2.11.6) and use Proposition 2.3.1, we
obtain that for s ∈ Cα, R(s)z = (sI − A)−1z + (sI − A)−1PR(s)z. This shows
that Ran R(s) ⊂ D(A). From the last formula we get by elementary algebraic
manipulations that for s ∈ Cα, (sI − A− P )R(s) = I. Since according to Lemma
2.11.1 we have Cα ⊂ ρ(A + P ), it follows that

R(s) = (sI − A− P )−1 ∀ s ∈ Cα . (2.11.7)

Let us show that the family TP satisfies the semigroup property. For τ > 0 fixed,
we have from (2.11.6) that for every t > 0 and every z ∈ X,

TP
t+τz = Tt+τz + Tt

τ∫

0

Tτ−σP TP
σ zdσ +

t+τ∫

τ

Tt+τ−σP TP
σ zdσ

= Tt


Tτz +

τ∫

0

Tτ−σP TP
σ zdσ


 +

t+τ∫

τ

Tt+τ−σP TP
σ zdσ,

whence

TP
t+τz = TtTP

τ z +

t∫

0

Tt−µP TP
µ+τzdµ. (2.11.8)

For s ∈ Cα we define Q(s) ∈ L(X) by applying the Laplace transformation to the
function t 7→ TP

t+τz:

Q(s)z =

∞∫

0

e−st TP
t+τzdt ∀ z ∈ X, s ∈ Cα .

A computation that is very similar to the one leading to (2.11.7) (and using (2.11.8))
shows that

Q(s) = (sI − A− P )−1TP
τ ∀ s ∈ Cα .

Since the continuous function t 7→ TP
t+τz is uniquely determined by its Laplace

transform (see Proposition 12.4.5), the above formula with (2.11.7) yields

TP
t+τ = TP

t T
P
τ .

Thus we have shown that TP is a strongly continuous semigroup on X, and it
satisfies the estimate (2.11.3). From Proposition 2.3.1 and from (2.11.7) we see that
the generator of this semigroup is A + P .
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The above proof could be shortened by using the Banach space version of the
Lumer-Phillips theorem, see for example Pazy [182, pp. 76-77]. The Hilbert space
version of the Lumer-Phillips theorem will be given in Section 3.8. There are many
references discussing unbounded perturbations of semigroup generators, and several
such perturbation results can be found in the books on operator semigroups that
were cited at the beginning of this chapter.

Remark 2.11.3. With A and P as above, it is easy to verify that

(sI − A− P )−1 − (sI − A)−1 = (sI − A)−1P (sI − A− P )−1

= (sI − A− P )−1P (sI − A)−1 ∀ s ∈ ρ(A + P ) ∩ ρ(A) .

These formulas imply that the following norms are equivalent on X:

‖z‖−1 = ‖(βI − A)−1z‖ , ‖z‖P
−1 = ‖(βI − A− P )−1z‖ ,

where β ∈ ρ(A) ∩ ρ(A + P ). Hence, the space X−1 with respect to A (see Section
2.10) is the same as with respect to A + P . However, D(A2) is in general different
from D((A + P )2), and also the X−2 spaces are in general different.
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Chapter 3

Semigroups of contractions

A strongly continuous semigroup T is called a contraction semigroup if ‖Tt‖ 6 1 for
all t > 0. This chapter is a continuation of the previous one: we present basic facts
about unbounded operators and strongly continuous semigroups on Hilbert spaces,
but now the emphasis is on contraction semigroups and their generators, which are
called m-dissipative operators. We also discuss other important classes of operators
(self-adjoint, positive and skew-adjoint operators) that arise as generators or as
ingredients of generators of contraction semigroups. We also investigate some classes
of self-adjoint differential operators: Sturm-Liouville operators and the Dirichlet
Laplacian on various domains in Rn.

The notation is the same as in Chapter 2. Our main references for contraction
semigroups are Davies [44], Hille and Phillips [97] and Tanabe [213]. For self-adjoint
operators and for the Dirichlet Laplacian our sources are also Brezis [22], Courant
and Hilbert [37], Rudin [195], Zuily [246].

3.1 Dissipative and m-dissipative operators

Definition 3.1.1. The operator A : D(A)→X is called dissipative if

Re 〈Az, z〉 6 0 ∀ z ∈ D(A) .

We are interested in dissipative operators for the following reason: if T is a con-
traction semigroup on X, then its generator A is dissipative and Ran (I −A) = X.
Conversely, every operator A with these properties generates a contraction semi-
group on X. This will follow from the material below and in Section 3.8. The
dissipativity of an operator is often easy to check, so that we have an attractive way
of establishing that certain PDEs have well behaved solutions.

Proposition 3.1.2. The operator A : D(A)→X is dissipative if and only if

‖(λI − A)z‖ > λ‖z‖ ∀ z ∈ D(A), λ ∈ (0,∞) , (3.1.1)

79
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which is further equivalent to

‖(sI − A)z‖ > (Re s)‖z‖ ∀ z ∈ D(A), s ∈ C0 . (3.1.2)

Proof. If A is dissipative, then (3.1.1) holds, because for z and λ as in (3.1.1),

‖(λI − A)z‖2 = λ2‖z‖2 − 2λRe 〈Az, z〉+ ‖Az‖2 > λ2‖z‖2 .

Conversely, if (3.1.1) holds, then, for all λ > 0 we have

Re 〈Az, z〉 − 1

2λ
‖Az‖2 =

λ2‖z‖2 − ‖(λI − A)z‖2

2λ
6 0 .

For λ→∞ we obtain that A is dissipative.

Finally, we show that (3.1.1) and (3.1.2) are equivalent. Indeed, it is obvious that
the second implies the first. Suppose (3.1.1) holds and let s ∈ C0, so that s = λ+ iω
for some λ > 0 and ω ∈ R. Since A is dissipative, so is A − iωI. Writing (3.1.1)
with A− iωI in place of A, we get (3.1.2).

Proposition 3.1.3. Let A : D(A)→X be dissipative, with D(A) dense in X. Then
A has a closed extension, which is again dissipative.

Proof. One such extension (possibly not the only one) is the operator Acl whose
graph is the closure of the graph of A. Thus, z0 ∈ D(Acl) iff there is a sequence
(zn) in D(A) such that zn→ z0 and Azn→ y for some y ∈ X. In this case, we put
Aclz0 = y. To verify that this definition of Acl makes sense, we must check that
Aclz0 is independent of the sequence (zn). Suppose that there is another sequence
(z′n) in D(A) with z′n→ z0 and Az′n→ v for some v ∈ X. Put δn = zn − z′n, then
δn→ 0 and Aδn→ y − v. For every ψ ∈ D(A) and every s ∈ C we have

lim
n→∞

〈A(ψ + sδn), ψ + sδn〉 = 〈Aψ, ψ〉+ s〈y − v, ψ〉 .

The real part of the left-hand side must be 6 0. Since this is true for every s ∈ C,
we obtain that 〈y−v, ψ〉 = 0. Since this is true for all ψ ∈ D(A) and D(A) is dense,
we get y = v. Thus, the definition of Acl makes sense. Clearly, Acl is closed.

Now we show that Acl is dissipative. If z0 ∈ D(Acl), then there exists a se-
quence (zn) in D(A) with zn→ z0 and Azn→Aclz0. We have Re 〈Aclz0, z0〉 =
limn→∞ Re 〈Azn, zn〉 6 0. Since Re 〈Azn, zn〉 6 0, Acl is dissipative.

The operator Acl constructed in the above proof is called the closure of A. Ob-
viously, Acl is closed, so that it is equal to its own closure. Not every unbounded
operator has a closure, and the first part of the above proof was devoted to showing
that under the given assumptions, A has a closure.

Lemma 3.1.4. Let A be a closed and dissipative operator on the Hilbert space X.
Then for every s ∈ C0, Ran (sI − A) is closed in X.
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Proof. Let (fn) be a sequence in Ran (sI − A) = (sI − A)D(A), with fn→ f in
X. Then there exists a sequence (zn) in D(A) such that

szn − Azn = fn ∀ n > 1 . (3.1.3)

The convergence of (fn) and (3.1.2) imply that zn→ z in X. Moreover, (3.1.3)
implies that Azn→ sz − f in X. Since A is closed, it follows that z ∈ D(A) and
Az = sz − f , so that f ∈ Ran (sI − A).

Lemma 3.1.5. Let A : D(A)→X be dissipative and closed. Then for each s ∈ C0,
the operator A has a dissipative extension Ã such that

Ran (sI − Ã) = X.

Proof. Take s ∈ C0 and let us denote Ns = [Ran (sI − A)]⊥. We claim that
Ns ∩ D(A) = {0}. Indeed, if v ∈ Ns ∩ D(A), then

0 = 〈(sI − A)v, v〉 = s‖v‖2 − 〈Av, v〉 .

Taking real parts, we obtain 0 > (Re s)‖v‖2, which implies v = 0.

Now define D(Ã) = D(A) + Ns and

Ã(z + v) = Az − sv ∀ z ∈ D(A), v ∈ Ns .

We check that Ã is dissipative. Indeed, for z, v as above,

Re 〈Ã(z + v), z + v〉 = Re 〈Az, z〉 − Re 〈(sI − A)z, v〉 − (Re s)‖v‖2 6 0 ,

since 〈(sI − A)z, v〉 = 0. We check that Ran (sI − Ã) = X. Indeed, for z ∈ D(A)
and v ∈ Ns we have

(sI − Ã)(z + v) = (sI − A)z + (s + s)v . (3.1.4)

By Lemma 3.1.4, Ran (sI − A) is closed, so that every point x ∈ X can be decom-
posed as x = (sI − A)z + u for some z ∈ D(A) and some u ∈ Ns. This, together
with (3.1.4) implies that Ran (sI − Ã) = X.

Note that this lemma implies the following: If A ∈ L(X) is dissipative, then
Ran (sI − A) = X for all s ∈ C0.

Proposition 3.1.6. Let A : D(A)→X be dissipative and such that Ran (sI−A) =
X for some s ∈ C0. Then D(A) is dense in X.

Proof. Let f ∈ X be such that 〈f, v〉 = 0 for all v ∈ D(A). Since sI − A is onto,
there exists v0 ∈ D(A) such that sv0 − Av0 = f . Hence

0 = Re 〈f, v0〉 = (Re s)‖v0‖2 − Re 〈Av0, v0〉 > (Re s)‖v0‖2 .

Thus v0 = 0, so f = 0, so that D(A) is dense.
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Theorem 3.1.7. Let A : D(A)→X be dissipative. Then the following statements
about A are equivalent:

(1) Ran (sI − A) = X for some s ∈ C0.

(2) Ran (sI − A) = X for all s ∈ C0.

(3) D(A) is dense and if Ã is a dissipative extension of A, then Ã = A.

Proof. (3) ⇒ (2): Suppose that (3) holds, so that in particular D(A) is dense.
By Proposition 3.1.3, A has a closed and dissipative extension Acl. By (3) we have
Acl = A, so that A is closed. Now take s ∈ C0. By Lemma 3.1.5 there exists a
dissipative extension of A, denoted Ã, such that Ran (sI − Ã) = X. But according
to (3) we must have Ã = A, so that Ran (sI − A) = X. Thus, (2) holds.

(2) ⇒ (1): This is trivial.

(1) ⇒ (3): If (1) holds then, by Proposition 3.1.6, D(A) is dense. Let Ã be a
dissipative extension of A and take z ∈ D(Ã). By (1) there exists v ∈ D(A) such
that (sI − A)v = (sI − Ã)z, whence (sI − Ã)(z − v) = 0. By (3.1.2) we have

0 = ‖(sI − Ã)(z − v)‖ > (Re s)‖z − v‖ ,

so that z = v. Hence, D(Ã) = D(A), so that Ã = A.

Definition 3.1.8. A dissipative operator is called maximal dissipative (for brevity,
m-dissipative) if it has one (hence, all) the properties listed in Theorem 3.1.7.

Proposition 3.1.9. For A : D(A)→X, the following statements are equivalent:

(a) A is m-dissipative.

(b) We have (0,∞) ⊂ ρ(A) (in particular, A is closed) and

‖(λI − A)−1‖ 6 1

λ
∀ λ ∈ (0,∞) . (3.1.5)

(c) We have C0 ⊂ ρ(A) (in particular, A is closed) and

‖(sI − A)−1‖ 6 1

Re s
∀ s ∈ C0 . (3.1.6)

Proof. (a) ⇒ (c): From Theorem 3.1.7 we know that for all s ∈ C0 we have
Ran (sI −A) = X. From (3.1.2) we see that for all s ∈ C0, (sI −A)−1 is a bounded
linear operator on X satisfying (3.1.6).

(c) ⇒ (b): This is trivial.

(b) ⇒ (a): Clearly (b) implies that (3.1.1) holds, so that, by Proposition 3.1.2, A
is dissipative. Clearly, (b) also implies that Ran (λI − A) = X for all λ > 0. Thus,
A satisfies statement (1) from Theorem 3.1.7, so that it is m-dissipative.

Proposition 3.1.10. If A : D(A)→X is m-dissipative, then A∗ is m-dissipative.
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Proof. We know from Proposition 3.1.6 that D(A) is dense, so that A∗ exists.
From (3.1.5) and Proposition 2.8.4 we see that (0,∞) ⊂ ρ(A∗) and ‖(λI−A∗)−1‖ 6 1

λ

for all λ > 0. According to Proposition 3.1.9, A∗ is m-dissipative.

Proposition 3.1.11. Let A : D(A)→X be a densely defined dissipative operator.
Then A is m-dissipative if and only if A is closed and A∗ is dissipative.

Proof. Suppose that A is m-dissipative. According to Proposition 3.1.9, A is
closed and according to Proposition 3.1.10, A∗ is m-dissipative.

Conversely, suppose that A is closed and A∗ is dissipative. According to Lemma
3.1.4, Ran (I −A) is closed. By Remark 2.8.2, [Ran (I − A)]⊥ = Ker (I −A∗), and
the latter is {0} according to Proposition 3.1.2. Thus, Ran (I −A) = X, so that A
is m-dissipative (by definition).

Definition 3.1.12. A strongly continuous semigroup T on X is called a strongly
continuous contraction semigroup (or just a contraction semigroup for the sake of
brevity) if ‖Tt‖ 6 1 holds for all t > 0.

The introduction of m-dissipative operators is motivated by the following result:

Proposition 3.1.13. If A is the generator of a contraction semigroup on X, then
A is m-dissipative.

Proof. It follows from Proposition 2.3.1 and (2.3.2) that if A is the generator of
a contraction semigroup, then C0 ⊂ ρ(A) and

‖(sI − A)−1‖ 6 1

Re s
∀ s ∈ C0 . (3.1.7)

Now the proposition follows from this estimate and Proposition 3.1.9.

Example 3.1.14. Most of the examples in Chapter 2 are contraction semigroups.
For example, the unilateral left and right shift semigroups on L2[0,∞), the vanishing
left shift semigroup on L2[0, τ ] discussed in Example 2.3.8, the bilateral left shift
semigroup on L2(R), the heat semigroup on L2(R) discussed in Example 2.3.9, the
heat semigroups on L2[0, π] given in Examples 2.6.8 and 2.6.10 and the vibrating
string semigroup from Example 2.7.13 are all contraction semigroups.

It is easy to see that a diagonal semigroup on l2 (see Example 2.6.6) is a contraction
semigroup iff Re λ 6 0 holds for all the eigenvalues λ of its generator.

3.2 Self-adjoint operators

In this section we study self-adjoint operators on a Hilbert space. We denote the
Hilbert space by H and the operator by A0 (instead of using the notation X for
the space and A for the operator). The reason for this change of notation is that
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these operators will often appear in the later chapters not as generators of strongly
continuous semigroups but as ingredients of such generators.

Let A0 : D(A0)→H, where D(A0) is dense in H. Then A0 is called symmetric if

〈A0w, v〉 = 〈w, A0v〉 ∀ w, v ∈ D(A0) .

It is easy to see that this is equivalent to G(A0) ⊂ G(A∗
0) (recall from Section

2.1 that G(A0) denotes the graph of A0). In particular, A0 is called self-adjoint if
A0 = A∗

0. (The equality A∗
0 = A0 means that D(A∗

0) = D(A0) and A∗
0x = A0x for

all x ∈ D(A0), or equivalently, that G(A∗
0) = G(A0).)

Note that any self-adjoint operator A0 is closed. Indeed, since A∗
0 is closed (as

remarked before Proposition 2.8.1) and A0 = A∗
0, A0 is closed.

Lemma 3.2.1. Let T : D(T )→H and x, y ∈ D(T ). Then we have

4〈Tx, y〉 = 〈T (x + y), (x + y)〉 − 〈T (x− y), (x− y)〉
+i〈T (x + iy), (x + iy)〉 − i〈T (x− iy), (x− iy)〉 .

The proof is by direct computation and it is left to the reader.

Proposition 3.2.2. Assume that A0 : D(A0)→H, with D(A0) dense in H. Then
A0 is symmetric if and only if for every z ∈ D(A0), we have 〈A0z, z〉 ∈ R.

Proof. Suppose that for every z ∈ D(A0), 〈A0z, z〉 is real. It follows from Lemma
3.2.1 that for every w, v ∈ D(A0),

Re 〈A0w, v〉 =
1

4

[〈A0(w + v), (w + v)〉 − 〈A0(w − v), (w − v)〉] = Re 〈w,A0v〉 .

Replacing in this equality v with iv, we obtain that Im 〈A0w, v〉 = Im 〈w,A0v〉, so
that A0 is symmetric. The converse statement (the only if part) is very easy.

Remark 3.2.3. If A0 : D(A0)→H is symmetric, then for every s ∈ C and every
z ∈ D(A0) we have ‖(sI − A0)z‖ > |Im s| · ‖z‖. To prove this, we decompose
s = α + iω with α, ω ∈ R and we notice (using Proposition 3.2.2) that

‖(sI − A0)z‖2 = ‖(αI − A0)z‖2 + ω2‖z‖2 . (3.2.1)

Proposition 3.2.4. If A0 : D(A0)→H is symmetric, s ∈ C and both sI − A0 and
sI − A0 are onto, then A0 is self-adjoint and s, s ∈ ρ(A0).

Proof. By Remark 2.8.2 we have Ker (sI−A∗
0) = Ker (sI−A∗

0) = {0}. Since A∗
0 is

an extension of A0, by assumption we also have Ran (sI−A∗
0) = Ran (sI−A∗

0) = H.
This shows that sI −A∗

0 and sI −A∗
0 are invertible (as functions) and their inverses

are everywhere defined on H. Since A∗
0 is closed, the operators (sI − A∗

0)
−1 and

(sI − A∗
0)
−1 are also closed. According to the closed graph theorem these inverses

are bounded. Thus, we have shown that s, s ∈ ρ(A∗
0).
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Now we show that in fact A0 = A∗
0. Since A∗

0 is an extension of A0, we only have
to show that D(A∗

0) ⊂ D(A0). Since sI−A0 is onto, for any z0 ∈ D(A∗
0) we can find

a w0 ∈ D(A0) such that (sI −A0)w0 = (sI −A∗
0)z0, whence (sI −A∗

0)(z0−w0) = 0.
But since Ker (sI − A∗

0) = {0} (as we have seen earlier), z0 = w0 ∈ D(A0), so that
A0 = A∗

0. Combined with our earlier conclusion this means that s, s ∈ ρ(A0).

Remark 3.2.5. If we delete from the last proposition the condition that sI −A0 is
onto, then the conclusion is no longer true. A simple counterexample will be given
in Remark 3.7.4 (if we denote A0 = iA).

Proposition 3.2.6. If A0 : D(A0)→H is self-adjoint then σ(A0) ⊂ R.

Proof. If s ∈ C is not real, then by Remark 3.2.3 we have Ker (sI−A0) = {0}, so
that (by Remark 2.8.2) Ran (sI −A0) is dense in H. On the other hand, it follows
from Remark 3.2.3 that Ran (sI −A0) is closed, so that Ran (sI −A0) = H. Since,
again by Remark 3.2.3, we have Ker (sI − A0) = {0}, it follows that s ∈ ρ(A0).

Now recall the notation r(T ) introduced in Section 2.2.

Proposition 3.2.7. If T ∈ L(H) is self-adjoint, then r(T ) = ‖T‖.

Proof. We have ‖T 2‖ > sup
‖z‖61

〈T 2z, z〉 = sup
‖z‖61

‖Tz‖2 = ‖T‖2. On the other hand,

it is obvious that ‖T 2‖ 6 ‖T‖2, so we conclude that ‖T 2‖ = ‖T‖2. By induction it
follows that

‖T 2m‖ = ‖T‖2m ∀ m ∈ N .

According to the Gelfand formula (Proposition 2.2.15), in which we take n = 2m,
we obtain that r(T ) = ‖T‖.
Proposition 3.2.8. If A0 : D(A0)→H is self-adjoint and s ∈ C, then

‖(sI − A0)z‖ > min
λ∈σ(A0)

|s− λ| · ‖z‖ ∀ z ∈ D(A0) . (3.2.2)

If s ∈ ρ(A0) then

‖(sI − A0)
−1‖ =

1

min
λ∈σ(A0)

|s− λ| . (3.2.3)

Proof. First we show that the proposition holds for real s. If s ∈ σ(A0) then this is
clearly true. If s ∈ ρ(A0)∩R then according to Proposition 2.8.4, T = (sI−A0)

−1 is
self-adjoint and hence, by Proposition 3.2.7, we have ‖(sI−A0)

−1‖ = r((sI−A0)
−1).

Together with the formula (2.2.6) this shows that (3.2.3) holds for this s. From here
it is easy to conclude that also (3.2.2) holds for this s.

Now take s ∈ C and decompose it as s = α + iω, where α, ω ∈ R. Using the
formula (3.2.1) and the formula (3.2.2) with α in place of s, we obtain

‖(sI − A0)z‖2 > min
λ∈σ(A0)

|α− λ|2 · ‖z‖2 + ω2‖z‖2 ∀ z ∈ D(A0) .
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It is easy to see that this implies (3.2.2). The latter implies that for s ∈ ρ(A0),

‖(sI − A0)
−1‖ 6 1

min
λ∈σ(A0)

|s− λ| .

The opposite inequality is known to hold from Remark 2.2.8.

Recall the definition of a diagonalizable operator from Section 2.6. In the defini-
tion we have used a Riesz basis indexed by N, but (as we mentioned later in that
section) sometimes we prefer to use other countable index sets. In the proposition
below, we use an index set I ⊂ Z.

Proposition 3.2.9. If A0 : D(A0)→H is self-adjoint and diagonalizable, then there
exists in H an orthonormal basis (ϕk)k∈I of eigenvectors of A0 (here, I ⊂ Z).
Denoting the eigenvalue corresponding to ϕk by λk, we have λk ∈ R,

D(A0) =

{
z ∈ H

∣∣∣∣∣
∑

k∈I
(1 + λ2

k) |〈z, ϕk〉|2 < ∞
}

, (3.2.4)

and

A0z =
∑

k∈I
λk 〈z, ϕk〉ϕk ∀ z ∈ D(A0) . (3.2.5)

Proof. According to the assumption, there exists in X a Riesz basis (φk) con-
sisting of eigenvectors of A0. For each λ ∈ σp(A0), we can choose an orthonormal
basis in the (closed) subspace Xλ = Ker (λI − A0). We collect all the vectors in
these orthonormal bases into the family (ϕk)k∈I (this is possible, because σp(A0) is
countable). It is easy to verify that (ϕk)k∈I is an orthonormal set (it is here that we
need A∗

0 = A0). To show that this set is actually an orthonormal basis, assume that
x ∈ X is orthogonal to all ϕk. Then it is not difficult to show that x is orthogonal to
the original sequence (φk), so that x = 0. Now it is clear that the biorthogonal se-
quence to our orthonormal basis is the same orthonormal basis. Thus, the formulas
(3.2.4) and (3.2.5) follow from Proposition 2.6.3.

Remark 3.2.10. It is easy to see that the converse of Proposition 3.2.9 also holds:
If A0 : D(A0)→H is given by (3.2.4) and (3.2.5), where λk ∈ R and (ϕk)k∈I is
an orthonormal basis in H, then A0 is self-adjoint and diagonalizable, with the
eigenvectors ϕk. This follows from Propositions 2.6.2 and 2.8.6.

Remark 3.2.11. Here is a statement related to Proposition 3.2.9: If A0 is diago-
nalizable with an orthonormal sequence of eigenvectors and with real eigenvalues,
then A0 is self-adjoint. This follows from Proposition 2.6.3 and Remark 3.2.10.

Self-adjoint operators with compact resolvents fit into the framework of the previ-
ous proposition. This is a consequence of the spectral representation of self-adjoint
and compact operators given in Section 12.2 of Appendix I.
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Proposition 3.2.12. Let H be an infinite-dimensional Hilbert space and let A0 :
D(A0)→H be a self-adjoint operator with compact resolvents. Then A0 is diago-
nalizable with an orthonormal basis (ϕk)k∈I of eigenvectors (where I ⊂ Z) and the
corresponding family of real eigenvalues (λk)k∈I satisfies lim|k|→∞ |λk| = ∞.

Proof. According to Corollary 2.2.13 and Propositions 12.2.8 and 12.2.9, σ(A0)
consists of at most countably many real eigenvalues. Choose α ∈ R ∩ ρ(A0), then
K = (αI −A0)

−1 is self-adjoint and compact. According to Theorem 12.2.11, there
exists an orthonormal sequence (ϕk) of eigenvectors of K, indexed by I ⊂ Z, and
a corresponding sequence (µk) of real eigenvalues with µk 6= 0, µk→ 0 and such
that the representation (12.2.5) holds. Denote B = {ϕk | k ∈ I}. It follows from
(12.2.6) that B⊥ = Ker K = {0}, so that B is an orthonormal basis in H. It follows
now from Proposition 2.2.18 that A0 is diagonal, having the same sequence (ϕk) of
eigenvectors and the corresponding eigenvalues are λk = α − 1

µk
. It follows from

µk→ 0 that |λk|→∞.

The eigenvalues of self-adjoint operators with compact resolvents can be charac-
terized by the following min-max principle, called the Courant-Fischer theorem.

Proposition 3.2.13. Let H be an infinite-dimensional Hilbert space and let A0 :
D(A0)→H be a self-adjoint operator with compact resolvents such that the eigen-
values of A0 are bounded from below. We define the function RA0 : D(A0)\{0} → R
by

RA0(z) =
〈A0z, z〉
‖z‖2

∀ z ∈ D(A0) \ {0} . (3.2.6)

We order the eigenvalues of A0 to form an increasing sequence (µk)k∈N such that
each µk is repeated as many times as its geometric multiplicity. Then

µk = min
V subspace of D(A0)

dim V =k

max
z∈V \{0}

RA0(z) ∀ k ∈ N , (3.2.7)

µk = max
V subspace of D(A0)

dim V =k−1

min
z∈V ⊥\{0}

RA0(z) ∀ k ∈ N . (3.2.8)

Proof. We know from Proposition 3.2.12 that the eigenvalues (λk)k∈I of A0 are
real and they satisfy lim |λk| = ∞. By combining this fact to the assumption that
(λk) is bounded by below, it follows that lim λk = ∞ and that indeed the eigenvalues
of A0 can be ordered to form an increasing sequence (µk)k∈N with limk→∞ µk = ∞.
Let (ϕk)k∈N be an orthonormal basis formed of eigenvectors of of A0 such that ϕk

is an eigenvector associated to (µk) for every k ∈ N and denote

Vk = span {ϕ1, . . . ϕk} ∀ k ∈ N .

It is easy to check that max
z∈Vk\{0}

RA0(z) = µk, so that

µk > min
V subspace of D(A0)

dim V =k

max
z∈V \{0}

RA0(z) ∀ k ∈ N . (3.2.9)
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Let now V be a subspace of D(A0) of dimension k and denote W = V +Vk−1. Then
W is a finite-dimensional inner product space if endowed with the inner product
inherited from H. Denote m = dim W and let V ⊥

k−1 be the orthogonal complement
(in W ) of Vk−1. Then dim V ⊥

k−1 = m− k + 1 and

m > dim
(
V ⊥

k−1 + V
)

= m− k + 1 + k − dim
(
V ⊥

k−1 ∩ V
)

,

so that V ∩ V ⊥
k−1 contains at least one element different from zero, denoted by w.

Since w ∈ V ⊥
k−1 \ {0}, it follows that there exists an l2 sequence (wp)p>k such that

∑

p>k

|wp|2 > 0 and w =
∑

p>k

wpϕp .

From the above formulas we get that

RA0(w) =

∑
p>k µp|wp|2∑

p>k |wp|2 > µk ,

so that
µk 6 min

V subspace of D(A0)
dim V =k

max
z∈V \{0}

RA0(z) ∀ k ∈ N .

The above estimate together with (3.2.9) gives (3.2.7).

The estimate (3.2.8) can be proved in a similar way.

3.3 Positive operators

As in the previous section, H will denote a Hilbert space and we usually denote
by A0 an operator defined on a dense subspace D(A0) ⊂ H and with values in H.

Definition 3.3.1. Let A0 : D(A0)→H be self-adjoint. Then A0 is positive if
〈A0z, z〉 > 0 for all z ∈ D(A0). A0 is strictly positive if for some m > 0

〈A0z, z〉 > m‖z‖2 ∀ z ∈ D(A0). (3.3.1)

We write A0 > 0 (or A0 > 0) to indicate that A0 is positive (or strictly positive).
The notations A0 6 0, A0 < 0 mean that −A0 > 0, −A0 > 0, respectively. If
A1 is another self-adjoint operator on H, then the notation A1 > A0 means that
D(A1) ∩ D(A0) is dense in H and 〈A1z, z〉 > 〈A0z, z〉 for all z ∈ D(A1) ∩ D(A0).
The meanings of A1 > A0, A0 6 A1 and A0 < A1 are similar, with the obvious
modifications. Note that if at least one of the operators A1, A0 or A1 − A0 is
bounded on H, then A1 > A0 (or A1 > A0) just means that A1 − A0 > 0 (or that
A1 − A0 > 0). Thus, if A0 satisfies (3.3.1) then we can write A0 > mI.

Proposition 3.3.2. Let A0 : D(A0)→H be such that A0 > mI, m > 0. Then
0 ∈ ρ(A0), ‖A−1

0 ‖ 6 1
m

and

〈A−1
0 w, w〉 > 0 ∀ w ∈ H \ {0} . (3.3.2)
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Proof. For all z ∈ D(A0) we have ‖A0z‖ · ‖z‖ > 〈A0z, z〉 > m‖z‖2, whence

‖A0z‖ > m‖z‖ ∀ z ∈ D(A0) . (3.3.3)

This inequality and the closedness of A0 imply that Ran A0 is closed in H. According
to Remark 2.8.2 we have (Ran A0)

⊥ = Ker A0 = {0}, so that Ran A0 = H. Thus
A0 is invertible and (3.3.3) implies that ‖A−1

0 ‖ 6 1
m

. Finally, to prove (3.3.2), take
w ∈ H, w 6= 0, and denote z = A−1

0 w. Then 〈A−1
0 w, w〉 = 〈z, A0z〉 > 0.

Proposition 3.3.3. Let A0 : D(A0)→H be self-adjoint. Then A0 > 0 if and only
if σ(A0) ⊂ [0,∞).

Proof. Suppose that A0 > 0. We know from Proposition 3.2.6 that σ(A0) ⊂ R,
so we only have to show that negative numbers are in ρ(A0). For every m > 0 we
have mI + A0 > mI, so that by Proposition 3.3.2, mI + A0 has a bounded inverse,
hence −m ∈ ρ(A0). Thus we have shown that σ(A0) ⊂ [0,∞).

Conversely, suppose that A0 is self-adjoint and σ(A0) ⊂ [0,∞). According to
Proposition 3.2.8, for every m > 0 we have (using s = −m in (3.2.2))

‖(mI + A0)z‖ > m‖z‖ ∀ z ∈ D(A0) .

According to Proposition 3.1.2, −A0 is dissipative, i.e., Re 〈A0z, z〉 > 0 for all
z ∈ D(A0). Since A0 is self-adjoint, this implies that 〈A0z, z〉 > 0, i.e., A0 > 0.

Remark 3.3.4. Let A0 : D(A0)→H be self-adjoint and λ ∈ R. Then A0 > λI
if and only if σ(A0) ⊂ [λ,∞). Indeed, this follows from the last proposition, with
A0 − λI in place of A0. Hence, A0 > 0 iff σ(A0) ⊂ (0,∞).

Proposition 3.3.5. If A0 > 0, then −A0 is m-dissipative.

Proof. Since A0 is closed (as remarked at the beginning of this section) and clearly
−A0 is dissipative, according to Proposition 3.1.11, −A0 is m-dissipative.

If A0 : D(A0)→X is self-adjoint, then the spaces X1 and Xd
1 from Section 2.10

coincide. Similarly, their duals with respect to the pivot space X, denoted X−1 and
Xd
−1, coincide. Recall the higher order space X2 = D(A2

0) introduced in Remark
2.10.5. If the pivot space is denoted by H instead of X, then we write H2, H1, H−1

instead of X2, X1, X−1. Thus, if A0 : D(A0)→H is self-adjoint, then we have

H2 ⊂ H1 ⊂ H ⊂ H−1 ,

densely and with continuous embeddings. We have A0 ∈ L(H2, H1), A0 ∈ L(H1, H)
and A0 can be extended such that A0 ∈ L(H,H−1).

Proposition 3.3.6. If A0 is a self-adjoint operator on H, then A2
0 > 0.
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Proof. It is easy to see that A2
0 is symmetric. To show that it is self-adjoint, we

use Proposition 3.2.4 with s = −1. Thus, we have to show that for every f ∈ H
there exists z ∈ H2 such that (I + A2

0)z = f . The graph norm on H1 is induced by
the inner product

〈z, ϕ〉gr = 〈z, ϕ〉+ 〈A0z, A0ϕ〉 .
Take f ∈ H. According to the Riesz representation theorem on H1, with the above
inner product, there exists z ∈ H1 such that

〈z, ϕ〉+ 〈A0z, A0ϕ〉 = 〈f, ϕ〉 ∀ ϕ ∈ H1 . (3.3.4)

This formula shows that the functional ϕ 7→ 〈A0z, A0ϕ〉 has a continuous extension
to H. Therefore, A0z ∈ D(A∗

0) = D(A0) = H1, so that z ∈ D(A2
0). With this

information, (3.3.4) can be rewritten as z + A2
0z = f . We have shown that A2

0 is
self-adjoint. It is obvious that 〈A2

0z, z〉 > 0, so that A2
0 > 0.

Remark 3.3.7. If A0 is a self-adjoint operator on H and 0 ∈ ρ(A0), then A2
0 > 0.

Indeed, from the last proposition we know that A2
0 > 0. From Proposition 2.2.12 we

see that 0 ∈ ρ(A2
0). Thus, by Remark 3.3.4 we obtain A2

0 > 0.

Example 3.3.8. Let J be an interval in R and let f : J →R be measurable. On
H = L2(J) consider the pointwise multiplication operator A0 defined by

A0z(x) = f(x)z(x) for almost every x ∈ J ,

D(A0) =
{
z ∈ L2(J) | fz ∈ L2(J)

}
.

It is not obvious that D(A0) is dense in H. To prove this, introduce for each n ∈ N
the set Jn = {x ∈ J | |f(x)| > n}. Then (Jn) is a decreasing sequence of measurable
sets whose intersection is empty. This implies that, denoting the Lebesgue measure
by λ, we have limn→∞ λ(Jn) = 0. Denote the characteristic function of J \ Jn by
χn. For every z ∈ H, the sequence of functions (zn) defined by zn = χnz has the
following properties: zn ∈ D(A0) and limn→∞ zn = z. This shows that D(A0) is
indeed dense in H.

It is now easy to see that A0 is symmetric. Moreover, for any s ∈ C \ R, the
operator sI − A0 is onto. Indeed, for any g ∈ H, the equation (sI − A0)z = g
has a solution given by z(x) = g(x)/[s − f(x)] for almost every x ∈ J , and ‖z‖ 6
‖g‖/|Im s|. According to Proposition 3.2.4, A0 is self-adjoint.

It is interesting to investigate the spectrum of A0. We define the essential range
of f , denoted ess Ran f , as follows: A point µ ∈ R belongs to ess Ran f if for
any interval D centered at µ, λ(f−1(D)) > 0. Thus, for a continuous function, its
essential range is simply its range. For any measurable function f , changing the
values of f on a set of measure zero will not change its essential range. It is now an
easy exercise to check that

σ(A0) = ess Ran f .

The following statements are easy to verify: A0 > 0 iff f(x) > 0 for almost every
x ∈ J , A0 > 0 iff there exists m > 0 such that f(x) > m for almost every x ∈ J .
A0 is bounded iff ess Ran f is bounded, which is equivalent to f ∈ L∞(J).
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Example 3.3.9. Take H = L2[0,∞),

D(A0) = H2(0,∞) ∩ H1
0(0,∞) , A0 = − d2

dx2
.

An integration by parts shows that A0 is symmetric. By elementary techniques from
the theory of linear differential equations we can verify that I + A0 is onto. Indeed,
for every f ∈ L2[0,∞), the Laplace transform of z ∈ D(A0) satisfying (I +A0)z = f
is given by

ẑ(s) =
−1

s + 1
· f̂(s)− f̂(1)

s− 1
∀ s ∈ C0 \ {1} .

For s = 1 we take the obvious extension of ẑ by continuity. Note that dz
dx

(0) = f̂(1).
We mention that the same conclusion (that I +A0 is onto) could have been obtained
also from the Riesz representation theorem on the space H1

0(0,∞). Consequently,
by Proposition 3.2.4, the operator A0 is self-adjoint. Since

〈A0z, z〉 =

∞∫

0

∣∣∣∣
dz

dx

∣∣∣∣
2

dx ∀ z ∈ D(A0) ,

we have that A0 is positive. According to Proposition 3.3.3 we have σ(A0) ⊂ [0,∞).

The above properties of A0 are shared by its counterpart on a bounded interval,
introduced in Example 2.6.8. It is easy to check that A0 has no eigenvalues so
that, unlike the operator introduced in Example 2.6.8, the resolvents of A0 are not
compact. Another interesting property is that σ(A0) = [0,∞). Indeed, for every
λ > 0, the equation (λ2I − A0)v = f has no solution for f(t) = e−t (many other
functions could be used instead of e−t). To see this, consider that v is a solution of
the equation. Then, denoting the Laplace transform of v by v̂, we get

(λ2 + s2)v̂(s)− sv′(0) =
1

s + 1
.

This shows that v̂ is rational and has poles at ±iλ, so that v cannot be in L2[0,∞).
Thus, λ2 ∈ σ(A). This being true for every λ > 0, we obtain that σ(A0) = [0,∞).

3.4 The spaces H 1
2

and H− 1
2

In this section, H is a Hilbert space and A0 : D(A0)→H is strictly positive
(A0 > 0). We shall introduce the square root of A0, based on the concept of the
square root of a bounded positive operator (see Section 12.3 in Appendix I). Then

we define the space H 1
2

= D(A
1
2
0 ) with a suitable norm, and H− 1

2
will be the dual

of H 1
2

with respect to the pivot space H. These spaces are useful in the analysis of
certain systems described by PDEs which are of second order in time.
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To introduce A
1
2
0 , we use the facts that A−1

0 ∈ L(H), A−1
0 > 0 and Ker A−1

0 = {0},
which follow from Proposition 3.3.2. Denote

A
− 1

2
0 = (A−1

0 )
1
2 , D(A

1
2
0 ) = Ran A

− 1
2

0 .

Then A
− 1

2
0 : H→D(A

1
2
0 ) is invertible on its range and its (possibly unbounded)

inverse is denoted by A
1
2
0 . Thus, by definition, A

1
2
0 = ((A−1

0 )
1
2 )−1.

Proposition 3.4.1. For A0 as above, we have A
1
2
0 > 0.

Proof. Since A
− 1

2
0 is self-adjoint, it follows from Proposition 2.8.4 that A

1
2
0 is self-

adjoint. According to Proposition 2.2.12, σ(A
1
2
0 ) = (σ(A0))

1
2 . Since A0 > 0, by

Remark 3.3.4 we have σ(A0) ⊂ [λ,∞) for some λ > 0, hence σ(A
1
2
0 ) ⊂ [λ

1
2 ,∞),

hence (using again Remark 3.3.4) A
1
2
0 > λ

1
2 I.

Remark 3.4.2. For A0 as above, there is a unique operator S : D(S)→H with the

properties that S > 0, S2 = A0, and this is A
1
2
0 . Indeed, clearly S > 0, hence we

have S−1 ∈ L(H) and S−1 > 0 (see Proposition 3.3.2). We have S−2 = A−1
0 , so that

according to the uniqueness part of Theorem 12.3.4 we have S−1 = A
− 1

2
0 .

We define H1 as the space D(A0) with the norm ‖f‖1 = ‖A0f‖, which is equivalent
to the graph norm of A0 and it is induced by the inner product

〈f, g〉1 = 〈A0f, A0g〉 ∀ f, g ∈ H1 .

Similarly, we define the Hilbert space H 1
2

= D(A
1
2
0 ) with the norm ‖f‖ 1

2
= ‖A

1
2
0 f‖,

which is equivalent to the graph norm of A
1
2
0 and it is induced by

〈f, g〉 1
2

= 〈A
1
2
0 f, A

1
2
0 g〉 ∀ f, g ∈ H 1

2
.

Clearly, if f ∈ D(A0) then the above formula simplifies to 〈f, g〉 1
2

= 〈A0f, g〉.
Proposition 3.4.3. We have H1 ⊂ H 1

2
⊂ H, densely and with continuous embed-

dings. Moreover, A
1
2
0 ∈ L(H1, H 1

2
) and A

1
2
0 ∈ L(H 1

2
, H) are unitary.

Proof. From the definitions it is clear that H1 ⊂ H 1
2
⊂ H. Since A

1
2
0 is self-adjoint,

its domain H 1
2

is dense in H. To prove that H1 is dense in H 1
2
, take z ∈ H 1

2
, so that

z = A
− 1

2
0 x for some x ∈ H. Let (xn) be a sequence in H 1

2
such that xn→x. It is

easy to see that A
− 1

2
0 xn ∈ H1 and A

− 1
2

0 xn→A
− 1

2
0 x = z in H 1

2
.

The continuity of the embeddings follows immediately from the definition of the

norm on these spaces and the fact that A
1
2
0 > 0 (see Proposition 3.4.1). The fact

that A
1
2
0 is unitary between the spaces indicated in the proposition is an immediate

consequence of the definition of the norm on these spaces.
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Remark 3.4.4. It follows from the last proposition that H 1
2

may also be regarded

as the completion of D(A0) with respect to the norm

‖f‖ 1
2

=
√
〈A0f, f〉 ∀ f ∈ D(A0) .

We define the spaces H− 1
2

and H−1 as the duals of H 1
2

and H1 respectively, with

respect to the pivot space H (see Section 2.9). Then we have the dense and contin-
uous embeddings

H1 ⊂ H 1
2
⊂ H ⊂ H− 1

2
⊂ H−1 .

Proposition 3.4.5. A
1
2
0 and A0 have unique extensions such that

A
1
2
0 ∈ L(H, H− 1

2
) , A0 ∈ L(H,H−1) . (3.4.1)

Using the inverses of these extensions, the norms on H− 1
2

and on H−1 can also be
expressed as

‖z‖− 1
2

= ‖A− 1
2

0 z‖ , ‖z‖−1 = ‖A−1
0 z‖ ,

so that the operators in (3.4.1) are unitary. These operators can also be regarded as
strictly positive (densely defined) operators on H− 1

2
and on H−1, respectively.

Proof. We can apply Propositions 2.10.2 and 2.10.3 (with H in place of X,
A0 in place of A and 0 in place of β) to conclude that A0 has unique extension
in L(H, H−1), A−1

0 has a unique extension in L(H−1, H) and these operators are
unitary. This implies, in particular, that the norm on H−1 can indeed be expressed
as stated. The strict positivity of the extended A0 follows from the fact that it is the
image of the original A0 : D(A0)→H through the unitary operator A0 ∈ L(H, H−1).

Repeating the above argument with A
1
2
0 in place of A0 and H− 1

2
in place of H−1,

we obtain the remaining statements in the proposition.

Corollary 3.4.6. A0 has a unique extension such that

A0 ∈ L(H 1
2
, H− 1

2
) ,

and this is unitary. Moreover, this extension of A0 can be regarded as a strictly
positive (densely defined) operator on H− 1

2
.

Proof. We know from the previous proposition that A
1
2
0 ∈ L(H 1

2
, H) and A

1
2
0 ∈

L(H, H− 1
2
). The combination of these unitary operators is a unitary operator Ã0 ∈

L(H 1
2
, H− 1

2
) and Ã0 is clearly an extension of the original A0. If we regard A0 as a

densely defined strictly positive operator on H, then Ã0 is the image of A0 through

the unitary operator A
1
2
0 ∈ L(H, H− 1

2
), so that Ã0 is a strictly positive densely

defined operator on H− 1
2
. As in the previous proposition, we use the notation A0

for extensions of the original A0 by continuity, in particular for Ã0.
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Remark 3.4.7. In this remark, we use the notation Ã0 for the extension of A0 to
a strictly positive (densely defined) operator on H̃ = H− 1

2
, introduced in the last

corollary. Then H̃1 = D(Ã0) = H 1
2

and H̃ 1
2

= D(Ã
1
2
0 ) = H, with equal norms. The

proof is straightforward and we leave it to the reader.

In the particular case when A0 > 0 is diagonalizable (see Section 2.6), it follows
from Proposition 3.2.9 that there exists an orthonormal basis (ϕk) in H consisting
of eigenvectors of A0 (here we take k ∈ N). If we denote the corresponding sequence
of eigenvalues of A0 by (λk), then A0 can be written as in (3.2.4) and (3.2.5). In

this case, there are simple explicit formulas for A
1
2
0 and for its domain, as follows:

Proposition 3.4.8. Suppose that A0 is diagonalizable, with the orthonormal basis
of eigenvectors (ϕk) and the corresponding sequence of eigenvalues (λk). Then

D(A
1
2
0 ) =

{
z ∈ H

∣∣∣∣∣
∞∑

k=1

λk |〈z, ϕk〉|2 < ∞
}

, (3.4.2)

A
1
2
0 z =

∞∑

k=1

λ
1
2
k 〈z, ϕk〉ϕk ∀ z ∈ D(A

1
2
0 ) . (3.4.3)

Moreover, the dual space H− 1
2

= H ′
1
2

can also be described as:

H− 1
2

=

{
z ∈ H−1

∣∣∣∣∣
∞∑

k=1

λ−1
k |〈z, ϕk〉|2 < ∞

}
, (3.4.4)

and its norm is

‖z‖− 1
2

=

( ∞∑

k=1

λ−1
k |〈z, ϕk〉|2

) 1
2

∀ z ∈ H− 1
2
. (3.4.5)

Proof. We shall need several times the approximation formula

z = lim
N →∞

N∑

k=1

〈z, ϕk〉ϕk in Hα ∀ z ∈ Hα , (3.4.6)

which is true in any of the spaces Hα under consideration (α = 1, 1
2
, 0, −1

2
, −1) and

in which the coefficients 〈z, ϕk〉 (understood as a duality pairing between z ∈ Hα

and ϕk ∈ H−α) depend on z but are independent of α.

In order to prove (3.4.2) we recall that D(A
1
2
0 ) is the completion of D(A0) with

respect to the norm ‖z‖ 1
2

=
√
〈A0z, z〉. Using (3.2.5) we obtain that

‖z‖ 1
2

=

( ∞∑

k=1

λk |〈z, φk〉|2
) 1

2

,
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for all z ∈ H1. Using (3.4.6) we obtain that the above formula for ‖z‖ 1
2

remains

valid for all z ∈ H 1
2

and (3.4.2) holds. To prove (3.4.3) we notice that the operator

defined by the right-hand side of (3.4.3) is positive and its square is A0. Because of

the uniqueness of the square root (see Remark 3.4.2) this operator is in fact A
1
2
0 .

The formula for A
− 1

2
0 is easy to obtain from (3.4.3): replace λ

1
2
k with λ

− 1
2

k . (Indeed,
this is true for z ∈ H and by continuous extension it must be true for z ∈ H− 1

2
.)

From here and from Proposition 3.4.5, the formula (3.4.5) follows.

To prove (3.4.4), note that H− 1
2

is the completion of H with respect to the norm

in (3.4.5). Now use again the approximation (3.4.6).

Proposition 3.4.9. Let A0 > 0 and Q = Q∗ ∈ L(H) be such that A1 = A0 +Q > 0.
We define the norm ‖·‖′1 induced by A1 on D(A0) by ‖z‖′1 = ‖A1z‖. Then the norms

‖·‖′1 and ‖·‖1 are equivalent. Moreover, D(A
1
2
1 ) = D(A

1
2
0 ) and the norm ‖·‖′1

2

defined

on D(A
1
2
0 ) by ‖z‖′1

2

= ‖A
1
2
1 z‖ is equivalent to ‖ · ‖ 1

2
.

Proof. Let m > 0 be such that A0 > mI. Then for all z ∈ D(A0),

‖z‖′1 = ‖(A0 + Q)z‖ 6 ‖A0z‖+ ‖Q‖ · ‖z‖ 6
(

1 +
‖Q‖
m

)
‖A0z‖ ,

so that the norm ‖ · ‖1 is stronger than ‖ · ‖′1. By a very similar argument, the norm
‖ · ‖′1 is stronger than ‖ · ‖1. Thus, these two norms on D(A0) are equivalent.

Note that there exists a number k > 0 such that Q 6 kA0. Indeed, denoting
k = ‖Q‖

m
we have

Q 6 ‖Q‖ · I =
‖Q‖
m

·mI 6 kA0 .

We know from Remark 3.4.4 that D(A
1
2
1 ) is the completion of D(A0) with respect

to the norm
‖z‖′1

2
=

√
〈A1z, z〉 .

Since
〈A1z, z〉 = 〈A0z, z〉+ 〈Qz, z〉 6 (1 + k)〈A0z, z〉 ,

the norm ‖ · ‖′1
2

on D(A0) is stronger than ‖ · ‖ 1
2
. By a similar argument, ‖ · ‖ 1

2
is

stronger than ‖ · ‖′1
2

. Thus, these two norms are equivalent, whence D(A
1
2
0 ) = D(A

1
2
1 )

and the extensions of the two norms to D(A
1
2
0 ) are also equivalent.

Remark 3.4.10. We state without proof two results (probably the simplest ones)
from an area of functional analysis called interpolation theory. We use the notation
of Proposition 3.4.3. The first statement is as follows: If L ∈ L(H) is such that
LH1 ⊂ H1 (hence L ∈ L(H1)) then also LH 1

2
⊂ H 1

2
(hence L ∈ L(H 1

2
)). This is a

particular case of Lions and Magenes [157, Theorem 5.1 in Chapter 1].
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The second statement is as follows: Suppose that T = (Tt)t>0 is a family of
operators in L(H) such that TtH1 ⊂ H1 for all t > 0,

lim
t→ 0

Ttz = z (in H) ∀ z ∈ H (3.4.7)

and a property similar to (3.4.7) holds with H1 in place of H everywhere. Then
a similar property holds also with H 1

2
in place of H. This is a particular case of

[157, Theorem 5.2 in Chapter 1]. Thus, it follows that if T is a strongly continuous
semigroup both on H and on H1, then it is also on H 1

2
.

For positive operators, the Courant-Fischer theorem (Proposition 3.2.13) can be
reformulated as follows:

Proposition 3.4.11. Let H be an infinite-dimensional Hilbert space and let A0 :
D(A0)→H be a positive operator with compact resolvents. We order the eigenvalues
of A0 to form an increasing sequence (µk)k∈N such that each µk is repeated as many
times as its geometric multiplicity. Then

µk = min
V subspace of H 1

2dim V =k

max
z∈V \{0}

∥∥∥A
1
2
0 z

∥∥∥
2

‖z‖2
∀ k ∈ N , (3.4.8)

µk = max
V subspace of H 1

2dim V =k−1

min
z∈V ⊥\{0}

∥∥∥A
1
2
0 z

∥∥∥
2

‖z‖2
∀ k ∈ N .

Note that we have replaced the space D(A0) in Proposition 3.2.13 with the larger
space H 1

2
, but this does not change the result. This can be seen either by a density

argument, or by redoing the proof of Proposition 3.2.13 in the new context.

Example 3.4.12. Let H = L2[0, π] and let A0 : D(A0) → H be the operator defined
by

D(A0) =

{
z ∈ H2(0, π)

∣∣∣∣
dz

dx
(0) = z(π) = 0

}
,

A0z = − d2z

dx2
∀ z ∈ D(A0) .

Note that A0 = −A, where A is the operator introduced in Example 2.6.10, so that
A0 is diagonalizable, with the eigenvalues

λk =

(
k − 1

2

)2

∀ k ∈ N ,

and with an orthonormal basis of eigenvectors, given in Example 2.6.10. By Remark
3.2.11 A0 is self-adjoint. Since λk > 1/4, it follows that A0 > 0. Moreover, a simple
integration by parts shows that

〈A0z, z〉 =

∥∥∥∥
dz

dx

∥∥∥∥
2

∀ z ∈ D(A0) , (3.4.9)
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so that the space H 1
2

(which is D(A
1
2
0 ) with the graph norm) is the completion of

D(A0) with respect to the norm

‖z‖ 1
2

=

∥∥∥∥
dz

dx

∥∥∥∥ .

On D(A0), this norm is obviously equivalent to the norm ‖z‖′1
2

=
√
‖z‖2 + ‖z‖2

1
2

,

which is the standard norm on H1(0, π) (see (13.4.1)). It is easy to check (using the
density of D(0, π) in H1

0(0, π)) that the closure of D(A0) in H1(0, π) is

H1
R(0, π) =

{
f ∈ H1(0, π) | f(π) = 0

}
,

Therefore we conclude that H 1
2

= H1
R(0, π).

Example 3.4.13. Let H = L2[0, 1] and let A0 : D(A0) → H be the operator defined
by

D(A0) = H4(0, 1) ∩H2
0(0, 1) ,

A0f =
d4f

dx4
∀ f ∈ D(A0)

(for the notation H2
0(0, 1) see the beginning of Chapter 2). A simple integration by

parts shows that

〈A0f, g〉 =

〈
d2f

dx2
,
d2g

dx2

〉
= 〈f, A0g〉 ∀ f, g ∈ D(A0) , (3.4.10)

so that A0 is symmetric. Simple considerations about the differential equation A0f =
g, with g ∈ L2[0, 1] show that A0 is onto. Thus according to Proposition 3.2.4, A0

is self-adjoint and 0 ∈ ρ(A0). Since we can see from (3.4.10) that A0 > 0, it follows
that σ(A0) ⊂ (0,∞), so that by Remark 3.3.4, A0 > 0.

In order to compute H 1
2

we note that, according to Remark 3.4.4 and formula

(3.4.10), the space H 1
2

(which is D(A
1
2
0 ) with the graph norm) is the completion of

D(A0) with respect to the norm

‖f‖ 1
2

=
√
〈A0f, f〉 =

∥∥∥∥
d2f

dx2

∥∥∥∥ .

It is not difficult to check that the above norm is equivalent on D(A0) to the standard
norm of H2(0, 1). Since D(A0) is dense in H2

0(0, 1) with the H2 norm, we obtain
that H 1

2
= H2

0(0, 1).

3.5 Sturm-Liouville operators

In this section we investigate an important class of self-adjoint operators. More
precisely, we consider Sturm-Liouville operators, which are linear second order dif-
ferential operators acting on a dense domain in L2(J), where J is an interval. These
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operators occur in the study of linear PDEs in one space dimension, with possibly
variable coefficients.

Throughout this section a ∈ H1(0, π) and b ∈ L∞[0, π] are real-valued, there exists
m > 0 with a(x) > m for all x ∈ [0, π] and we denote H = L2[0, π].

Proposition 3.5.1. Let A0 : D(A0) → H be the operator defined by

D(A0) = H2(0, π) ∩H1
0(0, π),

A0z = − d

dx

(
a
dz

dx

)
∀ z ∈ D(A0) .

Then A0 > 0 and

H 1
2

= D(A
1
2
0 ) = H1

0(0, π) , H− 1
2

= H−1(0, π) . (3.5.1)

Proof. The operator A0 is symmetric. Indeed, from a simple integration by parts

〈A0z, w〉 =

π∫

0

a(x)
dz

dx

dw

dx
dx = 〈z, A0w〉 ∀ z, w ∈ D(A0) . (3.5.2)

Simple considerations about the differential equation A0z = f , with f ∈ L2[0, π],
using the fact that 1

a
∈ H1(0, π), show that A0 is onto. Thus according to Proposition

3.2.4, A0 is self-adjoint and 0 ∈ ρ(A0). Since we can see from (3.5.2) that A0 > 0,
it follows that σ(A0) ⊂ (0,∞), so that by Remark 3.3.4, A0 > 0.

In order to prove (3.5.1) we note that, according to Remark 3.4.4 and formula

(3.5.2), the space H 1
2

(which is D(A
1
2
0 ) with the graph norm) is the completion of

D(A0) with respect to the norm

‖z‖ 1
2

=
√
〈A0z, z〉 =




π∫

0

a(x)

∣∣∣∣
dz

dx

∣∣∣∣
2

dx




1
2

.

For a = 1 this would be the standard norm on H1
0(0, π). Our assumptions on a

imply that ‖ · ‖ 1
2

is equivalent to the standard norm on H1
0(0, π). Since D(A0) is

dense in H1
0(0, π) with the standard norm, we obtain (3.5.1).

Proposition 3.5.2. Let A1 : D(A1) → H be the operator defined by

D(A1) = H2(0, π) ∩H1
0(0, π) ,

A1z = − d

dx

(
a
dz

dx

)
+ bz ∀ z ∈ D(A1) ,

with a and b as at the beginning of the section.

Then A1 is self-adjoint, it has compact resolvents and there is an orthonormal basis
(ϕk)k∈N in H consisting of eigenvectors of A1. If λ ∈ R is such that λ+ b(x) > 0 for
almost every x ∈ [0, π], then σ(A1) ⊂ (−λ,∞). The sequence (λk) of the eigenvalues
of A1 is such that lim λk = ∞. Each eigenvalue of A1 is simple (i.e., its geometric
multiplicity is one). If b is such that A1 > 0 (for example, this is the case if b(x) > 0

for almost every x ∈ [0, π]), then D(A
1
2
1 ) = H1

0(0, π).
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Proof. We introduce the operator M ∈ L(X) by

(Mz)(x) = b(x)z(x) ∀ x ∈ [0, π] .

It is easy to check that M is self-adjoint (in fact it belongs to the class described
in Example 3.3.8). The boundedness of M follows from b ∈ L∞[0, π]. We have
A1 = A0 +M , where A0 > 0 is the operator introduced in Proposition 3.5.1, so that
A1 is self-adjoint. If λ > 0 is such that λ+ b(x) > 0 for almost every x ∈ [0, π], then
clearly λI + M > 0 and hence λI + A1 > 0. This implies that σ(A1) ⊂ (−λ,∞).

The operator A1 is a generalization of −A = − d2

dx2 from Example 2.6.8 (indeed,
−A corresponds to taking a = 1 and b = 0). We want to show that A1 is diagonal-
izable, and we do this by using the fact (already shown in Example 2.6.8) that A is
diagonalizable, with the eigenvalues −k2 (where k ∈ N). It follows from the results
in Section 2.6 that (−A)−1 is diagonalizable with the eigenvalues 1/k2. According
to Corollary 12.2.10 from Appendix I, (−A)−1 is compact. Since D(A1) = D(A) and
A is closed, it follows from the closed graph theorem that L = −A(λI + A1)

−1 is
in L(H). Therefore, (λI + A1)

−1 = (−A)−1L is compact. According to Proposition
3.2.12, A1 is diagonalizable, there is an orthonormal basis (ϕk)k∈N in H consist-
ing of eigenvectors of A1 and the sequence (λk) of the eigenvalues of A1 satisfies
lim |λk| = ∞. Since λk > −λ, it follows that lim λk = ∞.

To show that each eigenvalue of A1 is simple, we notice that an eigenvector z
corresponding to the eigenvalue λ must satisfy az′′ + a′z′ + (λ− b)z = 0, and such
a z is completely determined by its initial values z(0) = 0 and z′(0). Thus, any
solution z is a multiple of the solution obtained for z′(0) = 1.

If b(x) > 0 for almost every x, then M > 0 and hence A1 = A0 + M > 0 (but we

may have A1 > 0 also for other b). If A1 > 0 then the property D(A
1
2
1 ) = D(A

1
2
0 )

follows from Proposition 3.4.9 (with M in place of Q).

Remark 3.5.3. According to Proposition 2.6.5, −A1 is the generator of a strongly
continuous semigroup T on H:

Ttz =
∑

k∈N
e−λkt〈z, ϕk〉ϕk .

It is easy to see that for every t > 0, Tt is self-adjoint (see Remark 3.2.10) and
compact. This semigroup corresponds to a non-homogeneous heat equation that is
a slight generalization of the one described in Remark 2.6.9:

∂w

∂t
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
− b(x)w(x, t) , x ∈ (0, π) , t > 0 ,

with Dirichlet boundary conditions w(0, t) = w(π, t) = 0.

In order to have more information on the eigenvalues of A1 we first do a change
of variables, by using the function g : [0, π] → R defined by

g(x) =

x∫

0

dξ√
a(ξ)

∀ x ∈ [0, π] . (3.5.3)
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Since a is bounded from below, we clearly have that g is one-to-one and onto from

[0, π] to [0, l], where l =

π∫

0

dx√
a(x)

. We can thus introduce the function h : [0, l] →

[0, π] defined by h = g−1.

Lemma 3.5.4. With the above notation, assume that a ∈ C2[0, π] and b ∈ C[0, π],
let ϕ ∈ H2(0, π) ∩H1

0(0, π) and let ψ : [0, l] → C be defined by

ψ(s) = [a(h(s))]
1
4 ϕ(h(s)) ∀ s ∈ [0, l] .

Then ϕ is an eigenvector of A1 corresponding to the eigenvalue λ if and only if

−d2ψ

ds2
+ rψ = λψ,

where r ∈ C[0, l] is defined, for every s ∈ [0, l], by

r(s) =
a((h(s))

16

{
4a(h(s))

d2a

dx2
(h(s))−

[
da

dx
(h(s))

]2
}

+ b(h(s)) . (3.5.4)

Proof. It is not difficult to check that

d

dx

(
a(x)

dϕ

dx
(x)

)
=

= a−
1
4 (x)

d2ψ

ds2
(g(x)) +

a−
5
4 (x)

16

{
4a(x)

d2a

dx2
(x)−

[
da

dx
(x)

]2
}

ψ(g(x)) .

The above relation implies, after some simple calculations, our claim.

Proposition 3.5.5. Assume that a ∈ C2[0, π] and b ∈ L∞(0, π). Then the eigen-
values of A1 can be ordered to form a strictly increasing sequence (λk)k∈N satisfying

∣∣∣∣λk − k2π2

l2

∣∣∣∣ 6 C ∀ k ∈ N , (3.5.5)

where l =

π∫

0

dx√
a(x)

and C > 0 is a constant depending only on a and b.

Proof. We know from Proposition 3.5.2 that the eigenvalues (λk)k∈N of A1 are
simple and that lim λk = ∞. Thus, without loss of generality we may assume that
(λk) is strictly increasing.

Now we introduce the operator A2 : D(A2) → L2[0, l] defined by

D(A2) = H2(0, l) ∩H1
0(0, l) , A2z = − d2ψ

ds2
+ rψ ∀ ψ ∈ D(A2) ,
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where r ∈ C[0, l] is defined, for every s ∈ [0, l] by

r(s) =
a((h(s))

16

{
4a(h(s))

d2a

dx2
(h(s))−

[
da

dx
(h(s))

]2
}

+ b(h(s)) .

The above definition of A2 and Lemma 3.5.4 imply that ϕ is an eigenfunction of A1

corresponding to the eigenvalue λ iff ψ is an eigenfunction of A2 corresponding to
the same eigenvalue λ. It is clear that the eigenvalues of A2 are bounded from below
so that, according to Proposition 3.2.13, they can be ordered to form an increasing
sequence (µk)k∈N and we have

µk = min
V subspace of D(A2)

dim V =k

max
z∈V \{0}

RA2(z) ∀ k ∈ N , (3.5.6)

where RA2 is defined as in (3.2.6). We set D(A3) = D(A2) and we define A3 :
D(A3) → L2[0, l] by

A3z = − d2z

dx2
∀ ψ ∈ D(A3) .

Clearly A3 > 0 is diagonalizable and the k-th eigenvalue of A3, with k ∈ N, is
k2π2

l2
.

By applying Proposition 3.2.13 it follows that

k2π2

l2
= min

V subspace of D(A3)
dim V =k

max
z∈V \{0}

RA3(z) ∀ k ∈ N . (3.5.7)

On the other hand, it is easy to see that

|RA2(z)−RA3(z)| 6 ‖r‖L∞(0,l) ∀ z ∈ D(A2) \ {0} .
This estimate, together with (3.5.6), (3.5.7) and the fact that A1 and A2 have the
same eigenvalues, yields the estimate (3.5.5) with C = ‖r‖L∞[0,l].

3.6 The Dirichlet Laplacian

In this section we investigate an important example of an unbounded positive
operator derived from the Laplacian on a domain in Rn. This operator appears in
the study of heat, wave, Schrödinger and plate equations. We shall frequently use
concepts and results from Appendix II (Sobolev spaces).

Suppose that Ω ⊂ Rn is an open bounded set. We denote by D(Ω) the space
of C-valued C∞ functions with compact support in Ω, and by D′(Ω) the space
of distributions on Ω. The operators ∂

∂xk
are continuous on D′(Ω) with a certain

concept of convergence (see Section 13.2 in Appendix II for details). We introduce
the Laplacian ∆, a partial differential operator defined by

∆ =
n∑

k=1

∂2

∂x2
k

,



102 Semigroups of contractions

which acts on distributions in D′(Ω). We shall define a self-adjoint operator A0 by
restricting −∆ to a space of functions which, in a certain sense, are zero on the
boundary of Ω. To make the definition of A0 precise, we need some preliminaries.

We denote by H1(Ω) the space of those ϕ ∈ L2(Ω) for which the gradient ∇ϕ =(
∂ϕ
∂x1

, . . . ∂ϕ
∂xn

)
(in the sense of distributions in D′(Ω)) is in L2(Ω;Cn).

According to Proposition 13.4.2, H1(Ω) is a Hilbert space with the norm ‖ · ‖H1

defined by
‖ϕ‖2

H1 = ‖ϕ‖2
L2 + ‖∇ϕ‖2

L2 .

It will be useful to note that for every z ∈ H1(Ω) and ϕ ∈ D(Ω),

〈∆z, ϕ〉D′,D = −
∫

Ω

∇z · ∇ϕ dx, (3.6.1)

where · denotes the usual inner product in Cn. We denote by H1
0(Ω) the closure of

D(Ω) in H1(Ω). Clearly, the space H1
0(Ω) is a Hilbert space.

To understand this space better, assume for a moment that the boundary of Ω,
denoted ∂Ω, is Lipschitz. (We refer to Section 13.5 in Appendix II for the definition
of a Lipschitz boundary.) This implies that the boundary trace (restriction to the
boundary) of any ϕ ∈ H1(Ω) is well defined as an element of L2(∂Ω), see Section
13.6. Then H1

0(Ω) is precisely the space of those ϕ ∈ H1(Ω) for which the trace
(the restriction) of ϕ on ∂Ω is zero, see Proposition 13.6.2. Thus, any ϕ ∈ H1

0(Ω)
satisfies

ϕ(x) = 0 for x ∈ ∂Ω .

This boundary condition imposed on ϕ is called a homogeneous Dirichlet boundary
condition. In the sequel we do not assume that Ω has a Lipschitz boundary.

According to Proposition 13.4.10 in Appendix II, the Poincaré inequality holds
for Ω: there exists m > 0 such that

∫

Ω

|∇ϕ(x)|2dx > m

∫

Ω

|ϕ(x)|2dx ∀ ϕ ∈ H1
0(Ω) .

Here, |a| denotes the Euclidean norm of the vector a ∈ Cn. This implies that on
H1

0(Ω) the norm inherited from H1(Ω) is equivalent to the following norm:

‖ϕ‖H1
0

= ‖∇ϕ‖L2 . (3.6.2)

In this section, we use the above norm on H1
0(Ω) and the corresponding inner prod-

uct. We define the operator A0 : D(A0)→L2(Ω) by

D(A0) =
{
φ ∈ H1

0(Ω)
∣∣ ∆φ ∈ L2(Ω)

}
, A0φ = −∆φ. (3.6.3)

The space H−1(Ω) is defined as the dual of H1
0(Ω) with respect to the pivot space

L2(Ω), see Section 13.4 in Appendix II.
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Proposition 3.6.1. The operator A0 defined above is strictly positive and

D
(
A

1
2
0

)
= H1

0(Ω) . (3.6.4)

If H = L2(Ω) and the spaces H 1
2

and H− 1
2

are defined as in Section 3.4, then

H 1
2

= H1
0(Ω) , H− 1

2
= H−1(Ω) .

The norm on H 1
2

as introduced in Section 3.4 is the same as in (3.6.2).

The operator −A0 is called the Dirichlet Laplacian on Ω. (We note that the
Dirichlet Laplacian can be defined also for domains Ω that are not bounded, and if
the Poincaré inequality holds for Ω, then the above proposition is true.)

Proof. Suppose that ϕ, ψ ∈ D(A0). Then, according to (3.6.1),

〈A0ϕ, ψ〉L2 = −
∫

Ω

∆ϕ ψdx =

∫

Ω

∇ϕ · ∇ψdx = 〈ϕ,A0ψ〉L2 , (3.6.5)

so that A0 is symmetric. According to Proposition 3.2.4, in order to show that A0 is
self-adjoint it suffices to show that A0 is onto. For this, we take f ∈ L2(Ω) and we
prove the existence of z ∈ D(A0) such that A0z = f . First note that the mapping
ϕ→ ∫

Ω
ϕf dx is a bounded linear functional on H1

0(Ω). By the Riesz representation
theorem, there exists z ∈ H1

0(Ω) such that

〈ϕ, z〉H1
0

= 〈ϕ, f〉L2 ∀ ϕ ∈ H1
0(Ω) . (3.6.6)

This implies, by using (3.6.1), that

〈−∆z, ϕ〉D′,D = 〈z, ϕ〉H1
0

= 〈f, ϕ〉L2 ∀ ϕ ∈ D(Ω).

This shows that −∆z = f in D′(Ω). Since f ∈ L2(Ω), we get that

∆z ∈ L2(Ω) and −∆z = f in L2(Ω) .

Thus z ∈ D(A0) and A0z = f , hence A0 is onto. Thus, A0 is self-adjoint. It is clear
from (3.6.5) that

〈A0z, z〉 = ‖∇z‖2
L2 ∀ z ∈ D(A0) . (3.6.7)

Using this and the Poincaré inequality, we see that A0 > 0.

According to Remark 3.4.4, H 1
2

may be regarded as the completion of H1 = D(A0)

with respect to the norm ‖z‖ 1
2

= 〈A0z, z〉 1
2 . Thus, according to (3.6.7), H 1

2
is the

completion of H1 with respect to the norm defined in (3.6.2). By using the fact that
H1

0(Ω) with the norm in (3.6.2) is complete, it follows that H 1
2
⊂ H1

0(Ω). On the

other hand, D(A0) ⊃ D(Ω). Since the completion of D(Ω) with respect to the norm
in (3.6.2) is H1

0(Ω), it follows that H 1
2
⊃ H1

0(Ω). Thus we have H 1
2

= H1
0(Ω). By

definition H− 1
2

is the dual space of H 1
2

with respect to the pivot space H = L2(Ω).

By using the definition of H−1(Ω) we conclude that H− 1
2

= H−1(Ω).

Under additional assumptions, the domain of A0 consists of smoother functions.
More precisely, from Theorem 13.5.5 in Appendix II we obtain:
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Theorem 3.6.2. Suppose that ∂Ω is of class C2. Then

D(A0) = H2(Ω) ∩H1
0(Ω) . (3.6.8)

The concept of boundary of class Cm is explained in Section 13.5.

Remark 3.6.3. By Proposition 3.4.5 and Corollary 3.4.6, A0 has unique extensions
such that

A0 ∈ L(H1
0(Ω),H−1(Ω)) , A0 ∈ L(H,H−1) ,

and these are unitary operators. If, as in Remark 3.4.7, we introduce a different
notation Ã0 for the extension of A0 to a strictly positive operator on H̃ = H−1(Ω),

then H̃1 = H1
0(Ω) and H̃ 1

2
= D(Ã

1
2
0 ) = L2(Ω), with equal norms.

Note that if f ∈ H1
0(Ω) then A0f coincides with −∆f calculated in D′(Ω) (this

follows because D(Ω) is dense in H1
0(Ω)). By contrast, if f ∈ H = L2(Ω) then A0f

is, in general, different of −∆f calculated in D′(Ω). This is because A0f is now in
the dual of H2(Ω) ∩ H1

0(Ω), and D(Ω) is not dense in H2(Ω) ∩ H1
0(Ω). Indeed, if f

is a non-zero constant then ∆f = 0, but A0f cannot be zero since A0 > 0.

Remark 3.6.4. Since Ω is bounded, according to Proposition 13.4.12, the embed-
ding D(A0) ⊂ L2(Ω) is compact. Thus A−1

0 is compact and hence, by Proposition
3.2.12, A0 is diagonalizable with an orthonormal basis (ϕk) of eigenvectors and the
corresponding sequence of eigenvalues (λk) satisfies λk > 0 and λk→∞.

Example 3.6.5. Let a, b > 0 and let Ω = [0, a]× [0, b] ⊂ R2. We show that (3.6.8)
holds also for this domain. It is easy to check that the eigenvalues of A0 are

λmn = π2

(
m2

a2
+

n2

b2

)
, (3.6.9)

with m,n ∈ N. A corresponding orthonormal basis formed of eigenvectors of A0 is
given by

ϕmn(x, y) =
2√
ab

sin
(mπx

a

)
sin

(nπy

b

)
∀ m,n ∈ N . (3.6.10)

It is clear that ∂Ω is not of class C2, so we cannot use Theorem 3.6.2 to characterize
D(A0). However, this domain can be characterized by a direct calculation. Indeed,
let us assume that

z =
∑

m,n∈N
cmnϕmn ∈ D(A0) .

This implies, by using (3.2.4) and the fact that A0 is diagonalizable, that

∑

m,n∈N
(m2 + n2)2|cmn|2 < ∞ . (3.6.11)

For p ∈ N we set
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zp =

p∑
m,n=1

cmnϕmn .

It is clear that
lim

p→∞
‖z − zp‖D(A0) = 0 . (3.6.12)

On the other hand, by a simple calculation we can check that, for p, q ∈ N with
p 6 q and α1, α2 ∈ {0, 1, 2} with α1 + α2 6 2, we have

∥∥∥∥
∂α1+α2(zp − zq)

∂xα1∂yα2

∥∥∥∥
2

L2

=

q∑
p

m2α1n2α2|cmn|2 .

The above relation, combined to (3.6.11), implies that (zp) is a Cauchy sequence
in H2(Ω) ∩ H1

0(Ω). Thus there exists z̃ ∈ H2(Ω) ∩ H1
0(Ω) such that (zp) converges

to z̃ with respect to the topology of H2(Ω). Since both convergence in D(A0) and
in H2(Ω) ∩ H1

0(Ω) imply convergence in L2(Ω), it follows that z = z̃ so we have
that z ∈ H2(Ω) ∩ H1

0(Ω). We have thus shown that D(A0) ⊂ H2(Ω) ∩ H1
0(Ω). The

opposite inclusion is obvious, so we conclude that (3.6.8) holds.

Remark 3.6.6. The computations in the above example can be generalized easily
to rectangular domains in Rn, to conclude that (3.6.8) holds. We mention that
this equality remains valid for more general domains whose boundary is not of
class C2, such as convex polygons R2. However, in general we only have D(A0) ⊃
H2(Ω) ∩H1

0(Ω). We refer to Grisvard [77] for a detailed discussion.

Consider Ω to be the hypercube [0, a]n, where a > 0. By using the multi-index
notation introduced at the beginning of Appendix II, it is not difficult to check that
that the eigenvalues of A0 are

λα =
(π

a

)2
n∑

k=1

α2
k ∀ α ∈ Nn . (3.6.13)

A corresponding orthonormal basis formed of eigenvectors of A0 is given by

ϕα(x) =

(
2

a

)n
2

n∏

k=1

sin
(αkxk

a

)
∀ α ∈ Nn, x ∈ Ω . (3.6.14)

Formula (3.6.13) has the following consequence.

Proposition 3.6.7. Let n ∈ N, a > 0, Ω = [0, a]n and let (λα)α∈Nn be the eigenval-
ues of A0, as given by (3.6.13). For ω > 0 we denote by dn(ω) the number of terms
of the sequence (λα) which are less or equal to ω. Then

lim
ω→∞

dn(ω)

ω
n
2

=
anVn

2nπn
, (3.6.15)

where Vn is the volume of the unit ball in Rn.
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Proof. According to (3.6.13), dn(ω) is the number of points having all the coor-

dinates in N which are contained in the closed ball of radius
a
√

ω

π
. We denote by

Bn(r) the part of the closed ball of radius r centered at zero where all the coor-

dinates of the points are non-negative. Clearly the volume of Bn(r) is
rnVn

2n
. Let

d̃n(ω) be the number of points having all the coordinates in Z+ which are contained

in Bn

(
a
√

ω

π

)
. To each point α ∈ Zn

+ ∩ Bn

(
a
√

ω

π

)
we associate the cube

Cα = [α1, α1 + 1]× [α2, α2 + 1] . . .× [αn, αn + 1] .

It can be seen that the union of these cubes is contained in Bn

(
a
√

ω

π
+
√

n

)
and

it contains Bn

(
a
√

ω

π
−√n

)
. Therefore we have

Vn

2n

(
a
√

ω

π
−√n

)n

6 d̃n(ω) 6 Vn

2n

(
a
√

ω

π
+
√

n

)n

,

which clearly implies that

lim
ω→∞

d̃n(ω)

ω
n
2

=
anVn

2nπn
.

This and the fact that d̃n(ω)− nd̃n−1(ω) 6 dn(ω) 6 d̃n(ω) imply (3.6.15).

Corollary 3.6.8. With the assumptions and the notation of Proposition 3.6.7, we
reorder the eigenvalues of A0 to form an increasing sequence (λk)k∈N such that each
λk is repeated as many times as its geometric multiplicity. Then

lim
k→∞

λk

k
2
n

=
4π2

a2V
2
n

n

. (3.6.16)

Proof. By applying Proposition 3.6.7 and the fact that dn(λk) = k for every
k ∈ N, we obtain that

lim
k→∞

k

λ
n
2
k

=
anVn

2nπn
,

which easily yields (3.6.16).

Before the next proposition, recall from Remark 3.6.4 that the Dirichlet Laplacian
has compact resolvents, hence it is diagonalizable.

Proposition 3.6.9. Let Ω ⊂ Rn be an open bounded set, let −A0 be the Dirichlet
Laplacian on Ω and let (λk)k∈N be the eigenvalues of A0 in increasing order, such
that each λk is repeated as many times as its geometric multiplicity. Then

lim inf
k→∞

λk

k
2
n

> 0 , lim sup
k→∞

λk

k
2
n

< ∞ .
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Proof. By combining (3.4.8) and (3.6.7) we obtain that

λk = min
V subspace of H1

0(Ω)
dim V =k

max
z∈V \{0}

‖∇z‖2
L2

‖z‖2
L2

∀ k ∈ N .

Let a > 0 be such that Ω is contained in a cube Qa of side length a. Since any
function in H1

0(Ω) can be seen, after extension by zero outside Ω, as a function in
H1

0(Qa) (see Lemma 13.4.11), it follows that λk is greater than the k-th eigenvalue
of minus the Dirichlet Laplacian on Qa. Similarly if Ω contains a cube Qb of side
length b > 0, then λk is less or equal to the k-th eigenvalue of minus the Dirichlet
Laplacian on Qb. The conclusion follows now by Corollary 3.6.8.

Remark 3.6.10. The result in the last proposition is sharpened by Weyl’s formula
(see for instance Zuily [246, p. 174]) which asserts that if Ω is connected, then

lim
k→∞

λk

k
2
n

=
4π2

[VnVol(Ω)]
2
n

,

where Vol(Ω) stands for the n-dimensional volume of Ω.

Remark 3.6.11. Let A = −A0 be the Dirichlet Laplacian on a bounded domain
Ω ⊂ Rn. After extending A0 as in Remark 3.6.3, we regard A0 as a strictly positive
(densely defined) operator on X = H−1(Ω), so that D(A0) = H1

0(Ω). According to
Remark 3.6.4 A = −A0 is diagonalizable with an orthonormal basis of eigenvectors
and with negative eigenvalues converging to −∞. According to Proposition 2.6.5,
A generates a strongly continuous contraction semigroup T on X. This semigroup
is associated to the heat equation with homogeneous Dirichlet boundary conditions
on Ω, and it is called the heat semigroup. We have encountered the one-dimensional
version of this semigroup in Example 2.6.8. It follows from Proposition 2.6.7 that
we have

Ttz ∈ D(A∞) ⊂ H1
0(Ω) ∀ z ∈ H−1(Ω) , t > 0 .

We have D(A∞) ⊂ Hp
loc(Ω) for every p ∈ N, according to Remark 13.5.6 in Appendix

II. According to Remark 13.4.5 it follows that D(A∞) ⊂ Cm(Ω) for every m ∈ N,
so that

Ttz ∈ C∞(Ω) ∩H1
0(Ω) ∀ z ∈ H−1(Ω) , t > 0 .

3.7 Skew-adjoint operators

Let A : D(A)→X be densely defined. A is called skew-symmetric if

〈Aw, v〉 = − 〈w,Av〉 ∀ w, v ∈ D(A).

It is easy to see that this is equivalent to G(−A) ⊂ G(A∗), and also to the fact that
iA is symmetric. It follows from Proposition 3.2.2 that (still assuming dense D(A)) A
is skew-symmetric iff Re 〈Az, z〉 = 0 for all z ∈ D(A). It now becomes obvious that
skew-symmetric operators are dissipative. Our interest in skew-symmetric operators
stems from the following simple result:
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Proposition 3.7.1. Let A be the generator of an isometric semigroup on X. Then
A is skew-symmetric and C0 ⊂ ρ(A).

Proof. Take z0 ∈ D(A) and define z(t) = Ttz0 (where T is the semigroup generated
by A). Then a simple computation shows that, for every t > 0,

d

dt
‖z(t)‖2 = 2Re 〈Az(t), z(t)〉 .

Since T is isometric, the above expression must be zero. Taking t = 0 we obtain
that Re 〈Az0, z0〉 = 0 for all z0 ∈ D(A). As remarked earlier, this implies that A
is skew-symmetric. Since T is a contraction semigroup, according to Proposition
3.1.13 A is m-dissipative. Now Theorem 3.1.9 implies that C0 ⊂ ρ(A).

A densely defined operator A is called skew-adjoint if A∗ = −A (equivalently, iA
is self-adjoint). If A∗ = −A then clearly σ(A) ⊂ iR. We shall see in Section 3.8 that
A is skew-adjoint iff it is the generator of a unitary group.

Proposition 3.7.2. For A : D(A)→X, the following statements are equivalent :

(a) Both A and −A are m-dissipative.

(b) A is skew-adjoint.

Proof. Suppose that A and −A are m-dissipative, then Re 〈Az, z〉 = 0 for all
z ∈ D(A). As remarked at the beginning of this section, this implies that A is
skew-symmetric, so that G(−A) ⊂ G(A∗). Since A and −A are m-dissipative, by
Proposition 3.1.10 the same is true for A∗ and −A∗. Repeating the above argument
with A∗ instead of A, we obtain that A∗ is skew-symmetric, so that G(−A∗) ⊂
G(A∗∗). Since A∗∗ = A, we obtain that G(A∗) ⊂ G(−A). This inclusion, combined
with the one derived earlier, shows that −A = A∗.

Conversely, if A is skew-adjoint, then clearly both A and A∗ are dissipative. Since
A∗ is closed and A = −A∗, A is also closed. Thus, by Proposition 3.1.11, A is
m-dissipative. By a similar argument, −A is also m-dissipative.

Proposition 3.7.3. Suppose that A is skew-symmetric.

(a) If both I + A and I − A are onto, then A is skew-adjoint.

(b) If A is onto, then A is skew-adjoint and 0 ∈ ρ(A).

Proof. Part (a) follows from the last proposition, but alternatively it can also be
derived from Proposition 3.2.4 (with s = i and A0 = iA). Part (b) follows from
Proposition 3.2.4 (with s = 0 and A0 = iA).

Remark 3.7.4. The condition that only one of the operators I − A and I + A is
onto would not be sufficient in part (a) of the above proposition. Indeed, consider
the space X = L2[0,∞) and on the subspace

D(A) =
{
φ ∈ H1(0,∞) | φ(0) = 0

}
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define the skew-symmetric operator A : D(A)→X by

(Aφ)(x) = − dφ

dx
(x) ∀ x > 0 .

This is the generator of the unilateral right shift, encountered in Example 2.4.5. We
can easily check that I −A is onto, so A is m-dissipative. On the other hand, if we
consider g ∈ L2[0,∞) defined by g(x) = e−x, then the equation (I + A)z = g has
no solution in D(A). Thus, I + A is not onto, so −A is not m-dissipative.

Another consequence of Proposition 3.7.2 is the following.

Corollary 3.7.5. Let T be a strongly continuous group of operators on X with
generator A. If T satisfies ‖Tt‖ 6 1 for all t ∈ R, then A is skew-adjoint.

Proof. It follows from Remark 2.7.6 and Proposition 3.1.13 that both A and −A
are m-dissipative. Now the statement follows from Proposition 3.7.2.

In the sequel we want to introduce a class of skew-adjoint operators which arise
as semigroup generators corresponding to second order differential equations in a
Hilbert space, of the form

ẅ(t) + A0w(t) = 0 , with A0 > 0 .

Many undamped wave and plate equations are of this form. The natural state of

such a system is the vector z(t) =
[

w(t)
ẇ(t)

]
. We shall say more about the solutions of

such a differential equation at the end of Section 3.8.

Proposition 3.7.6. Let A0 : D(A0)→H be a strictly positive operator on the Hilbert
space H. The Hilbert space H 1

2
is as in Section 3.4. Define X = H 1

2
×H, with the

scalar product 〈[
w1

v1

]
,

[
w2

v2

]〉

X

= 〈A
1
2
0 w1, A

1
2
0 w2〉+ 〈v1, v2〉 .

Define a dense subspace of X by D(A) = D(A0) × D(A
1
2
0 ) and the linear operator

A : D(A)→X by

A =

[
0 I

−A0 0

]
, i.e., A

[
ϕ
ψ

]
=

[
ψ

−A0ϕ

]
. (3.7.1)

Then A is skew-adjoint on X and 0 ∈ ρ(A). Moreover,

X1 = H1 ×H 1
2
, X−1 = H ×H− 1

2
.

Proof. It is easy to see that A is skew-symmetric. The equation

A
[ ϕ

ψ

]
=

[
f
g

] ∈ X
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is equivalent to the relations ψ = f ∈ H 1
2

and −A0ϕ = g ∈ H. Since A0 > 0,

it is invertible (see Proposition 3.3.2), so that there exists a (unique) ϕ ∈ D(A0)
satisfying the last equation. Thus, A is onto. By Proposition 3.7.3, A is skew-adjoint
and 0 ∈ ρ(A). It is clear that D(A) with the norm ‖z‖1 = ‖Az‖ is X1 = H1 ×H 1

2
.

Note that A−1 =
[

0 −A−1
0

I 0

]
, so that, using Proposition 3.4.5,

∥∥∥∥
[
ϕ
ψ

]∥∥∥∥
2

−1

= ‖ϕ‖2 + ‖ψ‖2
− 1

2
∀

[
ϕ
ψ

]
∈ X.

Taking the completion of X with respect to this norm, we get X−1 = H ×H− 1
2
.

Proposition 3.7.7. With the notation of Proposition 3.7.6, φ =
[ ϕ

ψ

] ∈ D(A) is an
eigenvector of A, corresponding to the eigenvalue iµ (where µ ∈ R), if and only if ϕ
is an eigenvector of A0, corresponding to the eigenvalue µ2 and ψ = iµϕ.

Now suppose that A0 is diagonalizable, with an orthonormal basis (ϕk)k∈N in H
formed of eigenvectors of A0. Denote by λk > 0 the eigenvalue corresponding to ϕk

and µk =
√

λk. For all k ∈ N we define ϕ−k = −ϕk and µ−k = −µk. Then A is
diagonalizable, with the eigenvalues iµk corresponding to the orthonormal basis of
eigenvectors

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ . (3.7.2)

Recall that Z∗ denotes the set of all the non-zero integers. Recall also that if A−1
0

is compact then A0 is diagonalizable, with an orthonormal basis of eigenvectors and
a sequence of positive eigenvalues converging to ∞ (see Proposition 3.2.12).

Proof. Suppose that
[ ϕ

ψ

] ∈ X \ {[ 0
0 ]} is such that A

[ ϕ
ψ

]
= iµ

[ ϕ
ψ

]
. Then,

according to the definition of A, we have that ψ = iµϕ and −A0ϕ = iµψ, which
implies that A0ϕ = µ2ϕ with ϕ 6= 0. Thus, µ2 is an eigenvalue of A0 corresponding
to the eigenvector ϕ. Note that µ 6= 0, acording to Proposition 3.7.6.

Conversely, if ϕ is an eigenvector of A0 corresponding to the eigenvalue µ2, it

follows immediately from the structure of A that A

[
ϕ

iµϕ

]
= iµ

[
ϕ

iµϕ

]
.

Now suppose that A0 is diagonalizable, and let λk (with k ∈ N) and ϕk, µk (with
k ∈ Z∗) be defined as in the proposition. Then it follows from the first part of the
proposition (which we have already proved) that the vectors φk defined in (3.7.2) are
eigenvectors of A. It is also easy to verify that these eigenvectors are an orthonormal
set (for the orthogonality of φk and φj with k 6= j, we have to consider separately
the cases k = −j and k 6= −j). Denote B = {φk | k ∈ Z∗}. To show that (φk)k∈Z∗
is an orthonormal basis in X, it remains to show that B⊥ = {0} (see Section 1.1).
Take

[
f
g

] ∈ B⊥. Since (ϕk)k∈N is an orthonormal basis in H, by Proposition 2.5.2
there exist sequences (fk) and (gk) in l2 such that

f =
∑

k∈N
fk ϕk , g =

∑

k∈N
gkϕk .
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According to Proposition 3.4.8 applied to f ∈ D(A
1
2
0 ) we have that (µkfk) ∈ l2 and

A
1
2
0 f =

∑
k∈N µkfkϕk. This implies that for all k ∈ Z∗

√
2

〈[
f
g

]
, φk

〉
= iµk〈f, ϕk〉+ 〈g, ϕk〉 .

Since
[

f
g

] ∈ B⊥, by taking in the last formula k ∈ N and then −k, we obtain

iµk〈f, ϕk〉+ 〈g, ϕk〉 = 0 , −iµk〈f, ϕk〉+ 〈g, ϕk〉 = 0 ∀ k ∈ N .

This implies that
〈f, ϕk〉 = 0 , 〈g, ϕk〉 = 0 ∀ k ∈ N .

Thus, f = g = 0, so that B is an orthonormal basis in X.

Note that the above proposition is a generalization of Examples 2.7.13 and 2.7.15.

3.8 The theorems of Lumer-Phillips and Stone

The main aim of this section is to show that any m-dissipative operator is the gen-
erator of a contraction semigroup. For this, we need a certain type of approximation
of unbounded operators by bounded ones, called the Yosida approximation.

Definition 3.8.1. Let A : D(A)→X satisfy the assumption in Proposition 2.3.4.
Then the L(X)-valued function

Aλ = λA(λI − A)−1 = λ2(λI − A)−1 − λI , (3.8.1)

defined for λ > λ0, is called the Yosida approximation of A.

Notice that if A is the generator of a strongly continuous semigroup on X, or if
A is m-dissipative on X, then it satisfies the assumption in the above definition.
For generators this was explained after Proposition 2.3.4, while for m-dissipative
operators it follows from Proposition 3.1.9.

Remark 3.8.2. The word “approximation” in the name given to Aλ above is jus-
tified by the property

lim
λ→∞

Aλz = Az ∀ z ∈ D(A) .

To see that this is true, notice that Aλz = λ(λI − A)−1Az for all z ∈ D(A). Now
the above limit property follows from Proposition 2.3.4.

Proposition 3.8.3. Let A be an m-dissipative operator on X and let Aλ, λ > 0 be
its Yosida approximation. Then the following statements hold:

(i) ‖etAλ‖ 6 1 for all t > 0 and all λ > 0.

(ii) ‖etAλz − etAµz‖ 6 t‖Aλz − Aµz‖ for all t > 0, λ, µ > 0 and z ∈ X.
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Proof. (i) According to (3.8.1) we have

etAλ = eλ2t(λI−A)−1

e−λt .

This together with (2.1.2) and (3.1.5) implies that (i) holds.

(ii) Consider t, λ, µ > 0. Since Aλ and Aµ commute, we have

d

dτ

{
eτtAλe(1−τ)tAµz

}
= teτtAλe(1−τ)tAµ(Aλz − Aµz) ,

for all τ ∈ [0, 1] and for all z ∈ X. In particular, it follows from property (i) that
∥∥∥∥

d

dτ

{
eτtAλe(1−τ)tAµz

}∥∥∥∥ 6 t ‖Aλz − Aµz‖ ∀ τ ∈ [0, 1] .

From here, we obtain (ii) by integration:

‖etAλz − etAµz‖ =

∥∥∥∥∥∥

1∫

0

d

dτ

{
eτtAλe(1−τ)tAµz

}
dτ

∥∥∥∥∥∥
6 t ‖Aλz − Aµz‖ .

The following result is known as the Lumer-Phillips theorem.

Theorem 3.8.4. For any A : D(A)→X the following statements are equivalent:

(1) A is the generator of a contraction semigroup on X.

(2) A is m-dissipative.

Proof. The fact that (1) implies (2) was proved in Proposition 3.1.13.

Conversely, let A be m-dissipative and let Aλ be its Yosida approximation. Our
aim is to define T (the semigroup generated by A) by

Ttz = lim
n→∞

etAnz ∀ z ∈ X. (3.8.2)

For this, first we consider w ∈ D(A). By part (ii) of Proposition 3.8.3 we have
∥∥etAmw − etAnw

∥∥ 6 t‖Amw − Anw‖ ∀ m,n ∈ N, t > 0 . (3.8.3)

Using Remark 3.8.2 it follows that the sequence (etAnw) is a Cauchy sequence in X,
for every t > 0. Thus, we can define Ttw (for w ∈ D(A) and t > 0) as the limit of
this Cauchy sequence. From statement (i) of Proposition 3.8.3 it follows that

‖Ttw‖ 6 ‖w‖ ∀ w ∈ D(A) .

Since D(A) is dense in X, it follows that (for every t > 0) Tt can be extended to
an operator in L(X), also denoted by Tt, and we have ‖Tt‖ 6 1. Taking limits in
(3.8.3) as m→∞, we obtain that for w ∈ D(A)

∥∥Ttw − etAnw
∥∥ 6 t‖Aw − Anw‖ ∀ n ∈ N, t > 0 . (3.8.4)
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Now we show that the limit in (3.8.2) holds uniformly on bounded intervals, for
every z ∈ X. Let z ∈ X and w ∈ D(A). We use the decomposition

‖Ttz − etAnz‖ 6 ‖Tt(z − w)‖+ ‖Ttw − etAnw‖+ ‖etAn(w − z)‖ .

For a fixed z, by choosing w ∈ D(A) such that ‖z − w‖ 6 ε
3
, the first and the

last term on the right-hand side above become 6 ε
3

(we have used statement (i)
of Proposition 3.8.3 again). Once such a w has been chosen, for every bounded
interval J ⊂ [0,∞) we can find (according to (3.8.4) and Remark 3.8.2) an index
N ∈ N such that for t ∈ J and n > N , the middle term on the right-hand side above
becomes 6 ε

3
. Thus, given a bounded interval J ⊂ [0,∞), we can find N ∈ N such

that ‖Ttz − etAnz‖ 6 ε holds for all t ∈ J and for all n > N , which is the uniform
convergence property claimed earlier.

The uniform convergence of (3.8.2) on bounded intervals implies that the functions
t→Ttz are continuous (for every z ∈ X), i.e., the family T = (Tt)t>0 is strongly
continuous. The properties

Tt+τ = TtTτ ∀t, τ > 0 and T0 = I .

follow from the corresponding properties of etAn , by taking limits. Thus, we have
shown that T is a contraction semigroup on X.

It remains to be shown that the generator of T is A. For each z ∈ D(A) we have,
using Remark 2.1.7 applied to Aλ,

Ttz − z = lim
λ→∞

etAλz − z = lim
λ→∞

t∫

0

eσAλAλzdσ =

t∫

0

TσAzdσ.

Denote the generator of T by Ã, so that Ã is m-dissipative. If we divide both sides
of the above equation by t and take limits as t→ 0, we obtain that z ∈ D(Ã) and

Ãz = Az. Thus, Ã is a dissipative extension of A. Since A was assumed to be
m-dissipative, this implies that Ã = A.

Proposition 3.8.5. Let A : D(A)→X, A 6 0. Then A generates a strongly
continuous semigroup T on X. For all t > 0 we have Tt > 0 and

‖Tt‖ = e−mt , where −m = max σ(A) .

Proof. If −m = max σ(A) then A = −mI − A0 where A0 > 0 and 0 ∈ σ(A0).
(The fact that A0 > 0 follows from Proposition 3.3.3.) According to Proposition
3.3.5 and the Lumer-Phillips theorem, −A0 generates a contraction semigroup T0

on X. Since 0 ∈ σ(−A0), we have the growth bound ω0(T0) = 0. According to
Remark 2.2.16 we have r(T0

t ) = 1 for all t > 0. Since r(T0
t ) 6 ‖T0

t‖, this implies
that ‖T0

t‖ = 1 for all t > 0. The operator A generates the semigroup Tt = e−mtT0
t ,

which implies that ‖Tt‖ = e−mt for all t > 0. Proposition 2.8.5 implies that T∗t = Tt.
Since Tt = T2

t/2 = T∗t/2Tt/2, it follows that Tt > 0.
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Bibliographic notes. Theorem 3.8.4 is a basic tool for establishing that the
Cauchy problem for certain linear systems of equations is well-posed. It is due to
E. Hille, K. Yosida, G. Lumer and R. Phillips (in various versions) in the period
1957-1961 and it is known as the Lumer-Phillips theorem, based on reference [162].
A related but more complicated theorem is the Hille-Yosida theorem, which gives
necessary and sufficient conditions for a densely defined linear operator on a Banach
space X to be the generator of a strongly continuous semigroup T on X satisfying
the growth estimate (2.1.4). The conditions are that every s ∈ C with Re s > ω
belongs to ρ(A) and for every such s,

‖(sI − A)−n‖ 6 Mω

(Re s− ω)n
∀ n ∈ N . (3.8.5)

It is enough to verify that s ∈ ρ(A) and (3.8.5) holds for all real s > ω. We omit
the proof of this theorem, because it is not needed in this book.

Using Proposition 3.1.9, the Lumer-Phillips theorem may be regarded as a par-
ticular case of the Hille-Yosida theorem. Going in the opposite direction, it is not
difficult to obtain the Hille-Yosida theorem from the Lumer-Phillips theorem (the
version for Banach spaces). This approach to prove the Hille-Yosida theorem is
adopted in Pazy [182, around p. 20]. We mention that the terminology is not uni-
versally agreed upon: what we (and many others) call the Lumer-Phillips theorem
is called by some authors the Hille-Yosida theorem.

An important result, the theorem of Stone given below, characterizes the gener-
ators of unitary groups. It can be proven using the Lumer-Phillips theorem, as we
do it here. Actually, it was published by M.H. Stone in 1932, many years before the
paper of Lumer and Phillips [162], and the original proof used the spectral theory
of self-adjoint operators, as in Rudin [195, p. 360].

Theorem 3.8.6. For any A : D(A)→X the following statements are equivalent:

(1) A is the generator of a unitary group on X.

(2) A is skew-adjoint.

Proof. Assume that A is the generator of a unitary group T on X. We introduce
the inverse group S, as in Remark 2.7.6, then according to the same remark the
generator of S is −A. But from the definition of a unitary group it follows that S
is the adjoint group of T. According to Proposition 2.8.5 we obtain that −A = A∗.
An alternative way to see that (1) implies (2) is to use Corollary 3.7.5.

Conversely, suppose that A is skew-adjoint. Then according to Proposition 3.7.2,
both A and −A are m-dissipative, hence they both generate semigroups of contrac-
tions, denoted T and S. We extend the family T to R by putting T−t = St for all
t > 0. By Proposition 2.7.8, this extended T is a strongly continuous group on X,
so that St = (Tt)

−1. On the other hand, −A = A∗, so that by Proposition 2.8.5 we
have St = T∗t . This shows that Tt is unitary for all t > 0.

We present an application of Stone’s theorem to certain second order differential
equations on a Hilbert space H.
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Proposition 3.8.7. We use the notation of Proposition 3.7.6. Then A generates a
unitary group on X = H 1

2
×H.

If w0 ∈ H1 and v0 ∈ H 1
2
, then the initial value problem

ẅ(t) + A0w(t) = 0 , w(0) = w0 , ẇ(0) = v0 , (3.8.6)

has a unique solution

w ∈ C([0,∞); H1) ∩ C1([0,∞); H 1
2
) ∩ C2([0,∞); H) , (3.8.7)

and this solution satisfies

‖w(t)‖2
1
2

+ ‖ẇ(t)‖2 = ‖w0‖2
1
2

+ ‖v0‖2 ∀ t > 0 . (3.8.8)

Proof. If we denote z(t) =
[

w(t)
ẇ(t)

]
, then w satisfies (3.8.6) and (3.8.7) iff z satisfies

the initial value problem ż(t) = Az(t), z(0) = z0, where z0 = [ w0
v0 ] ∈ D(A) and

z ∈ C([0,∞); X1) ∩ C1([0,∞); X) . (3.8.9)

According to Proposition 3.7.6, A is skew-adjoint on X. According to Stone’s
theorem, A generates a unitary group on X. We know from Proposition 2.3.5 that
the initial value problem ż(t) = Az(t), z(0) = z0 has a unique solution satisfying
(3.8.9). Thus, we have proved the existence of a unique solution w of (3.8.6) which
satisfies (3.8.7). The energy identity (3.8.8) is a consequence of the fact that the
semigroup generated by A is unitary.

In particular, if we take A0 = −∆, where ∆ is the Dirichlet Laplacian from Section
3.6, then (3.8.6) becomes the wave equation with Dirichlet boundary conditions and
Proposition 3.8.7 becomes an existence and uniqueness result for the solutions of
this wave equation, see Proposition 7.1.1.

3.9 The wave equation with boundary damping

In this section we show, as an application of the Lumer-Philips theorem, that
the wave equation, with a Dirichlet boundary condition on a part of the boundary
and with a dissipative condition on the remaining part of the boundary, defines
a contraction semigroup on an appropriate Hilbert space. Our approach follows
closely the presentation in Komornik and Zuazua [132]. Other papers which study
well-posedness and other issues for the same system are Malinen and Staffans [165],
Rodriguez-Bernal and Zuazua [192], and Weiss and Tucsnak [235].

Notation and preliminaries. We denote by v ·w the bilinear product of v, w ∈
Cn (n ∈ N), defined by v · w = v1w1 . . . + vnwn, and by | · | the Euclidean norm on
Cn. The set Ω ⊂ Rn is supposed bounded, connected and with a Lipschitz boundary
∂Ω. We assume that Γ0, Γ1 are open subsets of ∂Ω such that

clos Γ0 ∪ clos Γ1 = ∂Ω , Γ0 ∩ Γ1 = ∅, Γ0 6= ∅ .
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Let H1
Γ0

(Ω) be the space of all those functions in H1(Ω) which vanish on Γ0. This
space is presented in more detail in Appendix II (Section 13.6). According to The-
orem 13.6.9, the Poincaré inequality holds for Ω and Γ0, i.e., there exists a c > 0
such that ∫

Ω

|f(x)|2dx 6 c2

∫

Ω

|(∇f)(x)|2dx ∀ f ∈ H1
Γ0

(Ω) .

This implies that H1
Γ0

(Ω) is a Hilbert space with the inner product

〈f, g〉H1
Γ0

(Ω) =

∫

Ω

∇f · ∇gdx ∀ f, g ∈ H1
Γ0

(Ω) ,

and that the corresponding norm is equivalent to the restriction to H1
Γ0

(Ω) of the
usual norm in H1(Ω). This implies in turn that the space

X = H1
Γ0

(Ω)× L2(Ω)

endowed with the inner product

〈[
f
g

]
,

[
ϕ
ψ

]〉
=

∫

Ω

∇f · ∇ϕdx +

∫

Ω

gψdx ∀
[
f
g

]
,

[
ϕ
ψ

]
∈ X, (3.9.1)

is a Hilbert space. The induced norm on X, which we simply denote by ‖ · ‖, is
equivalent to the restriction to X of the usual norm on H1(Ω)× L2(Ω).

For f ∈ H1
Γ0

(Ω) we cannot define the Neumann trace ∂f
∂ν

on Γ1, in the sense of the
trace theorems in Section 13.6. However, for f ∈ H1

Γ0
(Ω) with ∆f ∈ L2(Ω) and for

h ∈ L2(Γ1) we can define the equality ∂f
∂ν
|Γ1 = h in a weak sense by

〈∆f, ϕ〉L2(Ω) + 〈∇f,∇ϕ〉[L2(Ω)]n = 〈h, ϕ〉L2(Γ1) ∀ ϕ ∈ H1
Γ0

(Ω) . (3.9.2)

The above definition clearly coincides with the usual one if f is smooth enough (in
H2(Ω)). If ∂Γ0 and ∂Γ1 have surface measure zero in ∂Ω and f and h satisfy (3.9.2),
then h is uniquely determined by f . Indeed, in this case, the traces of functions
ϕ ∈ H1

Γ0
(Ω) on Γ1 are dense in L2(Γ1), as follows from Remark 13.6.14.

Finally, we assume that b ∈ L∞(Γ1) is real-valued. The equations of the system
considered in this section are





z̈(x, t) = ∆z(x, t) on Ω× [0,∞),

z(x, t) = 0 on Γ0 × [0,∞),
∂
∂ν

z(x, t) + b2(x) ż(x, t) = 0 on Γ1 × [0,∞),

z(x, 0) = z0(x), ż(x, 0) = w0(x) on Ω.

(3.9.3)

The functions z0 and w0 are the initial state of the system. The part Γ0 of the bound-
ary is just reflecting waves, while on the portion Γ1 we have a dissipative boundary
condition. This terminology can be justified by a simple formal calculation. More
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precisely, if we assume that z is a smooth enough solution of (3.9.3), then simple
integrations by parts show that for every t > 0,

d

dt

(
‖∇z(·, t)‖2

[L2(Ω)]n + ‖ż(·, t)‖2
L2(Ω)

)
= − 2

∫

Γ1

b2|ż(·, t)|2dσ. (3.9.4)

Therefore the function t 7→ ‖z(·, t)‖2
[L2(Ω)]n + ‖ż(·, t)‖2

L2(Ω), which in many applica-
tions is the total energy of the system, is non-increasing.

To transform the above formal analysis into a rigorous one, we introduce the space
D(A) ⊂ X formed of those

[
f
g

] ∈ H1
Γ0

(Ω)×H1
Γ0

(Ω) such that ∆f ∈ L2(Ω) and

〈∆f, ϕ〉L2(Ω) + 〈∇f,∇ϕ〉[L2(Ω)]n = − 〈b2g, ϕ〉L2(Γ1) ∀ ϕ ∈ H1
Γ0

(Ω) . (3.9.5)

As explained a little earlier, (3.9.5) means that, in a weak sense, ∂f
∂ν
|Γ1 + b2g = 0.

Moreover, if ∂Γ0 and ∂Γ1 have measure zero in ∂Ω, then b2g is determined by f .

The above definition of D(A) takes an easier to understand form if we make much
stronger assumptions on the sets Ω, Γ0 and Γ1:

Proposition 3.9.1. Assume that ∂Ω is of class C2, clos Γ0 = Γ0, clos Γ1 = Γ1 and
b ∈ C1(∂Ω). Then

D(A) =

{[
f
g

]
∈ [H2(Ω) ∩H1

Γ0
(Ω)

]×H1
Γ0

(Ω)

∣∣∣∣
∂f

∂ν
|Γ1 = − b2g|Γ1

}
, (3.9.6)

where ∂f
∂ν
|Γ1 and g|Γ1 are taken in the sense of the trace theorems from Section 13.6.

Proof. Let
[

f
g

] ∈ D(A). We know from Remark 13.6.15 that g|Γ1 ∈ H 1
2 (Γ1),

so that −b2g|Γ1 ∈ H
1
2 (Γ1). According to Proposition 13.6.16, there exists a unique

f̃ ∈ H2(Ω) ∩H1
Γ0

(Ω) such that

∆f̃ = ∆f in L2(Ω) ,
∂f̃

∂ν
|Γ1 = − b2g|Γ1 .

Taking the inner product of the first formula above with ϕ ∈ H1
Γ0

(Ω) and using
Remark 13.7.3 it follows that

〈∆f, ϕ〉L2(Ω) + 〈∇f̃ ,∇ϕ〉[L2(Ω)]n = − 〈b2g, ϕ〉L2(Γ1) ∀ ϕ ∈ H1
Γ0

(Ω) .

Comparing the above formula with (3.9.5) it follows that

〈∇f̃ ,∇ϕ〉[L2(Ω)]n = 〈∇f,∇ϕ〉[L2(Ω)]n ∀ ϕ ∈ H1
Γ0

(Ω) ,

so that f = f̃ ∈ H2(Ω) and ∂f
∂ν
|Γ1 = −b2g|Γ1 .

The operator A : D(A) → X is defined by

A

[
f
g

]
=

[
g

∆f

]
∀

[
f
g

]
∈ D(A) . (3.9.7)

The main result of this section is the following:
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Proposition 3.9.2. The operator A defined above is m-dissipative.

Proof. We first note that from (3.9.1) and (3.9.7) we obtain that

〈
A

[
f
g

]
,

[
f
g

]〉
= 〈∇g,∇f〉[L2(Ω)]n + 〈∆f, g〉L2(Ω) ∀

[
f
g

]
∈ D(A) .

Using (3.9.5) with ϕ = g it follows that

Re

〈
A

[
f
g

]
,

[
f
g

]〉
= − ‖b g‖2

L2(Γ1) 6 0 ∀
[
f
g

]
∈ D(A) ,

so that A is dissipative. To show that A is m-dissipative, we prove that I − A is
onto. For this we take

[
ξ
η

] ∈ X and we prove the existence of
[

f
g

] ∈ D(A) such
that A

[
f
g

]
=

[
ξ
η

]
. First note that, by the Riesz representation theorem, for every[

ξ
η

] ∈ X there exists a unique f ∈ V such that

〈∇f,∇ϕ〉[L2(Ω)]n + 〈f, ϕ〉L2(Ω) + 〈b2f, ϕ〉L2(Γ1)

= 〈ξ + η, ϕ〉L2(Ω) + 〈b2ξ, ϕ〉L2(Γ1) ∀ ϕ ∈ H1
Γ0

(Ω) . (3.9.8)

Taking ϕ = ψ, with ψ ∈ D(Ω), it follows that

∫

Ω

(∇f · ∇ψ + fψ)dx =

∫

Ω

(ξ + η)ψdx ∀ ψ ∈ D(Ω) ,

so that in D′(Ω) we have

∆f = f − ξ − η ∈ L2(Ω) . (3.9.9)

Substituting the above formula in (3.9.8) and setting

g = f − ξ , (3.9.10)

we obtain that
[

f
g

]
satisfies (3.9.5) which, combined to (3.9.9), implies that

[
f
g

] ∈
D(A). Moreover, using (3.9.7), (3.9.9) and (3.9.10) we see that (I − A)

[
f
g

]
=

[
ξ
η

]
,

so that I − A is onto. Thus A is m-dissipative.

We say that z is a strong solution of (3.9.3) if

[
z
ż

]
∈ C([0,∞);D(A)) , (3.9.11)

and the first equation in (3.9.3) holds in C([0,∞); L2(Ω)). As a consequence of
Proposition 3.9.2, we obtain the following result:

Corollary 3.9.3. For every [ z0
w0 ] ∈ D(A), the initial and boundary value problem

(3.9.3) admits a unique strong solution. Moreover, the energy estimate (3.9.4) holds
for every t > 0.
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Proof. We know from the last proposition that A is m-dissipative, so that, by
applying the Lumer-Phillips Theorem 3.8.4 it follows that A is the generator of
a contraction semigroup T on X. We denote as usually by X1 the space D(A)

endowed with the graph norm. We set, for every t > 0,
[

z(t)
w(t)

]
= Tt [ z0

w0 ]. According

to Proposition 2.3.5 it follows that

[
z
w

]
∈ C([0,∞), X1) ∩ C1([0,∞), X) , (3.9.12)

[
ż(t)
ẇ(t)

]
= A

[
z(t)
w(t)

]
for t > 0 ,

[
z(0)
w(0)

]
=

[
z0

w0

]
. (3.9.13)

Using (3.9.7) it follows that w(t) = ż(t), so that we have (3.9.11) and the first
equation in (3.9.3) holds in C([0,∞); L2(Ω)). We have thus shown that for every[
z0

w0

]
∈ X there exists a strong solution of (3.9.3) which is given by

[
z(t)
ż(t)

]
= Tt

[
z0

w0

]
∀ t > 0 . (3.9.14)

To show that this solution is unique, we note that if z is a strong solution of (3.9.3)

then, denoting ż(t) = w(t), we have that
[

z(t)
w(t)

]
satisfies (3.9.12), (3.9.13) so that,

according to Proposition 2.3.5, z satisfies (3.9.14).

We still have to prove (3.9.4). A direct calculation combined to the fact that
z̈(t) = ∆z(t) gives

1

2

d

dt

(
‖∇z(·, t)‖2

[L2(Ω)]n + ‖ż(·, t)‖2
L2(Ω)

)

= Re
(〈∇z(t),∇ż(t)〉[L2(Ω)]n + 〈ż(t), ∆z(t)〉L2(Ω)

) ∀ t > 0 .

Using (3.9.5) with f = z(t) and ϕ = ż(t) we obtain (3.9.4).
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Chapter 4

Control and observation operators

Notation. Throughout this chapter, U,X and Y are complex Hilbert spaces which
are identified with their duals. T is a strongly continuous semigroup on X, with
generator A : D(A)→X and growth bound ω0(T). Recall from Section 2.10 that
X1 is D(A) with the norm ‖z‖1 = ‖(βI −A)z‖, where β ∈ ρ(A) is fixed, while X−1

is the completion of X with respect to the norm ‖z‖−1 = ‖(βI−A)−1z‖. Remember
that we use the notation A and Tt also for the extension of the original generator
to X and for the extension of the original semigroup to X−1. Recall also that Xd

1

is D(A∗) with the norm ‖z‖d
1 = ‖(βI −A∗)z‖ and Xd

−1 is the completion of X with

respect to the norm ‖z‖d
−1 = ‖(βI − A∗)−1z‖. Recall that X−1 is the dual of Xd

1

with respect to the pivot space X.

Let u, v ∈ L2
loc([0,∞); U) and let τ > 0. Then the τ -concatenation of u and v,

u ♦
τ

v is the function in L2
loc([0,∞); U) defined by

(u ♦
τ

v)(t) =

{
u(t) for t ∈ [0, τ),

v(t− τ) for t > τ .

For u ∈ L2
loc([0,∞); U) and τ > 0, the truncation of u to [0, τ ] is denoted by

Pτu. This function is regarded as an element of L2([0,∞); U) which is zero for
t > τ . Equivalently, Pτu = u ♦

τ
0. For every τ > 0, Pτ is an operator of norm 1 on

L2([0,∞); U). We denote by Sτ the operator of right shift by τ on L2
loc([0,∞); U),

so that (Sτu)(t) = u(t− τ) for t > τ , and (Sτu)(t) = 0 for t ∈ [0, τ ]. Thus,

(u ♦
τ

v)(t) = Pτu + Sτv .

For any open interval J , the spacesH1(J ; U) andH2(J ; U) are defined as at the be-
ginning of Chapter 2. H1

loc((0,∞); U) is the space of those functions on (0,∞) whose
restriction to (0, n) is in H1((0, n); U), for every n ∈ N. The space H2

loc((0,∞); U)
is defined similarly. Recall that Cα is the half-plane where Re s > α.
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4.1 Solutions of non-homogeneous differential equations

The state trajectories z of a linear time-invariant system are defined as the solutions
of a non-homogeneous differential equation of the form ż(t) = Az(t)+Bu(t), where u
is the input function. For this reason, we should clarify what we mean by a solution
of such a differential equation, and then give some basic existence and uniqueness
results. In this section, the operator B is not important, so that in our discussion
we shall replace Bu(t) by f(t), and we call f the forcing function.

Definition 4.1.1. Consider the differential equation

ż(t) = Az(t) + f(t) , (4.1.1)

where f ∈ L1
loc([0,∞); X−1). A solution of (4.1.1) in X−1 is a function

z ∈ L1
loc([0,∞); X) ∩ C([0,∞); X−1)

which satisfies the following equations in X−1:

z(t)− z(0) =

t∫

0

[Az(σ) + f(σ)] dσ ∀ t ∈ [0,∞) . (4.1.2)

The above concept could also be called a “strong solution of (4.1.1) in X−1”
because (4.1.2) implies that z is absolutely continuous with values in X−1 and (4.1.1)
holds for almost every t > 0, with the derivative computed with respect to the norm
of X−1. The equation (4.1.1) does not necessarily have a solution in the above sense.

Remark 4.1.2. We could also define the concept of a “weak solution of (4.1.1) in
X−1”, by requiring instead of (4.1.2) that for every ϕ ∈ Xd

1 and every t > 0,

〈z(t)− z(0), ϕ〉X−1,Xd
1

=

t∫

0

[
〈z(σ), A∗ϕ〉X + 〈f(σ), ϕ〉X−1,Xd

1

]
dσ.

However, it is easy to see that this is an equivalent concept to the concept of solution
defined earlier. For this reason, we just use the term “solution in X−1”.

Sometimes it is convenient to use the above equivalent definition of a solution of
(4.1.1). Sometimes it is also convenient to do this without identifying X with its
dual X ′. This can be done in the framework of Remark 2.10.11.

Remark 4.1.3. If f ∈ L1
loc([0,∞); X) then the concept of a solution of (4.1.1) in

X can be defined similarly, by replacing everywhere in Definition 4.1.1 X−1 by X
and X by X1. This concept of a solution appears often in the literature. Similarly,
we could introduce solutions of (4.1.1) in X−2 (this space was introduced in Section
2.10). It is easy to see that if z is a solution of (4.1.1) in X, then it is also a
solution of (4.1.1) in X−1 (and any solution in X−1 is also a solution in X−2). For
our purposes, the most useful concept is the one we introduced in Definition 4.1.1.
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Proposition 4.1.4. With the notation of Definition 4.1.1, suppose that z is a so-
lution of (4.1.1) in X−1 and denote z0 = z(0). Then z is given by

z(t) = Ttz0 +

t∫

0

Tt−σ f(σ)dσ. (4.1.3)

In particular, for every z0 ∈ X there exists at most one solution in X−1 of (4.1.1)
which satisfies the initial condition z(0) = z0.

Proof. For t > 0 and ϕ ∈ D(A∗2) fixed, introduce the function g : [0, t]→C by

g(σ) = 〈Tt−σz(σ), ϕ〉X−1,Xd
1
.

Moving Tt−σ to the right side of the above duality pairing and using the fact that
the function σ→T∗t−σϕ is in C1([0, t], Xd

1 ), we see that g is absolutely continuous
and its derivative is given, for almost every σ ∈ [0, t], by

d

dσ
g(σ) = 〈Az(σ) + f(σ),T∗t−σϕ〉X−1,Xd

1
− 〈z(σ), A∗T∗t−σϕ〉X−1,Xd

1

= 〈f(σ),T∗t−σϕ〉X−1,Xd
1

= 〈Tt−σf(σ), ϕ〉X−1,Xd
1
.

Integrating from 0 to t we obtain

g(t)− g(0) =

〈 t∫

0

Tt−σf(σ)dσ, ϕ

〉

X−1,Xd
1

.

By the density of D(A∗2) in Xd
1 , we obtain the desired formula

z(t)− Ttz(0) =

t∫

0

Tt−σf(σ)dσ.

Definition 4.1.5. With the notation of Definition 4.1.1, the X−1-valued function z
defined in (4.1.3) is called the mild solution of (4.1.1), corresponding to the initial
state z0 ∈ X and the forcing function f ∈ L1

loc([0,∞; X−1).

In the last proposition we have shown that every solution of (4.1.1) in X−1 is a
mild solution of (4.1.1). The converse of this statement is not true. However, the
following theorem shows that for forcing functions of class H1, the mild solution
of (4.1.1) is actually a solution of (4.1.1) in X−1, and moreover this solution is a
continuous X-valued function.

Theorem 4.1.6. If z0 ∈ X and f ∈ H1
loc((0,∞); X−1), then the equation (4.1.1)

has a unique solution in X−1, denoted z, that satisfies z(0) = z0. Moreover, this
solution is such that

z ∈ C([0,∞); X) ∩ C1([0,∞); X−1) ,

and it satisfies (4.1.1) in the classical sense, at every t > 0.
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Note that from the above theorem it follows immediately that

Az + f ∈ C([0,∞); X−1) .

Proof. Let (St)t>0 be the unilateral left shift semigroup on L2([0,∞); X−1) (see
Example 2.3.7 for the scalar case X = C). The generator of S is is the differentiation
operator d

dx
, with domain H1((0,∞); X−1). We introduce the forcing function to

state operators
Φτ ∈ L(L2([0,∞); X−1), X−1)

defined for all τ > 0 by

Φτf =

τ∫

0

Tτ−σf(σ)dσ.

Then the mild solution z of (4.1.1) is given by z(t) = Ttz0 + Φtf . It is a routine
task to verify that on X = X−1 × L2([0,∞); X−1) the operators

Tτ =

[
Tτ Φτ

0 Sτ

]

form a strongly continuous semigroup, and the generator of this semigroup is

A
[
z0

f

]
=

[
Az0 + f(0)

df
dx

]
, D(A) = X ×H1((0,∞); X−1) .

The graph norm on the space X1 = D(A) turns out to be equivalent to the usual
product norm of X×H1((0,∞); X−1). Thus, we shall use this product norm on X1.

First we prove the theorem for f ∈ H1((0,∞); U). Choose
[ z0

f

] ∈ D(A) and
define q(t) = Tt

[ z0
f

]
. We know from Proposition 2.3.5 that q satisfies

q ∈ C([0,∞);X1) ∩ C1([0,∞);X ) .

The first component of q is the mild solution z of (4.1.1), corresponding to z0 and
f . Therefore,

z ∈ C([0,∞); X) ∩ C1([0,∞); X−1) .

We want to show that z is a solution of (4.1.1) in X−1. According to Remark 2.1.7
we have

Tt

[
z0

f

]
−

[
z0

f

]
= A

t∫

0

Tσ

[
z0

f

]
dσ,

for every t > 0. Looking at the first component only, we obtain that

z(t)− z0 =

t∫

0

[Az(σ) + f(σ)] dσ.

Since this holds for all t > 0, z is indeed a solution of (4.1.1) in X−1. Differentiating
the above equation in X−1, we obtain that z satisfies (4.1.1) at every t > 0. Thus,
we have proved the theorem for the special case when f ∈ H1((0,∞); U).
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Now let us consider z0 ∈ X, f ∈ H1
loc((0,∞); X−1) and let z be the corresponding

mild solution of 4.1.1. Choose τ > 0. It will be enough to prove that the restriction
of z to [0, τ ], denoted Pτz, has the desired properties, i.e.,

Pτz ∈ C([0, τ ]; X) ∩ C1([0, τ ]; X−1) ,

z(t)− z0 =

t∫

0

[Az(σ) + f(σ)] dσ ∀ t ∈ [0, τ ] .

On [τ,∞) we modify f such that f ∈ H2([0,∞); X−1). Since Pτz depends only on
z0 and on Pτf , z does not change on [0, τ ]. Thus, Pτz has the desired properties
listed earlier, due to the special case of the theorem proved earlier.

Remark 4.1.7. The last theorem remains valid for forcing functions f that satisfy
f(t) − f(0) =

∫ t

0
v(σ)dσ for every t > 0, where v ∈ L1

loc([0,∞); X−1). The proof is
similar, using a semigroup acting on the Banach space X−1 × L1([0,∞); X−1).

Remark 4.1.8. Let z0 ∈ X−1, f ∈ L1
loc([0,∞); X−1) and let z be the corresponding

mild solution of (4.1.1) (i.e., given by (4.1.3)). Then z satisfies (4.1.2), still as an
equality in X−1, but with the integration carried out in X−2.

Indeed, we know from the last theorem that (4.1.2) holds if z0 ∈ X and f ∈
H1((0,∞); X−1) (with the integration carried out in X−1). Since both sides (as
elements of X−2) depend continuously on z0 (as an element of X−1) and on f (as an
element of L1

loc([0,∞); X−1)) and sinceH1((0,∞); X−1) is dense in L1
loc([0,∞); X−1),

it follows that (4.1.2) holds as an equality in X−2. But clearly the left-hand side is
in X−1, so that in fact we have an equality in X−1, as claimed.

An easy consequence of the statement that we have just proved is that every mild
solution of (4.1.1) corresponding to z0 ∈ X−1 and f ∈ L1

loc([0,∞); X−1) is a solution
of this equation in X−2.

Remark 4.1.9. For f ∈ L1
loc([0,∞); X−1) the Laplace transform of f and its domain

(the set of points s ∈ C where f̂(s) exists) are defined in Appendix I (around
(12.4.5)). If z is the mild solution of (4.1.1) corresponding to z0 ∈ X and f , then
its Laplace transform is

ẑ(s) = (sI − A)−1
[
z(0) + f̂(s)

]
,

and this exists at all the points s ∈ C for which Re s > ω0(T) and f̂(s) exists
(and possibly also for all s in a larger half-plane). This follows from Remark 4.1.8,
applying the Laplace transformation to (4.1.2).

4.2 Admissible control operators

The concept of an admissible control operator is motivated by the study of the
solutions of the differential equation ż(t) = Az(t)+Bu(t), where u ∈ L2

loc([0,∞); U),
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z(0) ∈ X and B ∈ L(U,X−1). We would like to study those operators B for which
all the mild solutions z of this equation (with u and z(0) as described) are continuous
X-valued functions. Such operators B will be called admissible.

Let B ∈ L(U,X−1) and τ > 0. We define Φτ ∈ L(L2([0,∞); U), X−1) by

Φτu =

τ∫

0

Tτ−σBu(σ)dσ. (4.2.1)

We are interested in these operators because they appear in (4.1.3) if we take f = Bu.
It is clear that we could have defined Φτ such that Φτ ∈ L(L2([0, τ ]; U), X−1), but
we wanted to avoid later difficulties which would occur if the domain of Φτ depended
on τ . It is easy to see that Φτ = ΦτPτ (causality) and that for every t, τ > 0,

Φτ+t (u ♦
τ

v) = TtΦτu + Φtv . (4.2.2)

The latter property is called the composition property.

Definition 4.2.1. The operator B ∈ L(U ; X−1) is called an admissible control
operator for T if for some τ > 0, Ran Φτ ⊂ X.

Note that if B is admissible then in (4.2.1) (with t = τ) we integrate in X−1, but
the integral is in X, a dense subspace of X−1.

The operator B (as in the above definition) is called bounded if B ∈ L(U,X) (and
unbounded otherwise). Obviously, every bounded B is admissible for T.

Proposition 4.2.2. Suppose that B ∈ L(U,X−1) is admissible, i.e., Ran Φτ ⊂ X
holds for a specific τ > 0. Then for every t > 0 we have

Φt ∈ L(L2([0,∞); U), X) .

Proof. Choose β ∈ ρ(A) and define B0 = (βI − A)−1B. Then B0 ∈ L(U,X) and

Φτ u = (βI − A)

τ∫

0

Tτ−σ B0u(σ)dσ,

which shows that Φτ is closed. By the closed graph theorem Φτ is bounded.

Let t ∈ [0, τ). We rewrite (4.2.2) with u = 0 and with τ−t in place of τ as follows:
Φτ (0 ♦

τ−t
v) = Φtv. This shows that Φt ∈ L(L2([0,∞); U), X).

The identity (4.2.2) with t = τ implies that Φ2τ is bounded. By induction, Φt is
bounded for all t of the form t = 2nτ , where n ∈ N. Combining this with what we
proved in the previous paragraph, we obtain that Φt is bounded for all t > 0.

The operators Φt as in the above proposition are called the input maps corre-
sponding to (A,B). B can be recovered from them by the following formula:

Bv = lim
t→ 0

1

t
Φtv ∀ v ∈ U , (4.2.3)
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where we have used the notation v also for the constant function equal to v, defined
for all t > 0. (The above limit is taken in X−1.) The proof of (4.2.3) is easy, using
the fact that T is strongly continuous on X−1 (see Proposition 2.10.4).

Remark 4.2.3. By a step function on [0, τ ] (or a piecewise constant function) we
mean a function that is constant on each interval of a partition of [0, τ ] into finitely
many intervals. We have the following equivalent characterization of admissible
control operators: B ∈ L(U,X−1) is admissible if and only if, for some τ > 0, there
exists a Kτ > 0 such that for every step function v : [0, τ ]→U ,

‖Φτv‖X 6 Kτ‖v‖L2 . (4.2.4)

Indeed, if v is a step function then Φτv ∈ X (regardless if B is admissible), as it
follows from Proposition 2.1.6 (with X−1 in place of X). If (4.2.4) holds then, by
the density of step functions in L2([0, τ ]; U) (see Section 12.5), Φτ is bounded, so
that B is admissible. The converse statement follows from Proposition 4.2.2.

Proposition 4.2.4. Suppose that B is an admissible control operator for T. Then
the function

ϕ(t, u) = Φtu

is continuous on the product [0,∞)× L2([0,∞); U).

Proof. Taking in (4.2.2) u = 0 and taking the supremum of the norm over all
v ∈ L2([0,∞); U) with ‖v‖ = 1 we get, denoting T = τ + t,

‖Φt‖ 6 ‖ΦT‖ for t 6 T , (4.2.5)

so that ‖Φt‖ is non-decreasing.

First we prove the continuity of ϕ(t, u) with respect to the time t, so for the time
being let u ∈ L2([0,∞); U) be fixed and let

f(t) = Φtu.

The inequality (4.2.5) together with causality (Φt = ΦtPt) implies that

‖f(t)‖ 6 ‖Φ1‖ · ‖Ptu‖ ∀ t ∈ [0, 1] .

Obviously ‖Ptu‖→ 0 for t→ 0, so that limt→ 0 f(t) = 0. The right continuity of f
in any point τ > 0 now follows easily from the composition property (4.2.2).

To prove the left continuity of f in τ > 0 we take a sequence (εn) with εn ∈ [0, τ ]
and εn→ 0 and we define un(t) = u(εn + t), so that un ∈ L2([0,∞); U) and un→u.
We have u = u ♦

εn

un , so that according to (4.2.2)

Φεn+(τ−εn)u = Tτ−εnΦεnu + Φτ−εnun .

From here
Φτu− Φτ−εnu = Tτ−εnΦεnu + Φτ−εn(un − u) ,
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which yields

‖Φτu− Φτ−εnu‖ 6 M · ‖f(εn)‖ + ‖Φτ‖ · ‖un − u‖ ,
where M is a bound for ‖Tt‖ on [0, τ ]. Since f(εn)→ 0, the left continuity of f in
any point τ > 0 is now also proved.

The joint continuity of ϕ follows now easily from the decomposition

Φtv − Φτu = Φt(v − u) + (Φt − Φτ )u,

where (t, v)→ (τ, u).

The following proposition shows that if B is admissible and u ∈ L2
loc([0,∞); U),

then the initial value problem associated with the equation ż(t) = Az(t) + Bu(t)
has a unique solution in X−1, in the sense of Definition 4.1.1.

Proposition 4.2.5. Assume that B ∈ L(U,X−1) is an admissible control operator
for T. Then for every z0 ∈ X and every u ∈ L2

loc([0,∞); U), the initial value problem

ż(t) = Az(t) + Bu(t) , z(0) = z0 , (4.2.6)

has a unique solution in X−1. This solution is given by

z(t) = Ttz0 + Φtu (4.2.7)

and it satisfies
z ∈ C([0,∞); X) ∩H1

loc((0,∞); X−1) .

Proof. With B, z0 and u as in the proposition, define the function z by (4.2.7).
According to our concept of a solution of (4.2.6) in X−1, we have to show that
z ∈ L1

loc([0,∞); X) ∩ C([0,∞); X−1) and it satisfies (4.1.2) with f = Bu, i.e.,

z(t)− z(0) =

t∫

0

[Az(σ) + Bu(σ)] dσ ∀ t ∈ [0,∞) , (4.2.8)

with the integration carried out in X−1. According to Remark 4.1.8 the above
equality holds in X−1, with the integration carried out in X−2. It follows from
Proposition 4.2.4 that z ∈ C([0,∞); X). Hence, the terms of (4.2.8) are in fact
in X and what we integrate is in L2

loc([0,∞); X−1), so that we may consider the
integration to be done in X−1. Thus, z is a solution of (4.2.6). It also follows that
z ∈ H1

loc(0,∞; X−1). The uniqueness of z follows from Proposition 4.1.4.

Remark 4.2.6. The above result implies the following: With the assumptions of
Proposition 4.2.5, for every z0 ∈ X and every u ∈ L2

loc([0,∞); U) there exists a
unique z ∈ C([0,∞); X) such that, for every t > 0,

〈z(t)− z0, ψ〉X =

t∫

0

[〈z(σ), A∗ψ〉X + 〈u(σ), B∗ψ〉U ] dσ ∀ ψ ∈ D(A∗) .

Sometimes it is more convenient not to identify X with its dual X ′. Then A∗ ∈
L(Xd

1 , X ′) and B∗ ∈ L(Xd
1 , U), where Xd

1 is as in Remark 2.10.11, and the inner
product in X has to be replaced with the duality pairing between X and X ′.
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Example 4.2.7. Take X = L2[0,∞) and let T be the unilateral right shift semi-
group on X (i.e., Ttz0 = Stz0), with generator

A = − d

dx
, D(A) = H1

0(0,∞)

(recall that H1
0(0,∞) consists of those ϕ ∈ H1(0,∞) for which ϕ(0) = 0). Then

D(A∗) = H1(0,∞) and X−1 is the dual of H1(0,∞) with respect to the pivot space
X (see Section 2.9 for the concept of duality with a pivot). We have encountered
this semigroup (and its dual) in Examples 2.4.5, 2.8.7 and 2.10.7.

We take U = C, so that L(U,X−1) can be identified with X−1. For every α > 0
we define δα (the “delta function at α”) as an element of X−1 by

〈ϕ, δα〉Xd
1 ,X−1

= ϕ(α) ∀ ϕ ∈ Xd
1 = H1(0,∞) .

Clearly, Ttδα = δα+t. We take the control operator B = δ0. Then it is not difficult
to check that

(Φtu)(x) =

{
u(t− x) for x ∈ [0, t] ,

0 for x > t.

Intuitively, we can imagine the system described by ż(t) = Az(t) + Bu(t) as an
infinite conveyor belt moving to the right, with information entering at its left end
and being transported along the belt with unity speed. It is clear that Ran Φt ⊂ X,
so that B is admissible. In fact, we have ‖Φt‖L(L2[0,∞),X) = 1 for all t > 0. We shall
reformulate this system as a boundary control system in Example 10.1.9.

Let B ∈ L(U,X−1). We introduce the space

Z = X1 + (βI − A)−1BU = (βI − A)−1(X + BU) , (4.2.9)

where β ∈ ρ(A) (Z does not depend on the choice of β). The norm on Z is defined
by regarding Z as a factor space of X × U :

‖z‖2
Z = inf

{‖x‖2 + ‖v‖2 | x ∈ X, v ∈ U, z = (βI − A)−1(x + Bv)
}

,

so that Z is a Hilbert space, continuously embedded in X. On the space X + BU
we consider a similar norm, but omitting the factor (βI − A)−1. Clearly Z may be
regarded as the image of X + BU through the isomorphism (βI − A)−1.

Lemma 4.2.8. Let B ∈ L(U,X−1) be an admissible control operator for T. Then
for any u ∈ H1((0, T ); U) with u(0) = 0, the solution z of

ż = Az + Bu (4.2.10)

with z(0) = 0 is such that

z ∈ C([0, T ]; Z) ∩ C1([0, T ]; X) .
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Proof. Let u ∈ H1((0, T ); U) with u(0) = 0 and denote by w the solution of

ẇ = Aw + Bu̇, w(0) = 0 .

As B is an admissible control operator we have that w ∈ C([0, T ]; X). Moreover it
is easily checked that the function z defined by z(t) =

∫ t

0
w(s)ds satisfies (4.2.10).

Since the solution of (4.2.10) with z(0) = 0 is unique, we obtain

z(t) =

t∫

0

w(s)ds,

which obviously yields that
z ∈ C1([0, T ]; X). (4.2.11)

On the other hand (4.2.10) gives

(βI − A)z(t) = βz(t)− ż(t) + Bu(t) ∀ t ∈ [0, T ] . (4.2.12)

Since βz − ż + Bu ∈ C([0, T ], X + BU), relation (4.2.12) with β ∈ ρ(A) implies

z ∈ C([0, T ]; Z) . (4.2.13)

From (4.2.11) and (4.2.13) we clearly obtain the conclusion of the lemma.

Remark 4.2.9. In Lemma 4.2.8 we may replace the condition that B is admissible
with the condition that u ∈ H2((0, T ); U) (we still assume that u(0) = 0). The
conclusion remains the same, and the proof is also the same, except that now, to
show that w ∈ C([0, T ]; X), we use Theorem 4.1.6 instead of the admissibility of B.

Proposition 4.2.10. Let B ∈ L(U,X−1) be an admissible control operator for T.
If z0 ∈ X and u ∈ H1

loc((0,∞); U) are such that Az0 +Bu(0) ∈ X, then the solution
z of (4.2.6) satisfies

z ∈ C([0,∞); Z) ∩ C1([0,∞); X) .

Proof. We decompose z = zn + zc, where zn satisfies

żn = Azn + B[u− u(0)] , zn(0) = 0 ,

and zc satisfies
żc = Azc + Bu(0) , zc(0) = z0 .

It follows from Lemma 4.2.8 that zn ∈ C([0,∞); Z) ∩ C1([0,∞); X). It is easy to
see (using Remark 2.1.7) that for every t > 0,

Azc(t) = Tt [Az0 + Bu(0)]−Bu(0) . (4.2.14)

This shows that Azc ∈ C([0,∞); X + BU), whence zc ∈ C([0,∞); Z). We also see
from (4.2.14) that żc(t) = Tt[Az0 + Bu(0)], whence zc ∈ C1([0,∞); X).

In Proposition 4.2.10 we may replace the condition that B is admissible with the
condition that u ∈ H2

loc((0,∞); U):
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Proposition 4.2.11. If B ∈ L(U,X−1), z0 ∈ X and u ∈ H2
loc((0,∞); U) are such

that Az0 + Bu(0) ∈ X, then the solution z of (4.2.6) satisfies

z ∈ C([0,∞); Z) ∩ C1([0,∞); X) .

The proof is very similar to the proof of Proposition 4.2.10, except that now we
use Remark 4.2.9 in place of Lemma 4.2.8.

4.3 Admissible observation operators

We now introduce the concept of an admissible observation operator, which will
turn out to be the dual of the concept of an admissible control operator.

Let C ∈ L(X1, Y ). We are interested in the output functions y generated by the
system {

ż(t) = Az(t) , z(0) = z0 ,
y(t) = Cz(t) ,

where z0 ∈ X1 and t > 0. According to Proposition 2.3.5, the initial value problem
ż(t) = Az(t), z(0) = z0 has the unique solution z(t) = Ttz0. This motivates the
introduction of the operators from z0 to the truncated output Pτy:

(Ψτz0)(t) =

{
CTtz0 for t ∈ [0, τ ] ,

0 for t > τ .
(4.3.1)

We shall regard these operators as elements of L(X1, L
2([0,∞); Y )). Clearly, we

could just as well define Ψτ such that Ψτ ∈ L(X1, L
2([0, τ ]; Y )), but we want to

avoid later difficulties which would occur if the range space of Ψτ depended on τ .

It is easy to see that Ψτ = PτΨτ and that for every t, τ > 0,

Ψτ+tz0 = Ψτ z0 ♦
τ

ΨtTτz0 . (4.3.2)

We shall call this formula the dual composition property. We shall see in the proof
of Theorem 4.5.5 that (4.3.2) is indeed the dual counterpart of (4.2.2).

Definition 4.3.1. The operator C ∈ L(X1, Y ) is called an admissible observation
operator for T if for some τ > 0, Ψτ has a continuous extension to X.

Equivalently, C ∈ L(X1, Y ) is an admissible observation operator for T if and
only if, for some τ > 0, there exists a constant Kτ > 0 such that

τ∫

0

‖CTtz0‖2
Y dt 6 K2

τ ‖z0‖2
X ∀ z0 ∈ D(A) . (4.3.3)

The operator C (as in the above definition) is called bounded if it can be extended
such that C ∈ L(X, Y ) (and unbounded otherwise). Obviously, every bounded C
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is admissible for T. If Y is finite-dimensional and C is closed (as a densely defined
operator from X to Y ), then it is bounded (this follows from Remark 2.8.3). Usually,
C is not closed and it also has no closed extension.

If C is an admissible observation operator for T, then we denote the (unique)
extension of Ψτ to X by the same symbol. It is now clear that the norm of the
extended operator, ‖Ψτ‖ is the smallest constant Kτ for which (4.3.3) holds. The
following result is similar to Proposition 4.2.2.

Proposition 4.3.2. Suppose that C ∈ L(X1, Y ) is admissible, i.e., Ψτ has a con-
tinuous extension to X for a specific τ > 0. Then for every t > 0 we have

Ψt ∈ L(X,L2([0,∞); Y )) .

Proof. If t < τ , then from Ψt = PtΨτ we see that Ψt is bounded, by which we
mean that Ψt ∈ L(X, L2([0,∞); Y )). If we take t = τ in (4.3.2), then we obtain
that Ψ2τ is bounded. By induction, we see that Ψt is bounded for all t of the form
t = 2nτ , where n ∈ N. Combining all these facts, we obtain that Ψt is bounded for
all t > 0, as claimed in the proposition.

The operators Ψt as in the above proposition are called the output maps corre-
sponding to (A,C). C can be recovered from them as follows: for any τ > 0,

Cz0 = (Ψτz0)(0) ∀ z0 ∈ X1 .

Indeed, this follows from the continuity of Ψτz0 on the interval [0, τ ], which in turn
is due to the strong continuity of T on X1 (see Proposition 2.3.5). If we regard Ψτz0

as an element of L2([0,∞); Y ), then a point evaluation at zero is not defined, but
we can rewrite the formula in a valid form as follows:

Cz0 = lim
t→ 0

1

t

t∫

0

(Ψτz0)(σ)dσ ∀ z0 ∈ X1 . (4.3.4)

Note that this is now similar to the formula (4.2.3).

We now examine ‖Ψt‖ as a function of t. An obvious observation is that ‖Ψt‖ is
non-decreasing. More information is in the following proposition:

Proposition 4.3.3. With the notation of the previous proposition, let ω ∈ R and
M > 1 be such that ‖Tt‖ 6 Meωt, for all t > 0 (see Section 2.1).

(1) If ω > 0 then there exists K > 0 such that ‖Ψt‖ 6 Keωt, for all t > 0.

(2) If ω = 0 then there exists K > 0 such that ‖Ψt‖ 6 K(1 + t)
1
2 , for all t > 0.

(3) If ω < 0 then there exists K > 0 such that ‖Ψt‖ 6 K, for all t > 0.

Proof. It is easy to see that for any z0 ∈ X and any n ∈ N,

‖Ψnz0‖2 = ‖Ψ1z0‖2 + ‖Ψ1T1z0‖2 . . . + ‖Ψ1Tn−1z0‖2 ,
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whence

‖Ψnz0‖ 6 ‖Ψ1‖
(

1 + M2e2ω . . . + M2e2ω(n−1)

) 1
2

‖z0‖ . (4.3.5)

For ω > 0 it follows that for all t ∈ [n− 1, n],

‖Ψt‖ 6 ‖Ψn‖ 6 ‖Ψ1‖M
(

e2ωn − 1

e2ω − 1

) 1
2

6 ‖Ψ1‖M eω

√
e2ω − 1

eω(n−1)

6 Keωt , where K = ‖Ψ1‖M eω

√
e2ω − 1

.

For ω = 0 we see from (4.3.5) that for all t ∈ [n− 1, n],

‖Ψt‖ 6 ‖Ψn‖ 6 ‖Ψ1‖Mn
1
2 6 K(1 + t)

1
2 .

For ω < 0 we see again from (4.3.5) that ‖Ψn‖ is bounded.

We regard L2
loc([0,∞); Y ) as a Fréchet space with the seminorms being the L2

norms on the intervals [0, n], n ∈ N. (This means that in L2
loc([0,∞); Y ) we have

yk→ 0 iff ‖yk‖L2[0,n]→ 0 for every n ∈ N.) Let C ∈ L(X1, Y ) be an admissible
observation operator for T. Then it is easy to see that there exists a continuous
operator Ψ : X→ L2

loc([0,∞); Y ) such that

(Ψz0)(t) = CTtz0 ∀ z0 ∈ D(A) , t > 0 . (4.3.6)

The operator Ψ is completely determined by (4.3.6), because D(A) is dense in X.
We call Ψ the extended output map of (A,C). Clearly,

PτΨ = Ψτ ∀ τ > 0 .

It follows from (4.3.2) that the extended output map satisfies the functional equation

Ψz0 = Ψτ z0 ♦
τ

ΨTτz0 . (4.3.7)

Proposition 4.3.4. If C and Ψ are as above, then for every z0 ∈ D(A) we have
Ψz0 ∈ H1

loc((0,∞); Y ) and for every t > 0,

CTtz0 = Cz0 +

t∫

0

(ΨAz0)(σ)dσ.

Proof. Take z0 ∈ D(A2), so that

(ΨAz0)(t) = CTtAz0 ∀ t > 0 . (4.3.8)

The derivative of Ttz0, as an X1-valued function of t, is TtAz0, see Proposition 2.10.4,
so that

∫ t

0
CTσAz0dσ = CTtz0 − Cz0. Thus, integrating both sides of (4.3.8), we

obtain the desired formula for z0 ∈ D(A2). Since D(A2) is dense in X1 and C is
bounded on X1, we formula in the proposition must be true for all z0 ∈ X1.
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Remark 4.3.5. Assume that T is exponentially stable and C ∈ L(X1, Y ) is an
admissible observation operator for T. Denote by Ψ be the extended output map of
(A,C). Then

Ψ ∈ L(X,L2([0,∞); Y )) .

Indeed, it follows from part (3) of Proposition 4.3.3 that there exists K > 0 such
that ‖Ψt‖ 6 K for all t > 0. Take z0 ∈ X. By taking the limit of ‖Ψtz0‖L2 (as
t→∞), we obtain that Ψz0 ∈ L2([0,∞); Y ) and ‖Ψz0‖L2 6 K‖z0‖.
Proposition 4.3.6. Let C ∈ L(X1, Y ) be an admissible observation operator for
T and let Ψ be the extended output map of (A,C). For each α ∈ R we define
Ψα : X→L2

loc([0,∞); Y ) by

(Ψαz0)(t) = e−αt(Ψz0)(t) .

Then for every α > ω0(T) we have

Ψα ∈ L(X,L2([0,∞); Y )) .

Proof. Let α > ω0(T). Introduce the operator semigroup Tα generated by A−αI.
Its growth bound is ω0(Tα) = ω0(T)− α < 0. Hence, there exist ω < 0 and M > 0
such that

‖Tα
t ‖ 6 Meωt ∀ t > 0 .

Clearly C is admissible for Tα. The extended output map of (A− αI, C) is exactly
Ψα. According to Remark 4.3.5, we have Ψα ∈ L(X, L2([0,∞); Y )).

Theorem 4.3.7. Let C ∈ L(X1, Y ) be an admissible observation operator for T
and let Ψ be the extended output map of (A,C). Then for every z0 ∈ X and every
s ∈ C with Re s > ω0(T), the function t 7→ e−st(Ψz0)(t) is in L1([0,∞); Y ), so that
the Laplace transform of Ψz0 exists at s. This Laplace transform is given by

(̂Ψz0)(s) = C(sI − A)−1z0 .

Moreover, for every α > ω0(T) there exists Kα > 0 such that

‖C(sI − A)−1‖ 6 Kα√
Re s− α

∀ s ∈ Cα . (4.3.9)

Proof. For s ∈ C with Re s > ω0(T), choose α ∈ (ω0(T), Re s) and denote
ε = Re s − α (so that ε > 0). According to Proposition 4.3.6 we have Ψα ∈
L(X, L2([0,∞); Y )). Using the Cauchy-Schwarz inequality we have

‖(̂Ψz0)(s)‖ 6
∞∫

0

|e−st| · ‖(Ψz0)(t)‖dt =

∞∫

0

|e−εt| · ‖e−αt(Ψz0)(t)‖dt

6 ‖e−ε·‖L2 · ‖Ψαz0‖L2 6 Kα√
ε
‖z0‖ . (4.3.10)



Admissible observation operators 135

This implies that for any fixed s with Re s > ω0(T), (̂Ψz0)(s) defines a bounded
linear operator from X to Y .

For every z0 ∈ D(A), t 7→ Ttz0 is a continuous X1-valued function. Since C ∈
L(X1, Y ), we obtain from Proposition 2.3.1 that

(̂Ψz0)(s) =

∞∫

0

e−stCTtz0dt = C(sI − A)−1z0 .

The left-hand side and the right-hand side above have continuous extensions to X,
so that their equality remains valid for all z0 ∈ X, as claimed. Combining this fact
with (4.3.10), we get the estimate in the theorem.

The last theorem gives an upper bound for ‖(C(sI − A)−1‖ for large values of
Re s, but it gives no information at all about the size of ‖(C(sI − A)−1‖ for Re s
close to ω0(A). However, such information is sometimes needed. The following
simple proposition provides such an upper bound for contraction semigroups. The
estimate given is valid for all s ∈ C0, but what is important here is the region of
small positive Re s. For large Re s, Theorem 4.3.7 gives a stronger estimate.

Proposition 4.3.8. Assume that T is a contraction semigroup and C ∈ L(X1, Y )
is an admissible observation operator for T. Then there exists K > 0 such that

‖C(sI − A)−1‖ 6 K

(
1 +

1

Re s

)
∀ s ∈ C0 .

Proof. Clearly ω0(A) 6 0. Take s = λ + iω ∈ C0, so that λ > 0. Denote
s1 = 1 + iω, then according to the resolvent identity (see Remark 2.2.5) we have

C(sI − A)−1 = C(s1I − A)−1
[
I + (1− λ)(sI − A)−1

]
.

According to Theorem 4.3.7 with α = 1
2
, there exists k =

√
2 ·K 1

2
such that for all

s1 as above, ‖C(s1I − A)−1‖ 6 k (k is independent of ω). Thus,

‖C(sI − A)−1‖ 6 k
[
1 + |1− λ| · ‖(sI − A)−1‖] ∀ s ∈ C0 .

We know from Proposition 3.1.13 that A is m-dissipative. This implies, according to
Proposition 3.1.9, that we have ‖(sI −A)−1‖ 6 1/Re s, for all s ∈ C0. Substituting
this into the previous estimate, we obtain

‖C(sI − A)−1‖ 6 k

(
1 +

|1− λ|
λ

)
∀ s ∈ C0 , λ = Re s.

From here it is easy to obtain the estimate in the proposition, with K = 2k.
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4.4 The duality between the admissibility concepts

In this section we show that the concept of admissible observation operator is dual
to the concept of admissible control operator. This duality allows us to translate
many statements into dual statements which might be easier to prove or understand.

If B ∈ L(U,X−1) then, using the duality between Xd
1 and X−1 (see Section 2.10)

and identifying U with its dual, we have B∗ ∈ L(Xd
1 , U). The adjoint of Φτ from

(4.2.1), which is in L(Xd
1 , L2([0,∞); U)), can be expressed using B∗:

Proposition 4.4.1. If B ∈ L(U,X−1), then for every τ > 0 and every z0 ∈ Xd
1 ,

(Φ∗
τz0)(t) =

{
B∗T∗τ−tz0 for t ∈ [0, τ ] ,

0 for t > τ .
(4.4.1)

If B is an admissible control operator for T, so that Φτ can also be regarded as an
operator in L(L2([0,∞); U), X), then its adjoint in L(X,L2([0,∞); U)) is given, for
z0 ∈ D(A∗), by the same formula (4.4.1).

Proof. For every z0 ∈ Xd
1 and u ∈ L2([0,∞); U) we have

〈Φτu, z0〉X−1,Xd
1

=

τ∫

0

〈Tτ−σBu(σ), z0〉X−1,Xd
1
dσ

=

τ∫

0

〈
u(σ), B∗T∗τ−σz0

〉
U

dσ = 〈u, v〉L2([0,∞);U) ,

where v is the function on the right-hand side of (4.4.1). This implies (4.4.1).

Now assume that B is admissible and regard Φτ as a bounded operator from
L2([0,∞); U) to X. Then, because of the equality

〈Φτu, z0〉X = 〈Φτu, z0〉X−1,Xd
1

,

formula (4.4.1) gives the restriction of Φ∗
τz0 to D(A∗).

Remark 4.4.2. Let us denote by Ψd
τ the output maps corresponding to the semi-

group T∗ with the observation operator B∗ (defined similarly as for T and C, see
Section 4.3). Recall the time-reflection operators Rτ introduced in Section 1.4. Then
Proposition 4.4.1 shows that (without assuming admissibility)

Φ∗
τz0 = RτΨ

d
τz0 ∀ z0 ∈ D(A∗) , τ > 0 , (4.4.2)

as in Proposition 1.4.3. If B is admissible, then we have a choice between regarding
Φτ as an element of L(L2([0,∞); U), X) or of L(L2([0,∞); U), X−1). Proposition
4.4.1 tells us that regardless of the choice, the above formula holds.



The duality between the admissibility concepts 137

Theorem 4.4.3. Suppose that B ∈ L(U,X−1). Then B is an admissible control
operator for T if and only if B∗ is an admissible observation operator for T∗. If B
is admissible, then

‖Φ∗
τz0‖ = ‖Ψd

τz0‖ ∀ z0 ∈ X, τ > 0 ,

where Ψd
τ (with τ > 0) are the output maps of T∗ and B∗.

Proof. Suppose that B is an admissible control operator for T and for some
τ > 0, let Φτ ∈ L(L2([0,∞); U), X) be the operator from (4.2.1). Clearly Φ∗

τ ∈
L(X,L2([0,∞); U)). Since (4.4.2) holds for all z0 ∈ D(A∗), T∗ and B∗ satisfy the
condition (4.3.3) with Kτ = ‖Φτ‖. It follows that B∗ is an admissible observation
operator for T∗, i.e., Ψd

τ ∈ L(X,L2([0,∞); U)). The equality of norms claimed in
the theorem follows easily from (4.4.2), since Rτ has no influence on the norm.

To prove the converse implication, assume that B∗ is admissible for T∗. Then for
every τ > 0 there exists Kτ > 0 such that for all z0 ∈ D(A∗), ‖Ψd

τz0‖ 6 Kτ‖z0‖.
Take a step function v : [0, τ ]→U , then according to (4.4.2),

〈Φτv, z0〉X−1,Xd
1

=
〈
v, RτΨ

d
τz0

〉
L2 .

Since for any step function v we have Φτv ∈ X (see Remark 4.2.3), we obtain

|〈Φτv, z0〉X | 6 ‖v‖L2 ·Kτ · ‖z0‖X ∀ z0 ∈ D(A∗) .

This implies that ‖Φτv‖X 6 Kτ‖v‖L2 holds for every step function v : [0, τ ]→U .
Thus, the admissibility criterion in Remark 4.2.3 is satisfied.

Example 4.4.4. We describe a system that is dual to the one discussed in Example
4.2.7. Take X = L2[0,∞) and let T be the unilateral left shift semigroup on X (i.e.,
Ttz0 = S∗t z0), with generator

A =
d

dx
, D(A) = H1(0,∞) .

Then the adjoint semigroup is the unilateral right shift semigroup, so that D(A∗) =
H1

0(0,∞). Thus, X−1 is the dual of H1
0(0,∞) with respect to the pivot space X,

which is denoted H−1(0,∞). (We have met this semigroup (and its dual) in Exam-
ples 2.3.7, 2.4.5 and 2.8.7.) We take Y = C and define C ∈ L(X1, Y ) by Cϕ = ϕ(0).
(With the notation of Example 4.2.7, we have C = δ0.) Then it is not difficult to
check that for every z ∈ D(A),

(Ψz)(t) = z(t) .

By continuous extension, this formula remains valid for every z ∈ L2[0,∞).

Intuitively, we can imagine that the information is being transported to the left
on an infinite conveyor belt, and the information that reaches the left end of the belt
becomes the output. It is clear that Ψ = I is bounded from X to L2[0,∞), so that
C is admissible. The operators A and C defined in this example are the adjoints of
A and B defined in Example 4.2.7.
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The duality theorem (Theorem 4.4.3) permits us to translate results about the
admissible control operators into results about admissible observation operators, or
the other way round. For example, we have the following from Proposition 4.3.3:

Proposition 4.4.5. Let ω ∈ R and M > 1 be such that ‖Tt‖ 6 Meωt, for all t > 0.
Let B ∈ L(U,X−1) be an admissible control operator for T.

(1) If ω > 0 then there exists K > 0 such that ‖Φt‖ 6 Keωt, for all t > 0.

(2) If ω = 0 then there exists K > 0 such that ‖Φt‖ 6 K(1 + t)
1
2 , for all t > 0.

(3) If ω < 0 then there exists K > 0 such that ‖Φt‖ 6 K, for all t > 0.

From Theorem 4.3.7 we obtain by duality the following Proposition (note that it
is not exactly a mirror image of Theorem 4.3.7, because certain parts of this theorem
are difficult to translate into the control context).

Proposition 4.4.6. Let B ∈ L(U,X−1) be an admissible control operator for T.
Then for every α > ω0(T) there exists Kα > 0 such that

‖(sI − A)−1B‖ 6 Kα√
Re s− α

∀ s ∈ Cα .

4.5 Two representation theorems

When we introduced the concept of an admissible observation operator in Section
4.3, we have assumed that C ∈ L(X1, Y ). It is legitimate to ask if this is not
introducing an artificial constraint into our theory. Maybe for some semigroup T we
could find a dense T-invariant subspace W ⊂ X, other than D(A), and an operator
C̃ : W →Y which is admissible in a similar (but clearly more general) sense, i.e.,
for some τ > 0 there exists Kτ > 0 such that

τ∫

0

‖C̃Ttz0‖2dt 6 K2
τ ‖z0‖2 ∀ z0 ∈ W .

In this case C̃ is meaningful as an observation operator for T, but it does not fit into
the framework developed in Section 4.3. Such an observation operator would give
rise, using the obvious generalisation of Proposition 4.3.2, to a family of bounded op-
erators Ψτ ∈ L(X, L2([0,∞); Y )) (the output maps corresponding to (A, C̃)) which
would again satisfy the dual composition property (4.3.2).

The answer is that it is indeed easy to find observation operators defined on spaces
other than D(A), and which are admissible in this more general sense, see Example
4.5.4 below. However, such observation operators will not lead to any new family
of output maps. Indeed, any family of output maps Ψτ ∈ L(X,L2([0,∞); Y ))
satisfying (4.3.2) is generated by a unique admissible observation operator C ∈
L(X1, Y ). Thus, we may start with C̃ : W →Y , but if this C̃ is admissible for
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T then we can find an equivalent C ∈ L(X1, Y ). (Here, C being equivalent to C̃
means that they give rise to the same output maps.) This is a consequence of the
first representation theorem in this section, Theorem 4.5.3 below.

Lemma 4.5.1. Suppose that (Ψτ )τ>0 is a family of operators in L(X,L2([0,∞); Y ))
that satisfies the dual composition property (4.3.2) and Ψ0 = 0.

Then for every τ, T > 0 with τ 6 T we have PτΨT = Ψτ . Moreover, for every
ω > 0 with ω > ω0(T) there exist K > 0 such that

‖Ψt‖ 6 Keωt ∀ t > 0 . (4.5.1)

Proof. Taking t = 0 in (4.3.2) we see that PτΨτ = Ψτ . Using this and again
(4.3.2) with T = τ + t, we obtain that indeed PτΨT = Ψτ .

Now notice that Proposition 4.3.3 remains true for the family (Ψτ )τ>0, with the
same proof. Hence, for ω as described, we can find K such that (4.5.1) holds.

Remark 4.5.2. The above lemma implies that there exists a unique operator Ψ ∈
L(X,L2

loc([0,∞); Y )) such that

Ψτ = PτΨ ∀ τ > 0 . (4.5.2)

Indeed, we may define Ψ using limits in the Fréchet space L2
loc([0,∞); Y ):

Ψz0 = lim
τ →∞

Ψτz0 ∀ z0 ∈ X.

This operator Ψ is like the extended output map introduced in the previous section,
but here we do not know (yet) that Ψ is determined by an operator C as in (4.3.6).
Moreover, it follows from (4.3.2) and (4.5.2) that Ψ satisfies (4.3.7).

Theorem 4.5.3. Suppose that (Ψτ )τ>0 is a family of bounded operators from X to
L2([0,∞); Y ) that satisfies (4.3.2) and Ψ0 = 0.

Then there is a unique admissible C ∈ L(X1, Y ) such that for every τ > 0,

(Ψτz0)(t) = CTtz0 ∀ z0 ∈ D(A) , t ∈ [0, τ ] . (4.5.3)

Proof. We define the extended output map Ψ as in Remark (4.5.2). Let for any
s ∈ C with Re s > ω the operator Λs : X→Y be defined by the Laplace-integral

Λsz =

∞∫

0

e−st(Ψz)(t)dt ∀ z ∈ X.

We have to check that this definition is correct, i.e., the above integral converges
absolutely. We have, using (4.5.1) and (4.5.2) and denoting λ = Re s,

∞∫

0

‖e−st(Ψz)(t)‖dt =
∞∑

n=1

n∫

n−1

e−λt‖(Ψz)(t)‖dt

6 eλ

∞∑
n=1

e−λn‖Ψnz‖

6 Keλ

∞∑
n=1

e−(λ−ω)n‖z‖ .
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(We have used above that on [n−1, n], the L1-norm is smaller or equal the L2-norm.)
Thus we have got that for Re s > ω, Λs is well defined and moreover Λs ∈ L(X, Y ).

The functional equation (4.3.7) implies that for every z ∈ X and every τ > 0,

Λsz =

τ∫

0

e−st(Ψz)(t) dt +

∞∫

τ

e−st(ΨTτz)(t− τ)dt

=

τ∫

0

e−st(Ψz)(t)dt + e−sτ ΛsTτ z .

Rearranging we have

1

τ

τ∫

0

e−st(Ψz)(t)dt =
1− e−sτ

τ
Λsz − e−sτΛs

Tτ z − z

τ
. (4.5.4)

For x ∈ D(A) the right-hand side of (4.5.4) converges as τ → 0, so the left-hand
side has to converge too. Moreover, the limit does not depend on s, because of the
simple fact that (Ψz being in L1

loc([0,∞); Y )),

lim
τ → 0


1

τ

τ∫

0

e−st(Ψz)(t)dt− 1

τ

τ∫

0

(Ψz)(t)dt


 = 0 . (4.5.5)

Let us denote for every z ∈ D(A)

Cz = lim
τ → 0

1

τ

τ∫

0

(Ψz)(t)dt.

Then (4.5.4) and (4.5.5) imply that for every z ∈ D(A)

Cz = sΛsz − ΛsAz, (4.5.6)

and since A ∈ L(X1, X), we get that C ∈ L(X1, Y ). Denoting w = (sI − A)z,
(4.5.6) can be written in the form

Λsw = C(sI − A)
−1

w, (4.5.7)

which holds for every w ∈ X, because sI − A maps D(A) onto X.

Let Y be the space of those strongly measurable functions y : [0,∞)→Y whose
Laplace-integral is absolutely convergent for Re s > ω (we identify functions which
are equal almost everywhere). We have seen at the beginning of the proof that
Ψw ∈ Y for any w ∈ X. On the other hand, for z ∈ D(A), the function ηz :
[0,∞)→Y defined by ηz(t) = CTtz belongs to Y . This follows from the fact that
T is a strongly continuous semigroup on X1, having the same growth bound as on
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X, and C ∈ L(X1, Y ). Since the Laplace transformation is one-to-one on Y (see
the comments on the generalization of Proposition 12.4.5 in Section 12.5), it follows
from (4.5.7) that Ψz = ηz, i.e., (4.5.3) holds. The uniqueness of C is obvious.

Remember that at the beginning of this section we have introduced a more general
concept of an admissible observation operator for T (defined on a dense T-invariant
subspace of X). We have called two such observation operators equivalent if they
give rise to the same output maps. The following example shows that it may happen
that observation operators having domains whose intersection is zero are equivalent.
The same example shows that even if two equivalent observation operators have the
same domain, they do not have to coincide on it.

Example 4.5.4. Let X be the closed subspace of L2[0, 2π] defined by

X =



 z ∈ L2[0, 2π]

∣∣∣∣∣∣

2π∫

0

z(x)dx = 0



 .

Let T be the periodic left shift group on X (this is similar to the operator group
discussed in Example 2.7.12), i.e.,

(Tt z)(x) = z(x + t− k · 2π) , for k · 2π 6 x + t < (k + 1) · 2π.

The space D(A) consists of all z ∈ H1(0, 2π) such that

2π∫

0

z(x)dx = 0 , z(0) = z(2π) .

By a step function on [0, 2π] we mean a function constant on each of a finite set of
nonoverlapping intervals covering [0, 2π]. Let W1 be the vector space of step func-
tions contained in X, let W2 = W1 and let W3 be the vector space of trigonometric
polynomials contained in X (i.e., any function in W3 is a finite linear combination
of the functions sin nx and cos nx, where n ∈ N). For i ∈ {1, 2, 3} , let Ci : Wi→C
be defined by

C1z = z(0)

(i.e., the value of z on the first interval of constancy),

C2z = z(2π)

(i.e., the value of z on the last interval of constancy) and

C3z = z(0) .

Then for C1, C2 and C3 are admissible and equivalent, despite the facts that C1 and
C2 do not coincide on their (common) domain and W1 ∩ W3 = {0}. The unique
admissible observation operator C ∈ L(X1,C) that is equivalent to C1, C2 and C3

is given by Cz = z(0) = z(2π).
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Let us now state the dual version of the problem discussed at the beginning of
this section. When we introduced the concept of an admissible control operator
in Section 4.2, we have assumed that B ∈ L(U,X−1). It is legitimate to ask if
this is not overly restrictive. Maybe for some semigroup T we could find a Hilbert
space V other than X−1, such that X is a dense subspace of V , T has a continuous
extension to an operator semigroup acting on V , and an operator B̃ : U →V which
is admissible in the sense that for some τ > 0,

τ∫

0

Tt−σB̃u(σ)dσ ∈ X ∀ u ∈ L2([0, τ ]; U) .

In this case B̃ is meaningful as a control operator for T, but it does not fit into the
framework developed in Section 4.2. Such a control operator would give rise, using
the obvious generalisation of Proposition 4.2.2, to a family of bounded operators
Φτ ∈ L(L2([0,∞); U), X) (the input maps corresponding to (A, B̃)) which would
again satisfy the composition property (4.2.2).

The answer is of course similar to the one in the case of admissible observation
operators. It is indeed easy to find control operators whose range is in spaces other
than X−1, and which are admissible in this more general sense. However, such
control operators will not lead to any new family of input maps. Indeed, any family
of input maps Φτ ∈ L(L2([0,∞); U), X) satisfying (4.2.2) is generated by a unique
admissible control operator B ∈ L(U,X−1). This is a consequence of our second
representation theorem given below.

Theorem 4.5.5. Suppose that (Φτ )τ>0 is a family of bounded operators from
L2([0,∞); U) to X that satisfies the composition property (4.2.2).

Then there is a unique admissible B ∈ L(U,X−1) such that for every τ > 0,

Φτu =

τ∫

0

Tt−σBu(σ)dσ ∀ u ∈ L2([0,∞); U) . (4.5.8)

Proof. Taking t = τ = 0 in (4.2.2) we see that Φ0 = 0. Recall the time-reflection
operators Rτ introduced in Section 1.4 and denote, for every τ > 0,

Ψτ = RτΦ
∗
τ . (4.5.9)

Let us rewrite (4.2.2) (for t, τ > 0 fixed) in the form

Φt+τ [Pτ Sτ ]

[
u
v

]
= [TtΦτ Φt]

[
u
v

]
∀ u, v ∈ L2([0,∞); U) .

Eliminating u, v and taking adjoints, we obtain that
[
Pτ

S∗τ

]
Φ∗

t+τ =

[
Φ∗

τT
∗
t

Φ∗
t

]
.
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Multiplying both sides with
[
Pτ Sτ

]
, we obtain

Φ∗
t+τ = PτΦ

∗
τT

∗
t + SτΦ

∗
t ,

whence
Φ∗

t+τz0 = Φ∗
τT

∗
t z0 ♦

τ
Φ∗

t z0 ∀ z0 ∈ X.

Applying Rt+τ to both sides and using the elementary identity

Rt+τ (u ♦
τ

v) = Rtv ♦
t

Rτu,

we obtain
Rt+τΦ

∗
t+τz0 = RtΦ

∗
t z0 ♦

t
RτΦ

∗
τT

∗
t z0 ∀ z0 ∈ X,

which is the same as Ψt+τz0 = Ψtz0 ♦
t

ΨτT∗t z0, for all z0 ∈ X. This is the dual

composition property (4.3.2), with T∗ in place of T and with the roles of τ and t
reversed. We denote, as usual, Xd

1 = D(A∗), with the graph norm. It follows from
Theorem 4.5.3 that there exists a unique C ∈ L(Xd

1 , U) such that

(Ψτz0)(t) =

{
CT∗t z0 for t ∈ [0, τ ]

0 for t > τ
∀ z0 ∈ D(A∗) .

Define B ∈ L(U,X−1) by B = C∗. Then from Φ∗
τ = RτΨτ (a consequence of (4.5.9))

we obtain that Φ∗
τ is given by (4.4.1). According to Proposition 4.4.1, Φ∗

τ is the same
as the adjoint of Φτ as defined by (4.5.8). Hence, Φτ is given by (4.5.8).

4.6 Infinite-time admissibility

Assume that B is an admissible control operator for T. Remember from (4.2.5)
that ‖Φτ‖ is a non-decreasing function of τ . It is worthwhile to examine when this
function remains bounded. In the latter case, B is called infinite-time admissible.

Definition 4.6.1. An operator B ∈ L(U,X−1) is called an infinite-time admissible
control operator for T if there is a K > 0 such that

‖Φτ‖L(L2([0,∞);U),X) 6 K ∀ τ > 0 . (4.6.1)

Obviously, every infinite-time admissible control operator for T is an admissible
control operator for T. It follows from part (3) of Proposition 4.4.5 that if T is
exponentially stable and B is an admissible control operator for T, then B is infinite-
time admissible. The control operator from Example 4.2.7 is infinite-time admissible,
but the semigroup in this example is not exponentially stable (it is isometric).

If B is infinite-time admissible, then we define the bounded operator Φ−
∞ from

L2((−∞, 0]; U) to X by
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Φ−
∞u = lim

T →∞

0∫

−T

T−σBu(σ)dσ. (4.6.2)

The limit above exists, because for 0 < τ < T ,

∥∥∥∥∥∥

−τ∫

−T

T−σBu(σ)dσ

∥∥∥∥∥∥

2

6 K2

−τ∫

−T

‖u(σ)‖2dσ,

where K is as in (4.6.1). The intuitive interpretation of Φ−
∞ is that it gives the state

z(0) if the state trajectory z (defined for t 6 0) satisfies ż(t) = Az(t) + Bu(t) (in
X−1), u(t) is the input signal for t 6 0 and if limt→−∞ z(t) = 0. Thus, Φ−

∞ allows
us to solve something similar to a Cauchy problem on the interval (−∞, 0]. We call
the operator Φ−

∞ the extended input map of (A,B).

It is tempting to write Φ−
∞u as an integral from −∞ to 0, but this would be

wrong in general (the function we would like to integrate is not necessarily Bochner
integrable on (−∞, 0], see Section 12.5 for the concepts). It is easy to see that

‖Φ−
∞‖ = lim

τ →∞
‖Φτ‖ .

We denote by BC([0,∞); X) the Banach space of bounded and continuous X-
valued functions defined on [0,∞), with the supremum norm.

Remark 4.6.2. If B is an admissible control operator for T then for every T > 0
and for every u ∈ L2([0, T ]; U), the function z(t) = Φtu satisfies

‖z‖C([0,T ];X) 6 ‖ΦT‖ · ‖u‖L2([0,T ];U) . (4.6.3)

If B is infinite-time admissible, then the above estimate implies

‖z‖BC([0,∞);X) 6 ‖Φ−
∞‖ · ‖u‖L2([0,∞);U) .

We also have the following converse statement: if for every u ∈ L2([0,∞); U) the
function z(t) = Φtu is bounded (on [0,∞)), then B is infinite-time admissible. This
follows from the uniform boundedness theorem applied to the operators Φτ .

Recall the time-reflection operators Rτ introduced in Section 1.4. In addition,
we introduce the infinite time-reflection operator Rwhich acts on any function u
defined on R by ( Ru)(t) = u(−t). Thus, RL2((−∞, 0]; U) = L2([0,∞); U).

Proposition 4.6.3. Suppose that B ∈ L(U,X−1) is an infinite-time admissible
control operator for T. We denote by Ψd the extended output map of (A∗, B∗).
Then Ψd ∈ L(X,L2([0,∞); U)) and

Φ−
∞ R= (Ψd)∗ . (4.6.4)
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Proof. As in Remark 4.4.2, we denote by Ψd
τ the output maps of (A∗, B∗). The

definition of the operator Φ−
∞ can be rewritten in the form

Φ−
∞u = lim

τ →∞
Φτ Rτ Ru.

We rewrite (4.4.2) (using continuous extension to X) in the form

RτΦ
∗
τ = Ψd

τ ∀ τ > 0 .

This can be rewritten equivalently as

〈z0, Φτ Rτu〉 = 〈Ψd
τz0, u〉 ∀ z0 ∈ X, u ∈ L2([0,∞); U) , τ ∈ [0,∞) . (4.6.5)

It follows from the uniform boundedness of the operators Φτ and from Theorem 4.4.3
that Ψd ∈ L(X, L2([0,∞); U)). Using that u = R2u and taking limits in (4.6.5) as
τ →∞, we obtain the desired formula.

Definition 4.6.4. Let C ∈ L(X1, Y ). We say that C is an infinite-time admissible
observation operator for T if there exists a K > 0 such that

∞∫

0

‖CTtz0‖2
Y dt 6 K2‖z0‖2

X ∀ z0 ∈ D(A) . (4.6.6)

Clearly the above condition is equivalent to the requirement that C is admissible
and the operators Ψτ from (4.3.1) (extended to X) are uniformly bounded by K. It
is also clear that C is infinite-time admissible iff

Ψ ∈ L(X, L2([0,∞); Y )) ,

where Ψ is the extended output map from (4.3.6). As we already noted in Remark
4.3.5, if T is exponentially stable and C is an admissible observation operator for T,
then C is infinite-time admissible.

The simplest example of an infinite-time admissible observation operator corre-
sponding to a semigroup that is not exponentially stable is the point observation of
a left shift semigroup, as described in Example 4.4.4.

Remark 4.6.5. It follows from Theorem 4.4.3 that B ∈ L(U,X−1) is an infinite-time
admissible control operator for the semigroup T if and only if B∗ is an infinite-time
admissible observation operator for the adjoint semigroup T∗.

We have the following simpler version of Theorem 4.3.7.

Proposition 4.6.6. Let C ∈ L(X1, Y ) be an infinite-time admissible observation
operator for T, so that (4.6.6) holds. Then

‖C(sI − A)−1‖ 6 K√
2Re s

∀ s ∈ C0 ,

in the following sense: the function C(sI − A)−1, originally defined on some right
half-plane in ρ(A), has an analytic continuation to C0 that satisfies the estimate.
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The proof is similar to that of Theorem 4.3.7, but simpler: the boundedness of Ψ
is already known, and now we take α = 0. For any z ∈ X, the analytic continuation
of C(sI−A)−1z is the Laplace transform of Ψz. The dual version of this proposition
should be obvious, and we refrain from stating it.

Remark 4.6.7. Replacing in Proposition 4.6.3 A∗ with A and B∗ with C and then
using the definition (4.6.2) of Φ−

∞, we obtain the following formula:

Ψ∗u = lim
τ →∞

τ∫

0

T∗t C∗u(t)dt ∀ u ∈ L2([0,∞); Y ) .

4.7 Remarks and bibliographical notes on Chapter 4

General remarks. The area of admissible control and observation operators has
probably reached maturity, and an excellent survey paper on it is Jacob and Parting-
ton [112] (the paper Jacob, Partington and Pott [116] also has good survey value).
A systematic presentation of admissibility is available in Staffans [209, Chapter 10].

Sections 4.1 and 4.2. We cannot trace the origin of the material in Section 4.1.
Relavant material can be found in many books, such as Lions and Magenes [157],
Pazy [182], Staffans [209]. We have used Malinen et al [167] and Weiss [228].

To our knowledge, the first paper to formulate the concept of an admissible control
operator (with scalar input function) was Ho and Russell [100]. Soon afterwards,
the admissibility assumption, formulated in the same abstract framework as in this
book (but not under this name) has been an important ingredient in the theory of
neutral systems developed in Salamon [202]. This assumption was also present in
the first systematic treatment of well-posed linear systems in the papers Salamon
[203, 204]. It should be noted that long before the emergence of the abstract concept
of admissibility, systems decribed by either PDEs with boundary control or by delay-
differential equations that have unbounded control operators, have been analyzed
without using the concept of a control operator. For example, the paper Lasiecka,
Lions and Triggiani [143] is essentially a paper on admissibility for the boundary
control of the wave equation, but without using control operators. Already in the
1970s there were various admissible control operator concepts available that were
suitable mainly for analytic semigroups, see Curtain and Pritchard [38, Chapter 8],
Lasiecka [142], Pritchard and Wirth [184], Washburn [225]. Most of the material
(and the terminology and notation) in Section 4.2 is based on the paper [228].

Sections 4.3 and 4.4. Admissible observation operators in the sense defined here
have appeared for the first time in Salamon [202], as far as we know. Other relevant
early references are Curtain and Pritchard [38, Chapter 8], Dolecki and Russell
[51], Pritchard and Wirth [184]. Admissible observation operators appeared as an
ingredient of the theory of well-posed linear systems in Salamon [203, 204], Weiss
[232, 231] and many later papers.
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A systematic study of admissible observation operators was undertaken in Weiss
[229], and most of the material in these two sections is based on [229]. The exceptions
are: Proposition 4.4.6 has appeared in Weiss [230, Prop. 2.3] (and the estimate
(4.3.9) is its dual counterpart). Theorem 4.3.8 is new, as far as we know.

The duality between the theory of observation and control (of which admissibility
is just one aspect) has been known for a long time and we cannot trace its origins,
but at least in the infinite-dimensional context, Dolecki and Russell [51] deserve
some of the credit. Duality has been used extensively in Lions [156]. However, there
are many facts and problems in each theory (observation and control) that do not
have a natural dual counterpart. This is reflected in this book: our Sections 4.2 and
4.3 are not mirror images. Duality becomes more problematic when we work with
Banach spaces and Lp functions - see [209, 229] for discussions.

Section 4.5. The representation theorem for output maps (Theorem 4.5.3) ap-
peared in [204] and [229] (actually, in [229] X and Y were Banach spaces and the
output functions were required to be in Lp

loc). The dual representation theorem for
input maps (Theorem 4.5.5) appeared in [204] and [228]. (Actually, in [228] X and
U were Banach spaces and the input functions were in Lp

loc, p < ∞. The proof was
direct, not by duality. One of the other results in [228] is that if X is reflexive and
p = 1, then any admissible B is bounded.) The paper [228] considered also the
Banach space of all the admissible control operators for given U , X and T, with the
natural norm that makes this space complete.

Section 4.6. Infinite-time admissibile observation operators (with Y = C) have
been formally introduced in Grabowski [74], but the infinite-time admissibility con-
dition has been present already in Grabowski [73]. Infinite-time admissible control
operators were considered in Hansen and Weiss [89]. All of these papers were mainly
concerned with the particular case when the semigroup is diagonal, and they all con-
sidered the connection between infinite-time admissibility and a Lyapunov equation.

Concepts related to admissibility An important part of [229], [231] and [232]
that is not considered in this book is the study of two extensions of an admissible
observation operator C, defined as follows:

CLz = lim
τ → 0

C
1

τ

τ∫

0

Ttzdt, CΛz = lim
λ→+∞

Cλ(λI − A)−1z .

Each of these operators has the “natural” domain, i.e., the space of those z ∈ X
for which the limit defining the operator converges. CΛ is an extension of CL. If
we replace in (4.3.1) C by CL, then the formula becomes valid (for almost every
t) for every initial state z0 ∈ X. More importantly, a similar simplification is
true for the formula giving the input-output map of a well-posed system (see [231],
Staffans and Weiss [210]), and the extensions of C are also useful to express the
generating operators of closed-loop systems obtained from well-posed systems via
output feedback (see [232]). The papers [229, 232] studied also the invariance of CL

and CΛ under certain perturbations of the semigroup.
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The following concept has been introduced in Rebarber and Weiss [188]: Let T
be a strongly continuous semigroup on the Hilbert space X, with generator A, and
let B ∈ L(U,X−1). The degree of unboundedness of B, denoted by α(B), is the
infimum of those α > 0 for which there exist positive constants δ, ω such that

‖(λI − A)−1B‖L(U,X) 6 δ

λ1−α
∀ λ ∈ (ω,∞) . (4.7.1)

It is clear from Proposition 4.4.6 that for any admissible B ∈ L(U,X−1) we have
α(B) 6 1

2
, and if B is bounded then α(B) = 0.

If C ∈ L(X1, Y ), then the degree of unboundedness of C, denoted by α(C), is
defined similarly as α(B) (with C(sI − A)−1 in place of (sI − A)−1B). We have
α(C) = α(C∗), where C∗ is regarded as a control operator for T∗. This concept is
sometimes useful to establish the well-posedness or the regularity of systems.



Chapter 5

Testing admissibility

This chapter is devoted to results which can help to determine if an observation
operator or a control operator is admissible for an operator semigroup. We use the
same notation as listed at the beginning of Chapter 4.

5.1 Gramians and Lyapunov inequalities

Suppose that C is an admissible observation operator for T. As usual, we denote
by Ψτ are the output maps corresponding to (A,C) (τ > 0). For each τ > 0, we
define the observability Gramian Qτ ∈ L(X) by

Qτ = Ψ∗
τΨτ .

If C is infinite-time admissible and Ψ is the extended output map of (A,C), then (as
explained after Definition 4.6.4) Ψ ∈ L(X,L2([0,∞); Y )). In this case, the operator
Q ∈ L(X) defined by

Q = Ψ∗Ψ

is called the infinite-time observability Gramian of (A,C). We have encountered the
finite-dimensional version of these concepts in Section 1.5.

We introduce some stability concepts for strongly continuous semigroups. T is
called uniformly bounded if supt>0 ‖Tt‖ < ∞. T is called weakly stable if we have

lim
t→∞

〈Ttz, q〉 = 0 ∀ z, q ∈ X.

T is called strongly stable if we have

lim
t→∞

‖Ttz‖ = 0 ∀ z ∈ X.

The above stability properties are related to Lyapunov inequalities and to infinite-
time admissibility, as the following theorem shows.

149
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Theorem 5.1.1. Let C ∈ L(X1, Y ). The following four statements are equivalent:

(a) C is infinite-time admissible for T.

(b) There exists an operator Q ∈ L(X) such that for any z ∈ D(A),

Qz = lim
τ →∞

τ∫

0

T∗t C∗CTtzdt. (5.1.1)

(c) There exist operators Π ∈ L(X), Π > 0, which satisfy the following equation
in Xd

−1:
A∗Πz + ΠAz = − C∗Cz , ∀ z ∈ D(A) . (5.1.2)

(Equivalently, 2Re 〈Πz, Az〉 = −‖Cz‖2 for all z ∈ D(A).)

(d) There exist operators Π ∈ L(X), Π > 0, which satisfy the inequality

2Re 〈Πz, Az〉 6 − ‖Cz‖2 , ∀ z ∈ D(A) . (5.1.3)

Moreover, if C is infinite-time admissible, then the following statements hold:

(1) Q from (5.1.1) is the infinite-time observability Gramian of (A,C).

(2) Q satisfies (5.1.2).

(3) Q is the smallest positive solution of (5.1.3) (hence, also of (5.1.2)).

(4) We have limt→∞ Q
1
2Ttz = 0 for every z ∈ X. (In particular, if Q > 0 then T

is strongly stable.)

(5) If T is strongly stable, then Q is the unique self-adjoint solution of (5.1.2).

(6) If T is uniformly bounded and Ker Q = {0}, then T is weakly stable.

The equation (5.1.2) is called a Lyapunov equation, and (5.1.3) is a Lyapunov
inequality. Note that (5.1.1) can also be written as Qz = limτ→∞ Qτz.

Proof. First we shall prove that (a) ⇔ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a) =⇒ (b): Assume that (a) holds. We define Q = Ψ∗Ψ, so that Q ∈ L(X). Then
Remark 4.6.7 implies that Q is given by (5.1.1), so that (b) holds.

(b) =⇒ (a): Assume that Q ∈ L(X) satisfies (5.1.1) (this formula determines Q
since D(A) is dense in X). For any z ∈ D(A) and τ > 0,

‖Ψτz‖2 = 〈Qτz, z〉 =

〈 τ∫

0

T∗t C∗CTtzdt, z

〉
6 〈Qz, z〉 ,

which shows that the operators Ψτ (with τ > 0) are uniformly bounded.
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(b) =⇒ (c): Let Q ∈ L(X) be defined by (5.1.1). We show that (5.1.2) is satisfied
for Π = Q. Let z, w ∈ D(A2) and for t > 0 define f(t) = 〈CTtz, CTtw〉. Then f is
continuously differentiable and

d

dt
f(t) = 〈CTtAz, CTtw〉+ 〈CTtz, CTtAw〉 .

Integrating both sides on [0, τ ] gives

f(τ)− f(0) =

〈 τ∫

0

T∗t C∗CTtAzdt, w

〉
+

〈 τ∫

0

T∗t C∗CTtzdt, Aw

〉
. (5.1.4)

Since Az ∈ D(A), by (b) each of the above integrals converges (in X) as τ →∞.
Hence limτ →∞ f(τ) also exists. Since by (b) the integral

∫ τ

0
f(t)dt has a finite limit

as τ →∞, we must have f(τ)→ 0 as τ →∞. We then let τ →∞ in (5.1.4) to find
that 〈QAz, w〉+ 〈Qz,Aw〉 = − 〈Cz, Cw〉 .
Since D(A2) is dense in X1, by continuity the above equality remains valid for all
z, w ∈ D(A). This implies that Q satisfies (5.1.2).

(c) =⇒ (d): Assume Π ∈ L(X), Π > 0 and Π satisfies (5.1.2). Take the duality
pairing of the terms of (5.1.2) with z, and by simple manipulations obtain

2Re 〈Πz, Az〉 = − ‖Cz‖2 ∀ z ∈ D(A) .

Obviously this implies (d).

(d) =⇒ (a): Assume Π ∈ L(X), Π > 0 and Π satisfies (5.1.3). For all z ∈ X and
t ∈ [0,∞), we define Et(z) by Et(z) = 〈ΠTtz, Ttz〉. Then Et(z) > 0 and for every
fixed z ∈ D(A), Et(z) is a continuously differentiable function of t. Using (5.1.3) we
derive that for every z ∈ D(A),

d

dt
Et(z) = 2Re 〈ΠTtz, ATtz〉 6 − ‖CTtz‖2 6 0 , (5.1.5)

so that Et(z) is nonincreasing. Since Et(z) is a continuous function of z, from the
density of D(A) in X we conclude that for any z ∈ X, Et(z) is nonincreasing. This
can be written in the following form: for 0 6 τ 6 t,

T∗t ΠTt 6 T∗τ ΠTτ .

We know that any nonincreasing positive operator-valued function has a strong
limit, see Lemma 12.3.2 in Appendix I. Thus, there exists Π∞ ∈ L(X), Π∞ > 0,
such that for all z ∈ X,

lim
t→∞

T∗t ΠTtz = Π∞z (in X) . (5.1.6)

It is clear that 0 6 Π∞ 6 Π. Integrating (5.1.5) on [0,∞), we get that for z ∈ X1

〈Πz, z〉 − 〈Π∞z, z〉 >
∞∫

0

‖CTtz‖2dt = ‖Ψz‖2 . (5.1.7)
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From here we see that Ψ is bounded, so that (a) holds.

In the sequel we assume that C is infinite-time admissible and we prove (1)–(6).
Statement (1) has been already proved when we proved that (a) =⇒ (b). Statement
(2) has been already proved when we proved (b) =⇒ (c).

We prove statement (3). We have seen earlier that Q satisfies (5.1.2). If Π ∈ L(X),
Π > 0 and (5.1.3) holds, then by (5.1.7) (using that ‖Ψz‖2 = 〈Qz, z〉) we have that
for all z ∈ D(A),

〈Qz, z〉 6 〈Πz, z〉 − 〈Π∞z, z〉 . (5.1.8)

By continuity, this remains true for all z ∈ X, so that Q 6 Π, as claimed in (3).

To prove (4), we take Π = Q in (5.1.6) and (5.1.8) and obtain Π∞ = 0. By (5.1.6)
this implies limt→∞〈QTtz,Ttz〉 = 0 for any z ∈ X, which implies (4).

To prove (5), assume that T is strongly stable and Π = Π∗ is a solution of (5.1.2).
Define again Et(z) = 〈ΠTtz, Ttz〉. Then by the argument in the proof of (d) =⇒
(a), the equality version of (5.1.5) holds:

d

dt
Et(z) = 2Re 〈ΠTtz, ATtz〉 = − ‖CTtz‖2 6 0 .

From the strong stability of T we have limt→∞ Et(z) = 0. We obtain a version of
(5.1.7) by integration:

〈Πz, z〉 =

∞∫

0

‖CTtz‖2dt = ‖Ψz‖2
L2([0,∞);Y ) .

This shows that 〈Πz, z〉 = 〈Qz, z〉 for all z ∈ X, whence Π = Q.

To prove (6), denote V = Ran Q
1
2 , then V is dense in X (because clos V is

the orthogonal complement of Ker Q
1
2 = Ker Q = {0}, see (1.1.7)). It follows from

statement (4) of the theorem that for any z ∈ X and any v ∈ V , limt→∞〈Ttz, v〉 = 0.
Let z, q ∈ X be fixed. We claim that for any ε > 0 we can find T > 0 such that
〈Ttz, q〉 6 ε for each t > T . Indeed, let v ∈ V be such that 〈Ttz, q − v〉 6 ε

2
for

all t > 0 (this is possible by the uniform boundedness of T). Now if T is such that
〈Ttz, v〉 6 ε

2
for all t > T , then T is the desired number. The existence of such a T

for any ε > 0 means that 〈Ttz, q〉→ 0.

Example 5.1.2. Let (A,C) be as in Example 4.4.4, so that T is the left shift
semigroup on X = L2[0,∞), Y = C and Cz = z(0) for each z ∈ D(A) = H1(0,∞).
Then it is clear that C is infinite-time admissible and Q = I. We have that T is
strongly stable, as claimed in statement (4) of Theorem 5.1.1. The operator Q is
the unique solution of (5.1.2), according to statement (5) of the theorem.

If instead we look at the adjoint semigroup T∗ with C = 0 (which happens to be
the restriction of the earlier C to D(A∗)) then obviously Q = 0, but any multiple of
the identity I satisfies the Lyapunov equation (5.1.2). T∗ is only weakly stable.
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As an application of Theorem 5.1.1 we give a simple sufficient condition for ad-
missibility for semigroups generated by negative operators.

Proposition 5.1.3. Let A : D(A)→X be self-adjoint and A 6 0. Define X 1
2

as

the completion of D(A) with respect to the norm

‖z‖2
1
2

= 〈(I − A)z, z〉 ∀ z ∈ D(A) .

If C ∈ L(X 1
2
, Y ), then C is an admissible observation operator for the semigroup

T (of positive operators) generated by A on X.

Proof. The fact that A generates a contraction semigroup of positive operators
on X has been shown in Proposition 3.8.5. The space X 1

2
is similar to the space H 1

2

discussed in detail in Section 3.4, if we take H = X and A0 = I−A. In particular we

know that H 1
2

= D(A
1
2
0 ) and A

1
2
0 is an isomorphism from X 1

2
to X. Our boundedness

assumption on C means that there exists K > 0 such that

‖Cz‖2 6 K2〈(I − A)z, z〉 ∀ z ∈ D(A) .

If we denote Π = K2

2
I, then this can be written as

2Re 〈Πz, (A− I)z〉 6 − ‖Cz‖2 ∀ z ∈ D(A) ,

which is like (5.1.3), but with A − I in place of A. Theorem 5.1.1 implies that C
is an infinite-time admissible observation operator for the semigroup generated by
A− I. Hence, C is an admissible observation operator for T.

We will show at the end of Section 5.3 that for A 6 0, the condition in Proposition
5.1.3 is not necessary for an observation operator to be admissible.

Example 5.1.4. Let Ω ⊂ Rn be an open bounded set and put H = L2(Ω). Let A
be the Dirichlet Laplacian on Ω, as defined in Section 3.6, so that −A is a strictly
positive densely defined operator on H. Its domain is D(A) = {φ ∈ H1

0(Ω) | ∆φ ∈
L2(Ω)}. According to Proposition 3.6.1 we have H 1

2
= D((−A)

1
2 ) = H1

0(Ω), with

the norm ‖z‖ 1
2

= ‖∇z‖L2 . We know from Remark 3.6.11 that A generates a strongly
continuous and diagonalizable semigroup T on H, called the heat semigroup.

Let Y = L2(Ω) (the output space), b ∈ L∞(Ω;Cn) and c ∈ L∞(Ω). We define
C ∈ L(H 1

2
, Y ) as follows:

Cz = b · ∇z + cz .

According to Proposition 5.1.3, C is an admissible observation operator T.

In terms of PDEs this means that for every τ > 0 there exists Kτ > 0 with the
following property: if z is the solution of the heat equation

∂z

∂t
(x, t) = ∆z(x, t) , x ∈ Ω, t > 0

z(x, t) = 0 , x ∈ ∂Ω, t > 0

z(x, 0) = z0(x) , x ∈ Ω ,
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where z0 ∈ H1
0(Ω), ∆z0 ∈ L2(Ω), then

τ∫

0

∫

Ω

|b · ∇z + cz|2dxdt 6 K2
τ ‖z0‖2

L2 .

We shall see an application of this example in Section 10.8.

5.2 Admissible control operators for left-invertible
semigroups

Consider the initial value problem

ż(t) = Az(t) + Bu(t) , z(0) = z0 ,

with B ∈ L(U,X−1), z0 ∈ X−1 and u ∈ L2
loc([0,∞); U) (which is contained in

L1
loc([0,∞); U)). Let z(t) = Ttz0 + Φtu be the mild solution of this problem (see

Definition 4.1.5), which is an X−1-valued continuous function of time. We know
from Remark 4.1.9 that the Laplace transform of z is given, at the points s ∈ C
where û(s) exists and Re s > ω0(T), by

ẑ(s) = (sI − A)−1z0 + (sI − A)−1Bû(s) . (5.2.1)

Thus, taking z0 = 0 we see that û gets multiplied with (sI − A)−1B, which is an
analytic L(U,X)-valued function on the half-plane where Re s > ω0(T). The usual
terminology is to call (sI − A)−1B the transfer function from u to z.

An important topic in the theory of admissibility is to give necessary and/or
sufficient conditions for the admissibility of B in terms of the transfer function men-
tioned above. We have already seen a necessary condition for admissibility in terms
of the function (sI−A)−1B is Propositions 4.4.6. Now we turn our attention to left-
invertible operator semigroups, to give a simple sufficient condition for admissibility.
(Left-invertible semigroups have been introduced in Section 2.7.)

Lemma 5.2.1. Suppose that T is left-invertible.

If z ∈ X−1 and t > 0 are such that Ttz ∈ X, then z ∈ X.

Proof. For all n ∈ N we define In ∈ L(X−1) by

Inz = n

1
n∫

0

Ttzdt ∀ z ∈ X−1 .

These operators are approximations of the identity: We know from Proposition
2.1.6 applied to the extended semigroup T acting on X−1 that for every z ∈ X−1
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we have Inz ∈ X and lim Inz = z (in X−1). Similarly, we know that if z ∈ X then
Inz ∈ D(A) and lim Inz = z (in X).

Now assume that z ∈ X−1 and t > 0 are such that Ttz ∈ X. We claim that (Inz)
is a Cauchy sequence in X. Indeed, since Tt is left-invertible, there exists m > 0
such that ‖Ttz‖ > m‖z‖ for all z ∈ X, see the beginning of Section 2.7. It follows
that

‖Inz − Imz‖ 6 1

m
‖Tt(Inz − Imz)‖

=
1

m
‖InTtz − ImTtz‖ .

Since (InTtz) is convergent in X (to Ttz), we see that indeed (Inz) is a Cauchy
sequence in X. Since X is complete, this sequence has a limit z0 ∈ X (and hence
lim Inz = z0 also in X−1). But the same sequence has the limit z in X−1. Since the
limit in X−1 must be unique, it follows that z = z0 ∈ X.

Theorem 5.2.2. Suppose that T is left-invertible and let B ∈ L(U,X−1). If for
some α > ω0(T) we have

sup
Re s=α

‖(sI − A)−1B‖L(U,X) < ∞ ,

then B is an admissible control operator for T.

Proof. Under the assumptions of the theorem, first we prove that for some M > 0,

‖(sI − A)−1B‖L(U,X) 6 M ∀ s ∈ Cα . (5.2.2)

For this, the argument is similar to the one in the proof of Proposition 4.3.8. Take
s = λ+ iω ∈ Cα, so that λ > α. Denote s1 = α+ iω, then according to the resolvent
identity (see Remark 2.2.5) we have

(sI − A)−1B =
[
I + (α− λ)(sI − A)−1

]
(s1I − A)−1B.

According to our assumption, there exists k > 0 such that for all s1 as above,
‖(s1I − A)−1B‖ 6 k (k is independent of ω). Thus,

‖(sI − A)−1B‖ 6 k
[
1 + (λ− α) · ‖(sI − A)−1‖] ∀ s ∈ Cα .

According to Corollary 2.3.3 there exists Mα > 1 (independent of s = λ + iω) such
that

‖(sI − A)−1‖ 6 Mα

λ− α
.

Substituting this into the previous estimate, we obtain that indeed (5.2.2) holds.

Introduce the shifted semigroup T̃ by T̃t = e−αtTt (this semigroup is exponentially
stable and its generator is A−αI). For all t > 0 define the input maps corresponding
to T̃ and B by
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Φ̃tu =

t∫

0

T̃t−σBu(σ)dσ ∀ u ∈ L2([0,∞); U) .

If we define zu(t) = Φ̃tu then, as explained at the beginning of this section, zu is an
X−1-valued continuous function of t. According to (5.2.1),

ẑu = ((s + α)I − A)−1Bû(s) ∀ s ∈ C0 .

By the Paley-Wiener theorem (the version in Section 12.5), we have û ∈ H2(C0; U).
According to (5.2.2) we obtain that ẑu ∈ H2(C0; X) (its norm is 6 M‖û‖H2). Using
again the Paley-Wiener theorem we obtain that zu ∈ L2([0,∞); X). In particular,
this means that zu(t) ∈ X for almost every t > 0.

Take u ∈ L2([0, 1]; U) and extend u to all of L2([0,∞); U) by putting u(t) = 0 for
t > 1. According to the composition property (4.2.2),

zu(t) = T̃t−1Φ̃1u ∀ t > 1 .

According to our earlier conclusion that zu(t) ∈ X for almost every t > 0, we can
find t > 1 such that zu(t) ∈ X. Since T is left-invertible, Lemma 5.2.1 implies that
Φ̃1u ∈ X. This means that B is admissible for T̃, and hence also for T.

Corollary 5.2.3. Suppose that T is left-invertible and let B ∈ L(U,X−1). If for
every v ∈ U we have that Bv ∈ L(C, X−1) is an admissible control operator for T,
then B is an admissible control operator for T.

Proof. Choose α > ω0(T). It follows from Proposition 4.4.6 that (sI − A)−1Bv
(regarded as an X-valued function of s) is bounded on the vertical line where Re s =
α. It follows from the uniform boundedness theorem that (sI −A)−1B (regarded as
an L(U,X)-valued function of s) is bounded on the same vertical line. According
to Theorem 5.2.2, B is an admissible control operator for T.

By duality (i.e., using Theorem 4.4.3) we obtain from Theorem 5.2.2 the following:

Corollary 5.2.4. Suppose that T is right-invertible and let C ∈ L(X1, Y ). If for
some α > ω0(T) we have

sup
Re s=α

‖C(sI − A)−1‖L(X,Y ) < ∞ ,

then C is an admissible observation operator for T.

This corollary can be proved also directly (i.e., not from Theorem 5.2.2) and we
give an alternative proof, because it is elegant:

Proof. Assume without loss of generality that T is exponentially stable and α = 0.
First we show by an argument similar to the first half of the proof of Theorem 5.2.2
that in fact we have

sup
s∈C0

‖C(sI − A)−1‖L(X,Y ) = µ < ∞ .
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The exponential stability of T implies (by the Paley-Wiener theorem from Section
12.5) that for every z0 ∈ X, the function g(s) = ((s + 1)I −A)−1z0 is in H2(C0; X)
and

‖g‖H2(C0;X) 6 κ‖z0‖ .
Combining the last two estimates, we see that the function f defined on C0 by

f(s) = C(sI − A)−1((s + 1)I − A)−1z0

is in H2(C0; Y ) and its norm is 6 µκ‖z0‖. By the resolvent identity we have
f(s) = C(sI − A)−1z0 − C((s + 1)I − A)−1z0. If z0 ∈ D(A), then it follows that
f = ŷ with

y(t) = (1− e−t)CTtz0 .

Using again the Paley-Wiener theorem, we obtain that for z0 ∈ D(A),

∞∫

0

|(1− e−t)|2‖CTtz0‖2dt 6 µ2κ2‖z0‖2 .

Since 1− e−t > 1
2

for t > 1, we obtain that

1

4

∞∫

1

‖CTtz0‖2dt 6 µ2κ2‖z0‖2 ∀ z0 ∈ D(A) .

By continuous extension to X, we obtain that

‖ΨT1z0‖L2 6 2µκ‖z0‖ ∀ z0 ∈ X.

Since Ran T1 = X, the admissibility of C follows.

The dual counterpart of Corollary 5.2.3 is the following:

Corollary 5.2.5. Suppose that T is right-invertible and let C ∈ L(X1, Y ). If for
every v ∈ Y the functional Cv ∈ L(X1,C) defined by Cvz = 〈Cz, v〉 is an admissible
observation operator for T, then C is an admissible observation operator for T.

5.3 Admissibility for diagonal semigroups

In this section we consider only diagonal semigroups, as introduced in Example
2.6.6. Moreover, we restrict our attention to semigroups with eigenvalues in the
open left half-plane, as this does not lead to a loss of generality: if a semigroup
generator A is diagonal, we can always replace A by a shifted version A− γI, with
γ > 0 large enough, and the admissible observation (or control) operators for the
shifted semigroup remain the same. Of course, infinite-time admissibility changes
after such a shift, but infinite-time admissibility is at any rate only meaningful for
diagonal semigroups that have their eigenvalues in the open left half-plane.
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Diagonal semigroups may seem a very narrow class of semigroups, but they are
not: many examples of semigroups that we deal with are diagonalizable, which
means that they are isomorphic to diagonal semigroups, as explained in Example
2.6.6. For example, we have seen that self-adjoint or skew-adjoint generators with
compact resolvents are diagonalizable, see Proposition 3.2.12. Notationally, it is
more convenient to deal with diagonal semigroups than with diagonalizable ones.

We introduce the notation for this section. Our state space is X = l2, and (λk) is
a sequence in C such that

Re λk < 0 ∀ k ∈ N .

The semigroup generator A : D(A)→X is defined by

(Az)k = λkzk , D(A) =

{
z ∈ l2 |

∑

k∈N
(1 + |λk|2)|zk|2 < ∞

}
. (5.3.1)

As already explained in Example 2.6.6, σ(A) is the closure in C of the sequence (λk)
(this may contain points on the imaginary axis). We have

((sI − A)−1z)k =
zk

s− λk

∀ s ∈ ρ(A) (5.3.2)

and A is the generator of the diagonal contraction semigroup

(Ttz)k = eλktzk ∀ k ∈ N . (5.3.3)

We remark that T is strongly stable, as defined in Section 5.1 (this is easy to verify).

The space X1 is, as usual, D(A) with the graph norm. This norm is equivalent to

‖z‖2
1 =

∑

k∈N
|zk|2(1 + |λk|2) .

It is clear that the adjoint generator A∗ is represented in the same way, with the
sequence (λk) in place of (λk). Hence D(A∗) = D(A) and the space Xd

1 (the analog
of X1 for the adjoint semigroup) is the same as X1.

As explained in Example 2.10.9, X−1 is the space of all the sequences z = (zk) for
which ∑

k∈N

|zk|2
1 + |λk|2 < ∞

and the sqare-root of the above series gives an equivalent norm on X−1. The space
Xd
−1 (the analog of X−1 for A∗) is the same as X−1.

Since X−1 is (by definition) the dual of Xd
1 = X1 with respect to the pivot space

X, any sequence c = (ck) ∈ X−1 can be regarded as an operator C ∈ L(X1,C),
defined by

Cz = 〈z, c〉 =
∑

k∈N
ckzk . (5.3.4)
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Conversely, every C ∈ L(X1,C) can be regarded as a sequence in X−1.

For h > 0 and ω ∈ R we denote

R(h, ω) = { s ∈ C | 0 < Re s 6 h, |Im z − ω| 6 h } .

Definition 5.3.1. A sequence (ck) satisfies the Carleson measure criterion for the
sequence (λk) if for every h > 0 and ω ∈ R,

∑

−λk∈R(h,ω)

|ck|2 6 Mh, (5.3.5)

where M > 0 is independent of h and ω.

The reason for the name of this criterion is that if (ck) satisfies it, then the discrete
measure on C0 with weights |ck|2 in the points −λk is a Carleson measure, as defined
in Section 12.4. (It does not matter if we write λk in place of λk in (5.3.5), it would
look simpler, but for the proofs it is more natural to write it as above.)

Using the above concept, we give a characterization of admissible observation
operators for T with scalar output (i.e., the output space is Y = C).

Theorem 5.3.2. Suppose that c is a sequence that satisfies the Carleson measure
criterion for (λk). Then c ∈ X−1 and, when regarded as an operator C ∈ L(X1,C),
it is an infinite-time admissible observation operator for T.

Conversely, if c ∈ X−1 determines an infinite-time admissible observation opera-
tor for T, then c satisfies the Carleson measure criterion for (λk).

Proof. We have, denoting

∆n = R(2n+1, 0) \ R(2n, 0) ,

that the union of the sets ∆n for n ∈ Z is C0. Hence, for any complex sequence c,

∞∑

k=1

|ck|2
1 + |λk|2 =

∑

n∈Z

∑

−λk∈∆n

|ck|2
1 + |λk|2

6
∑

n∈Z

1

1 + 22n

∑

−λk∈R(2n+1,0)

|ck|2 .

We get that if c satisfies (5.3.5), then

∞∑

k=1

|ck|2
1 + |λk|2 6

∑

n∈Z

1

1 + 22n
·M · 2n+1 < ∞ ,

so that c ∈ X−1, as claimed.

We show that if the sequence c satisfies the Carleson measure criterion, then
the corresponding operator C ∈ L(X1,C) is infinite-time admissible. The operator
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C∗ ∈ L(C, X−1) = X−1 is represented by the sequence (ck). According to Remark
4.6.5 is it enough to prove that C∗ is an infinite-time admissible control operator
for the diagonal semigroup T∗ corresponding to the conjugate eigenvalues (λk). We
denote by Φd

T be the input map corresponding to the semigroup T∗ with the control
operator C∗ and the time T (see Section 4.2). For every u ∈ L2[0,∞), k ∈ N and
T > 0 we can express the k-th component of Φd

T RT u by

(
Φd

T RT u
)

k
=




T∫

0

T∗t C∗u(t)dt




k

=

T∫

0

eλktcku(t)dt = ck(P̂T u)(−λk) ,

where RT is the time-reflection operator from Section 1.4. It follows that

‖Φd
T RT u‖2 =

∑

k∈N
|ck|2 · |(P̂T u)(−λk)|2 . (5.3.6)

Define a positive measure µ on the Borel subsets E of C0 by

µ(E) =
∑

−λk∈E

|ck|2 .

It is easy to see that this is a Carleson measure and the right-hand side of (5.3.6) can
be regarded as an integral with respect to µ. Therefore, by the Carleson measure
theorem (see Section 12.4 in Appendix II) there exists mc > 0 (independent of u
and T ) such that

‖Φd
T RT u‖2 =

∫

C0

|P̂T u|2dµ 6 m2
c‖P̂T u‖2

H2 .

By the Paley-Wiener theorem (see again Section 12.4) we have

‖P̂T u‖H2 = ‖PT u‖L2 6 ‖u‖L2 .

Thus, we obtain that

‖Φd
T RT u‖ 6 mc‖u‖L2 .

Since RT is a unitary operator on L2[0, T ], it follows that ‖Φd
T‖ 6 mc, so that indeed

C∗ (and hence also C) is infinite-time admissible.

Now assume that the sequence c ∈ X−1 determines an infinite-time admissible
observation operator C ∈ L(X1,C) via (5.3.4). Hence its adjoint C∗ (represented
by the sequence c = (ck)) is an infinite-time admissible control operator for T∗. As
explained at the beginning of Section 4.6, for any u ∈ L2[0,∞) with ‖u‖ = 1 we
have ∥∥∥∥∥∥

lim
T →∞

T∫

0

T∗t C∗u(t)dt

∥∥∥∥∥∥
l2

6 K,
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with K > 0 independent of u. Using the fact that the extension of T∗ to X−1 is
still given by (5.3.3) (with λk in place of λk), we can rewrite the last estimate:

∞∑

k=1

|ck|2 ·
∣∣∣∣∣∣

∞∫

0

eλktu(t)dt

∣∣∣∣∣∣

2

6 K2 . (5.3.7)

(These integrals exist, there is no longer a need to write them as limits.)

Let h > 0 and ω ∈ R. We have to prove that (5.3.5) holds with M independent
of h and ω. For h > 0 we define

u(t) =

{√
h · eiωt for t ∈ [0, 1

h
] ,

0 for t > 1
h
.

We have ‖u‖ = 1 and hence (5.3.7) holds. This means that

K2 > h

∞∑

k=1

|ck|2 ·

∣∣∣∣∣∣∣

1
h∫

0

e(λk+iω)tdt

∣∣∣∣∣∣∣

2

> 1

h

∑

−λk∈R(h,ω)

|ck|2 ·
∣∣∣∣∣
e

λk+iω

h − 1
λk+iω

h

∣∣∣∣∣

2

.

Let us denote
m = min

−z∈R(1,0)

∣∣∣∣
ez − 1

z

∣∣∣∣ (5.3.8)

(for z = 0, we consider the extension by continuity). Since m > 0, the previous
inequality implies ∑

−λk∈R(h,ω)

|ck|2 6 K2

m2
· h,

which is equivalent to (5.3.5).

Remark 5.3.3. Let (λk) be a sequence in C with Re λk < 0. On the vector space
of all the sequences (ck) which satisfy the Carleson measure criterion for (λk) we
define a norm by

|||c|||2 = sup
h>0,ω∈R

1

h

∑

−λk∈R(h,ω)

|ck|2 .

If c is such a sequence, we denote by Ψc be the extended output map corre-
sponding to the diagonal semigroup T from (5.3.3) with the observation operator
C ∈ L(X1,C) corresponding to the sequence c. Then we have

0.6|||c||| < ‖Ψc‖ < 20|||c||| .
The proof of this fact is contained between the lines of the last proof. Indeed, the left
inequality follows from the last part of the proof, after we verify that the constant
m from (5.3.8) satisfies m > 0.6. The right inequality follows from the estimate
‖Φd

T‖ 6 mc that has been derived towards the middle of the proof of Theorem 5.3.2.
Indeed, if we combine this with ‖Ψc‖ = limT →∞ ‖Ψc

T‖ = limT →∞ ‖Φd
T‖ and with

the estimate mc < 20
√

M given as part of the Carleson measure theorem, we obtain
‖Ψc‖ < 20

√
M . Here, M is the constant from (5.3.5). If M is chosen optimally (i.e.,

the smallest possible value for our c), then M = |||c|||2.
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Remark 5.3.4. Let T be a diagonal semigroup generated by A, and let (λk) be the
sequence of the eigenvalues of A. In this remark, we make no stability assumption
on T. Often we want to check the admissibility of an observation operator C for
T, not its infinite-time admissibility. To accomplish this, we may replace T by
the semigroup T̃ generated by A − αI, where α > 0 is large enough to make T̃
exponentially stable. Clearly C is admissible for T iff it is admissible for T̃. As
already mentioned in Section 4.6, C is admissible for T̃ iff it is infinite-time admis-
sible for T̃. Thus, according to the last theorem, C is admissible iff the sequence
(ck) satisfies the Carleson measure criterion for the sequence (λk − α).

The following proposition shows that for diagonal groups (i.e., diagonal semi-
groups with Re λk bounded from below, see Remark 2.7.9), admissibility can be
tested by a simpler condition than the Carleson measure criterion.

Proposition 5.3.5. Let T be a diagonal group on X = l2, with generator A, as in
(5.3.1) and (5.3.3), and (as usual in this section) we assume that Re λk < 0 for all
k ∈ N. Let C ∈ L(X1,C) be represented by the sequence (ck), as in (5.3.4).

Then C is an admissible observation operator for T if and only if there exists
m > 0 such that ∑

Im λk∈[n,n+1)

|ck|2 6 m ∀ n ∈ Z . (5.3.9)

Moreover, we have the following numerical estimates: If (5.3.9) holds then

‖Ψ1‖ < 20e
√

3m, (5.3.10)

where Ψ1 is the output map of (A,C) for unit time.

Conversely, if C is admissible for T, then (5.3.9) holds for

m =
25a

9(1− e−2)
‖Ψ1‖2 ,

where a > 1 is such that 1− Re λk 6 a for all k ∈ N.

Proof. We shall use Remark 5.3.4 (which is based on Theorem 5.3.2). As in
Remark 5.3.4 we replace A with A − I, which generates the exponentially stable
semigroup T̃. Admissibility for T is equivalent to admissibility for T̃.

First we prove that (5.3.9) is sufficient for admissibility. It is easy to see that the
condition (5.3.9) implies that for all h > 0 and ω ∈ R we have the estimate

∑

1−λk∈R(h,ω)

|ck|2 6 (h + 2)m (5.3.11)

(for h ∈ (0, 1) the inequality is trivial). Since h + 2 6 3h, we obtain from (5.3.11)
that the Carleson measure criterion (5.3.5) holds with M = 3m, and with λk − 1 in
place of λk. According to Remark 5.3.4, C is admissible.
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Conversely, suppose that C is admissible, so that (ck) satisfies (5.3.5) with λk − 1
in place of λk. Let a > 1 be such that 1 − Re λk ∈ [1, a] for all k ∈ N. Since, for
every n ∈ Z, the set {s ∈ C | Re s ∈ [1, a], Im s ∈ [n, n+1)} is contained in R(a, n),
it follows that the condition (5.3.9) holds with m = Ma.

To prove the “moreover” part of the proposition, assume that (5.3.9) holds, so
that (as proved earlier) (5.3.5) holds with M = 3m, and with λk − 1 in place of λk.
We define the Carleson norm |||c||| as in Remark 5.3.3, with λk − 1 in place of λk,
then clearly |||c||| 6 √

3m. We denote by Ψc the extended output map corresponding
to T̃ and C. According to Remark 5.3.3 we have ‖Ψc‖ < 20|||c||| 6 20

√
3m. From

here it follows that for every z ∈ D(A) we have

‖Ψ1z‖2 =

1∫

0

e2t‖e−tCTtz‖2dt 6 e2

1∫

0

‖CT̃tz‖2 6 e2‖Ψcz‖2 6 e22023m‖z‖2 .

Clearly this implies the estimate (5.3.10).

To prove the converse numerical estimate, assume that C is admissible, then it is
admissible also for T̃. According to Remark 5.3.3 we have

0.6|||c||| < ‖Ψc‖ . (5.3.12)

Let us denote by Ψc
τ the ouput maps coresponding to T̃ and C, so that ‖Ψc‖ =

limτ →∞ ‖Ψc
τ‖. Since ‖T̃t‖ 6 e−t, it follows from (4.3.5) that

‖Ψc
n‖ 6 ‖Ψc

1‖
(

1 + e−2 . . . + e−2(n−1)

) 1
2

6 ‖Ψc
1‖

1√
1− e−2

.

Taking the limit as n→∞ and then combining the result with (5.3.12), we obtain

3

5
|||c||| <

1√
1− e−2

‖Ψc
1‖ .

Since, by elementary considerations, ‖Ψc
1‖ 6 ‖Ψ1‖, we obtain

|||c|||2 <
25

9
· 1

1− e−2
‖Ψ1‖2 .

Let again a > 1 be such that 1 − Re λk ∈ [1, a] for all k ∈ N. Since, for every
n ∈ Z, the set {s ∈ C | Re s ∈ [1, a], Im s ∈ [n, n + 1)} (which contains all the
eigenvalues of A− I with Im λk ∈ [n, n + 1)) is contained in R(a, n), it follows that

1

a

∑

Im λk∈[n,n+1)

|ck|2 <
25

9(1− e−2)
‖Ψ1‖2 .

This shows that (5.3.9) holds with m as given at the end of the proposition.
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Remark 5.3.6. The first part of the above proposition remains valid also without
the assumption that Re λk < 0 for all k ∈ N (which is a standing assumption in this
section). Indeed, both the condition (5.3.9) and the admissibility of C are invariant
properties with respect to a shift of A (i.e., replacing A with A−αI for some α ∈ R).
In the “moreover” part of the proposition, the condition Re λk < 0 can be relaxed
to Re λk 6 0 (with the same proof). We mention that (5.3.9) is sufficient for the
admissibility of C also for non-invertible diagonal semigroups.

Proposition 5.3.7. Let T be a diagonal semigroup on X = l2, as in (5.3.3), let Y
be a Hilbert space and let (ck) be a sequence in Y such that the sequence (‖ck‖) rep-
resents an (infinite-time) admissible observation operator for T. Then the operator

Cz =
∑

k∈N
ckzk , (5.3.13)

first defined for sequences z = (zk) in C with finitely many non-zero terms, is in
L(X1, Y ) and it is an (infinite-time) admissible observation operator for T.

Proof. Suppose that (‖ck‖) represents an admissible observation operator C̃ for
T, so that in particular C̃ ∈ L(X1,C). As explained around (5.3.4), the fact that
C̃ ∈ L(X1,C) implies that the sequence (‖ck‖) is in X−1, which means that

L =
∑

k∈N

‖ck‖2

1 + |λk|2 < ∞ .

Let z = (zk) be a sequence with finitely many non-zero terms. We have

‖Cz‖Y 6
∑

k∈N
‖ck‖ · |zk| 6

(∑

k∈N

‖ck‖2

1 + |λk|2
) (∑

k∈N
(1 + |λk|2)|zk|2

)
6 L‖z‖2

1 .

Hence, C can be extended such that C ∈ L(X1, Y ).

We have to show that C ∈ L(X1, Y ) is an admissible observation operator for T.
According to Remark 4.6.5 is it enough to prove that C∗ is an admissible control
operator for T∗. We denote by Φd

T be the input map corresponding to T∗ with the
control operator C∗ and the time T . We know that if u ∈ L2([0,∞); Y ) is a step
function on [0, T ], then Φd

T u ∈ X = l2 (see Remark 4.2.3). For every T > 0, every
u ∈ L2([0,∞); Y ) and every k ∈ N we can express the k-th component of Φd

T u by

(
Φd

T u
)

k
=




T∫

0

T∗t C∗u(T − t)dt




k

=

T∫

0

eλkt〈u(T − t), ck〉dt.

It follows that if u ∈ L2([0,∞); Y ) is a step function on [0, T ], then

‖Φd
T u‖2 =

∑

k∈N

∣∣∣∣∣∣

〈 T∫

0

eλktu(T − t)dt, ck

〉∣∣∣∣∣∣

2

6
∑

k∈N

∥∥∥∥∥∥

T∫

0

eλktu(T − t)dt

∥∥∥∥∥∥

2

‖ck‖2 .
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Let (ej)j∈J be an orthonormal basis in Y and define uj ∈ L2[0,∞) by uj(t) = 〈u, ej〉.
Clearly ∥∥∥∥∥∥

T∫

0

eλktu(T − t)dt

∥∥∥∥∥∥

2

=
∑
j∈J

∣∣∣∣∣∣

T∫

0

eλktuj(T − t)dt

∣∣∣∣∣∣

2

.

Interchanging the order of summation, we obtain

‖Φd
T u‖2 6

∑
j∈J




∑

k∈N

∣∣∣∣∣∣

T∫

0

eλktuj(T − t)dt

∣∣∣∣∣∣

2

‖ck‖2


 .

Let Φ̃d
T be the input map corresponding to T∗ with the control operator C̃∗ and the

time T (C̃ has been defined at the beginning of this proof). Then the last formula
can be rewritten as

‖Φd
T u‖2 6

∑
j∈J

‖Φ̃d
T uj‖2 .

Since C̃∗ is an admissible control operator for T∗, we have Φ̃d
T ∈ L(L2[0,∞), l2).

Hence,

‖Φd
T u‖2 6

∑
j∈J

‖Φ̃d
T‖ · ‖uj‖2

L2 = ‖Φ̃d
T‖ · ‖u‖2

L2 .

Since the functions u as above (which are step functions on [0, T ]) are dense in
L2([0,∞); U), it follows that C∗ is admissible, hence C is admissible.

Note that in the above argument we have also proved that ‖Φd
T‖ 6 ‖Φ̃d

T‖. If C̃
is infinite-time admissible, then so is C̃∗ (see Remark 4.6.5), so that the operators
Φ̃d

T (with T > 0) are uniformly bounded. It follows that also the operators Φd
T are

uniformly bounded, so that C∗ is infinite-time admissible, hence so is C.

Remark 5.3.8. If we combine Proposition 5.3.5 with Proposition 5.3.7, we obtain
the following: Let T be a diagonal and invertible semigroup on X = l2, let (ck) be
a sequence in a Hilbert space Y and assume that there exists m > 0 such that

∑

Im λk∈[n,n+1)

‖ck‖2 6 m ∀ n ∈ Z .

Then C defined by (5.3.13) (first for sequences with finitely many non-zero terms)
is in L(X1, Y ) and it is an admissible observation operator for T.

Theorem 5.3.9. Let (λk), T, A, X1 be as at the beginning of this section and let
C ∈ L(X1,C). Then C is an infinite-time admissible observation operator for T if
and only if there is a K > 0 such that

‖C(sI − A)−1‖ 6 K√
2Re s

∀ s ∈ C0 . (5.3.14)
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Proof. The “only if” part has been proved in Proposition 4.6.6. We remark that
K is now the same constant as in the infinite-time admissibility estimate (4.6.6).

To prove the “if” part, recall that C is represented by a sequence c ∈ X−1. We
show that c satisfies the Carleson measure criterion for (λk). According to (5.3.2)
the estimate (5.3.14) implies that

∑

k∈N

∣∣∣∣
ck

s− λk

∣∣∣∣
2

6 K2

2Re s
∀ s ∈ C0 .

Take h > 0 and ω ∈ R. Restricting above the summation only to those k for which
−λk ∈ R(h, ω), and then taking s = h− iω, we get

∑

−λk∈R(h,ω)

h

|h− iω − λk|2 |ck|2 6 K2

2
.

Since

min
−λk∈R(h,ω)

h

|h− iω − λk|2 =
1

5h
,

the previous inequality implies that (5.3.5) holds with M = 5K2

2
. According to

Theorem 5.3.2 C is an infinite-time admissible observation operator for T.

We mention that in the last theorem we could replace the condition Re λk < 0 with
the weaker sup Re λk < ∞, using the same proof. However, this is an insignificant
generalization, the components ck corresponding to λk > 0 would have to be zero,
so that these components would play no role.

The following corollary is a partial converse of Theorem 4.3.7.

Corollary 5.3.10. Let T be a diagonal semigroup on X = l2 with generator A and
let C ∈ L(X1,C). If there exists α ∈ R and Kα > 0 such that Re λk < α and

‖C(sI − A)−1‖ 6 Kα√
Re s− α

∀ s ∈ Cα ,

then C is an admissible observation operator for T.

Proof. Introduce the semigroup T̃ generated by A−αI. Since A−αI with C satisfy
the estimate (5.3.14), according to Theorem 5.3.9, C is infinite-time admissible
(hence, admissible) for T̃. It follows that C is admissible also for T.

Example 5.3.11. As promised in Section 5.1, we show that for A 6 0 the sufficient
condition C ∈ L(X 1

2
, Y ) is not necessary for C to be admissible.

Take X = l2 and let T be the diagonal semigroup corresponding to the sequence
λk = −2k as in (5.3.3). Let C ∈ L(X1,C) = X−1 be defined by the sequence

ck = 2
k
2 . It is easy to verify that (ck) satisfies the Carleson measure criterion for

(λk). According to Theorem 5.3.2 C is infinite-time admissible for T. If C were

bounded on X 1
2

then C(−A)−
1
2 would be bounded on X, so that it would be a

sequence in l2. However, C(−A)−
1
2 = (1, 1, 1, . . .), so that C is not bounded on X 1

2
.
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5.4 Some unbounded perturbations of generators

In Section 2.11 we have seen that by adding a bounded perturbation to a semigroup
generator we get another semigroup generator. This property is actually true also
for many classes of unbounded perturbations, of which we present here a simple one:
perturbations that are admissible observation operators, multiplied with a bounded
operator. Moreover, we show that the admissible observation operators for the
perturbed semigroup are the same as for the original semigroup.

We continue to use the standard notation of this chapter, such as U,X, Y,T, A, X1,
X−1, Pτ and Sτ (the latter is the unilateral right shift operator on L2

loc([0,∞); U)).
In addition, we will need S∗τ , the unilateral left shift operator by τ > 0 on the space
L2

loc([0,∞); U), which means that (S∗τu)(t) = u(t + τ). Note that

S∗τSτ = I , SτS
∗
τ = I −Pτ . (5.4.1)

For the proof of the first lemma, the reader needs to recall the version of the
Paley-Wiener theorem for Hilbert space-valued functions, see Proposition 12.5.4
in Appendix I. As usual, if u is a function defined on [0,∞) that has a Laplace
transform, then we denote this Laplace transform by û.

Lemma 5.4.1. For every ω ∈ R and every Hilbert space U we define the space

L2
ω([0,∞); U) = eωL2([0,∞); U) , where eω(t) = eωt ,

with the norm

‖u‖2
ω =

∞∫

0

e−2ωt‖u(t)‖2dt.

Assume that ω0 ∈ R and G : Cω0 →L(U, Y ) is analytic and bounded. Then for
every ω > ω0 there exists a unique operator

Fω ∈ L(L2
ω([0,∞); U), L2

ω([0,∞); Y ))

such that y = Fωu if and only if ŷ = Gû. Moreover,

‖Fω‖L(L2
ω) 6 sup

s∈Cω

‖G(s)‖ ∀ ω > ω0 (5.4.2)

and PτFω(I −Pτ ) = 0 ∀ τ > 0 . (5.4.3)

We mention that in fact we have equality in (5.4.2). This would require some
extra effort to prove but we do not need it, so we only state the inequality. The
identity (5.4.3) is called causality and G is called the transfer function of Fω.

Proof. We shall regard the function eω also as a pointwise multiplication operator.
Then clearly eω is a unitary operator from L2([0,∞); U) to L2

ω([0,∞); U), whose
inverse is e−ω. It is easy to see that

(ê−ωu)(s) = û(s + ω) . (5.4.4)
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Define a shifted transfer function Gω(s) = G(s + ω), so that Gω is a bounded
analytic function on C0. Hence, when we regard Gω as a pointwise multiplication
operator acting from H2(C0; U) to H2(C0; Y ), then

‖Gω‖L(H2) 6 sup
s∈C0

‖Gω(s)‖L(U,Y ) = sup
s∈Cω

‖G(s)‖L(U,Y ) .

Indeed, this follows from the definition of the norm on H2(C0; Y ). We define Fω by

Fω = eωL−1GωLe−ω ,

where L denotes the Laplace transformation, a unitary operator from L2([0,∞); U)
to H(C0; U) (see Proposition 12.5.4). It is now clear that Fω ∈ L(L2

ω([0,∞); Y ))
and ‖Fω‖ = ‖Gω‖, so that ‖Fω‖ satisfies (5.4.2). It is now easy to see from (5.4.4)

that F̂ωu = Gû, for all u ∈ L2
ω([0,∞); U).

It is easy to see that Fω satisfies the shift-invariance identity

SτFω = FωSτ ∀ τ > 0 .

Indeed, this follows from Ŝτu(s) = e−sτ û(s). Multiplying with S∗τ from the right
and using (5.4.1), we obtain

SτFωS
∗
τ = Fω(I −Pτ ) .

Applying Pτ to both sides, we obtain (5.4.3).

Theorem 5.4.2. Assume that B ∈ L(Y, X) and C : D(A)→Y is an admissible
observation operator for T. Then the operator A + BC : D(A)→X is the generator
of a strongly continuous semigroup Tcl on X. This semigroup satisfies the integral
equation

Tcl
t z0 = Ttz0 +

t∫

0

Tt−σBCTcl
σ z0dσ ∀ z0 ∈ D(A) , t > 0 .

Moreover, for any Hilbert space Y1, the space of all admissible observation operators
for T that map into Y1 is equal to the corresponding space for Tcl.

In the above context, BC is called a perturbation of the generator A and Tcl is
called the perturbed semigroup (in the system theory community, Tcl would also be
called the closed-loop semigroup).

Proof. The first step is to define an input-output map F associated to the op-
erators A,B,C. We denote by H1

comp((0,∞); Y ) the subspace of those functions
in H1((0,∞); Y ) that have compact support (contained in [0,∞)). We define the
operator

F : H1
comp((0,∞); Y )→C([0,∞); Y )

by

(Fu)(t) = C

t∫

0

Tt−σBu(σ)dσ ∀ t > 0 .
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First we show that this operator makes sense (i.e., the integral is in D(A) and the
resulting function is continuous in Y ). We apply Theorem 4.1.6 with the state
space X1 in place of X (hence with X in place of X−1) and with f = Bu, and
obtain that the function z defined by z(t) =

∫ t

0
Tt−σBu(σ) is in C([0,∞); X1). Since

(Fu)(t) = Cz(t), we obtain that the definition of F is correct.

In terms of Laplace transforms, if y = Fu then it follows from Remark 4.1.9 that
for all s ∈ C with Re s > ω0(T) we have ŷ(s) = G(s)û(s), where

G(s) = C(sI − A)−1B for Re s > ω0(T) .

Take α > ω0(T). It follows from Theorem 4.3.7 that there exists Kα > 0 such that

‖C(sI − A)−1‖ 6 Kα√
Re s− α

∀ s ∈ Cα .

It follows that for every ω > α,

sup
s∈Cω

‖G(s)‖ 6 Kα‖B‖√
ω − α

. (5.4.5)

According to Lemma 5.4.1, for every ω > α, F has a continuous extension to a
bounded linear operator Fω acting on L2

ω([0,∞); Y ). This extension is unique, be-
cause H1

comp((0,∞); Y ) is dense in L2
ω([0,∞); Y ). The norm of Fω can be estimated

by (5.4.2) together with (5.4.5).

The second step is to consider the system described by ż = Az +Bu, y = Cz with
the unity feedback u = y. First we express the resulting function y and then the
operators Tcl

t that give the evolution of z. Let Ψ be the extended output map of
(A, C). We claim that for large ω > α and for any z0 ∈ X the equation

y = Ψz0 + Fωy (5.4.6)

has a unique solution y ∈ L2
ω([0,∞); Y ). According to (5.4.5) we can choose ω

sufficiently large such that
sup
s∈Cω

‖G(s)‖ < 1 , (5.4.7)

hence ‖Fω‖ < 1. For the remainder of this proof, ω will be a fixed real number with
the property (5.4.7). Notice that Ψ ∈ L(X, L2

ω([0,∞); Y )) according to Proposition
4.3.6. Hence (5.4.6) has a unique solution given by

y = (I − Fω)−1Ψz0 . (5.4.8)

It will be convenient to introduce the operator Ψcl ∈ L(X,L2
ω([0,∞); Y )) by

Ψcl = (I − Fω)−1Ψ .

We shall see later that this is the extended output map of the closed-loop semigroup
with the observation operator C. We define the operators Tcl

t (for t > 0) by taking
y from (5.4.8) as the input function of the system ż = Az + Bu:

Tcl
t = Tt + ΦtΨ

cl . (5.4.9)
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Here, Φt is defined by (4.2.1), and due to its causality (see the comments before
(4.2.2)) Φt has a continuous extension to L2

ω([0,∞); Y ), so that Tcl
t ∈ L(X).

The third step is to show that the family Tcl = (Tcl
t )t>0 is a strongly continuous

semigroup on X. As a preparation for this, first we check that

S∗τFω = FωS
∗
τ + ΨΦτ . (5.4.10)

To prove (5.4.10), apply both sides to u ∈ H1((0,∞); Y ). We have seen at the
beginning of this proof that Φtu is a continuous X1-valued function and (Fωu)(t) =
(Fu)(t) = CΦtu. With this, (5.4.10) (applied to u) can be recognized as being C
applied to both sides of the composition property (4.2.2). Since H1((0,∞); Y ) is
dense in L2

ω([0,∞); Y ), it follows that (5.4.10) holds in general.

We rewrite (5.4.10) in the equivalent form

(I − Fω)S∗τ − S∗τ (I − Fω) = ΨΦτ ,

which in turn is equivalent to

S∗τ (I − Fω)−1 − (I − Fω)−1S∗τ = ΨclΦτ (I − Fω)−1 .

We shall also need the following easily verifiable identities:

ΨTτ = S∗τΨ , Φt+τ = TtΦτ + ΦtS
∗
τ . (5.4.11)

which hold for all t, τ > 0 (they are just alternative ways to write (4.3.7) and (4.2.2)).

Now we have all the necessary tools to verify the semigroup property for Tcl:

Tcl
t T

cl
τ = TtTτ + ΦtΨ

clTτ + TtΦτΨ
cl + ΦtΨ

clΦτ (I − Fω)−1Ψ

= Tt+τ + ΦtΨ
clTτ + TtΦτΨ

cl + Φt

[
S∗τ (I − Fω)−1 − (I − Fω)−1S∗τ

]
Ψ

= Tt+τ + Φt(I − Fω)−1 [ΨTτ − S∗τΨ] + [TtΦτ + ΦtS
∗
τ ] (I − Fω)−1Ψ

= Tt+τ + Φt+τΨ
cl = Tcl

t+τ .

Obviously Tcl
0 = I. The strong continuity of the family Tcl is clear from (5.4.9), as

both families T and Φ are strongly continuous (see Proposition 4.2.4).

The fourth step is to show that the generator of Tcl, denoted by Acl, is the restric-
tion of A + BC to D(Acl), which is a subspace of D(A). (Later we shall see that
these spaces are actually equal.) We also show that Ccl, which is the restriction of C
to D(Acl), is admissible for Tcl. We apply the Laplace transformation to y = Ψclz0,
where z0 ∈ X. We have seen in the second step of this proof that y satisfies (5.4.6),
whence (using Theorem 4.3.7) we get

ŷ(s) = C(sI − A)−1z0 + G(s)ŷ(s) ∀ s ∈ Cω .

From here we see (using also (5.4.7)) that

ŷ(s) = (I −G(s))−1C(sI − A)−1z0 ∀ s ∈ Cω .
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From (5.4.9) and the definition of y we see that Tcl
t z0 = Ttz0 + Φty. Applying here

the Laplace transformation, we obtain (using Proposition 2.3.1 for both semigroups)
that for Re s sufficiently large and every z0 ∈ X,

(sI −Acl)−1z0 = (sI −A)−1z0 + (sI −A)−1B(I −G(s))−1C(sI −A)−1z0 . (5.4.12)

Since D(Acl) = Ran (sI − Acl)−1, we see from the above that D(Acl) ⊂ D(A). We
apply C to both sides of (5.4.12) and obtain that for Re s sufficiently large,

C(sI − Acl)−1z0 = C(sI − A)−1z0 + G(s)(I −G(s))−1C(sI − A)−1z0

= (I −G(s))−1C(sI − A)−1z0 = ŷ(s) .

We see from the last formula that if z0 ∈ D(Acl), then y(t) = CTcl
t z0. Since y

is given by (5.4.8), it depends continuously (as an element of L2
ω([0,∞); Y )) on

z0 (as an element of X). This shows that Ccl, the restriction of C to D(Acl), is
an admissible observation operator for Tcl, and the corresponding extended output
map is Ψcl:

(Ψclz0)(t) = CTcl
t z0 ∀ t > 0 , z0 ∈ D(Acl) ⊂ D(A) . (5.4.13)

If z0 ∈ D(Acl), then according to Proposition 4.3.4 we have that y = Ψclz0 belongs to
H1

loc((0,∞); Y ). We see from (5.4.9) that Tcl
t z0 = Ttz0 +Φty. According to Theorem

4.1.6 (with X1 in place of X and X in place of X−1) we have z ∈ C1([0,∞); X)
and ż(t) = Az(t) + By(t) holds for all t > 0. In particular, for t = 0 we obtain
Aclz0 = Az0 + By(0) = Az0 + BCz0. Thus,

Aclz0 = (A + BC)z0 ∀ z0 ∈ D(Acl) .

(This conclusion could be obtained also by a computation starting from (5.4.12).)

The fifth step is to show that in fact D(Acl) = D(A) and Tcl satisfies the integral
equation stated in the theorem. We start from the operators Acl,−B and Ccl and we
redo with them the first four steps of this proof. We obtain a closed-loop semigroup
Tcl,cl with a generator Acl,cl defined on a domain D(Acl,cl) ⊂ D(Acl). According to
the last conclusion in step four, we have

Acl,clz0 = (Acl −BCcl)z0 = Az0 ∀ z0 ∈ D(Acl,cl) .

Since a restriction of the generator A to a strictly smaller subspace cannot be a
generator (because sI − A must be invertible for large Re s), it follows that in fact
D(Acl,cl) = D(A). Clearly this implies D(Acl) = D(A). Finally, the integral equation
in the theorem follows easily by combining (5.4.9) with (5.4.13).

The sixth step is to show that admissibility for T is equivalent to admissibility for
Tcl. Let Y1 be a Hilbert space and let C1 : D(A)→Y1 be an admissible observation
operator for T. We denote by Ψ1 and by Ψ1,cl the extended output maps of (A,C1)
and of (Acl, C1), respectively. We also introduce the input-output map F1 associated
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to the operators A,B,C1 exactly as we did it for A, B, C in the first step of the proof,
and we extend it in the same way, obtaining an operator

F1
ω ∈ L(L2

ω([0,∞); Y ), L2
ω([0,∞); Y1) .

By the definition of F1 we have

(F1y)(t) = C1Φty ∀ t > 0 , y ∈ H1
comp((0,∞); Y ) .

Using the causality of F1 (see (5.4.3)), the above formula can be extended:

(F1
ωy)(t) = C1Φty ∀ t > 0 , y ∈ H1

loc((0,∞); Y ) ∩ L2
ω([0,∞); Y ) .

Applying the terms of (5.4.9) to z0 ∈ D(A) and then applying C1 to the resulting
equation, we obtain (using that Ψclz0 ∈ H1

loc((0,∞); Y ) by Proposition 4.3.4) that

Ψ1,clz0 = Ψ1z0 + F1
ωΨclz0 ∀ z0 ∈ D(A) .

Since the operators on the right-hand side have continuous extensions to X, the
same is true for Ψ1,cl, meaning that C1 is an admissible observation operator for Tcl.

To show that every admissible observation operator for Tcl is admissible also for
T, we repeat the same argument, but with the roles of T and Tcl reversed and with
−B in place of B (we did a similar trick in step five).

Proposition 5.4.3. With the assumptions and the notation of Theorem 5.4.2, let
C1 ∈ L(X1, Y1) be an admissible observation operator for T. We denote by Ψ and
Ψ1 the extended output maps of (A,C) and (A,C1), respectively. Similarly, let Ψcl

and Ψ1,cl be the extended output maps of (A+BC, C) and (A+BC,C1), respectively.
For any ω > ω0(T) we denote by

Fω : L2
ω([0,∞); Y )→L2

ω([0,∞); Y ) , F1
ω : L2

ω([0,∞); Y )→L2
ω([0,∞); Y1)

the input-output maps corresponding to the transfer functions C(sI − A)−1B and
C1(sI − A)−1B, respectively. Then

Ψcl = (I − Fω)−1Ψ , Ψ1,cl = Ψ1 + F1
ωΨcl .

The proof of this proposition is contained in the proof of Theorem 5.4.2, in the
second, fourth and sixth steps. We could have appended the above proposition to
Theorem 5.4.2, but this would have made the theorem very heavy. Proposition 5.4.3
will be needed in a proof in Section 6.3, otherwise it is probably of little interest,
which is why we separated it from the theorem.

Example 5.4.4. Let Ω ⊂ Rn be open and bounded. We shall introduce the operator
semigroup corresponding to the convection-diffusion equation

∂z

∂t
= ∆z + b · ∇z + cz in Ω× (0,∞) , (5.4.14)
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with the boundary condition
z = 0 on ∂Ω . (5.4.15)

Here we assume that b ∈ L∞(Ω;Cn) and c ∈ L∞(Ω). We shall regard this as a
perturbation of the heat equation, of the type discussed in this section.

We denote H = Y = L2(Ω), A is the Dirichlet Laplacian on Ω, so that (as shown
in Section 3.6) A0 = −A is a strictly positive operator and

D(A) =
{
φ ∈ H1

0(Ω)
∣∣ ∆φ ∈ L2(Ω)

}
, H 1

2
= D(A

1
2
0 ) = H1

0(Ω) .

We define C ∈ L(H 1
2
, Y ) by

Cz = b · ∇z + cz .

As already explained in Example 5.1.4, C is admissible for the semigroup T gen-
erated by A. According to Theorem 5.4.2 with B = I, the operator A + C (with
domain D(A)) generates a semigroup Tcl on H and any admissible observation op-
erator for T is admissible also for Tcl (and the other way round). Note that Tcl

corresponds to solutions of the convection-diffusion equation (5.4.14) with the ho-
mogeneous boundary condition (5.4.15). Clearly, C is admissible also for Tcl.

To illustrate the admissibility statement made a few lines earlier, consider O to
be an open subset of Ω such that clos O ⊂ Ω and ∂O is Lipschitz. Let Y1 =
L2(∂O) and define C1 ∈ L(H 1

2
, Y1) by C1z = z|∂O (i.e., C1 is the Dirichlet trace

operator corresponding to the boundary of O). The continuity of C1 on H 1
2

= H1
0(Ω)

follows from Theorem 13.6.1. According to Proposition 5.1.3, C1 is admissible for
T. According to the last part of Theorem 5.4.2, C1 is admissible also for Tcl.

Finally, we derive a simple additional result that holds in the context of Theorem
5.4.2. For this, we have to introduce the concept of an analytic semigroup.

Definition 5.4.5. An operator semigroup T with generator A is analytic if there
exists λ > 0 and m > 0 such that

‖(sI − A)−1‖ 6 m

|s| if Re s > λ. (5.4.16)

Remark 5.4.6. We mention a few well known facts from the theory of analytic
semigroups. These can be found in the books dealing with operator semigroups
quoted at the beginning of Chapter 2. We do not give proofs, and we shall not use
these facts. An operator semigroup T with generator A is analytic if and only if
there exist numbers λ > 0, α ∈ (0, π

2
) and m > 0 such that

‖((s + λ)I − A)−1‖ 6 m

|s| if | arg(s + λ)| <
π

2
+ α.

If T is analytic then Tt (as a function of t) has an analytic extension into the
open sector where | arg t| < α, which satisfies the semigroup property. Moreover,
Ttz ∈ D(A∞) holds for every z ∈ X and every t 6= 0 with | arg t| < α.
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Proposition 5.4.7. Let A : D(A) → X be such that A < 0. Assume that B ∈
L(Y,X) and C ∈ L(X1, Y ) is an admissible observation operator for the semigroup
T generated by A. Then the semigroup Tcl generated by A + BC is analytic.

Proof. As in the proof of Theorem 5.4.2, we denote Acl = A + BC and we
recall that for Re s sufficiently large, the resolvents of Acl can be obtained from the
resolvents of A via (5.4.12), where G(s) = C(sI −A)−1B. According to (5.4.7) the
factor (I −G(s))−1 is uniformly bounded in L(Y ) for all s in some right half-plane.
Since (sI − A)−1 satisfies (5.4.16) and since C(sI − A)−1 is uniformly bounded
in L(X,Y ) for all s in some right half-plane (see Theorem 4.3.7), it is clear that
(sI−Acl)−1 satisfies an estimate similar to (5.4.16) for some (possibly larger) λ > 0.
According to Definition 5.4.5, this implies that Tcl is analytic.

5.5 Admissible control operators for perturbed semigroups

In this section we investigate admissible control operators for semigroups that
have been obtained by a perturbation as in Theorem 5.4.2 or its dual. We start
with the dual version of Theorem 5.4.2:

Corollary 5.5.1. Assume that B ∈ L(U,X−1) is an admissible control operator for
T and C ∈ L(X, U). Then the operator A + BC : D(A + BC)→X, where

D(A + BC) = {z ∈ X | (A + BC)z ∈ X} ,

is the generator of a strongly continuous semigroup Tcl on X. This semigroup sat-
isfies the integral equation

Tcl
t z0 = Ttz0 +

t∫

0

Tt−σBCTcl
σ z0dσ ∀ z0 ∈ D(A + BC) , t > 0 .

Moreover, for any Hilbert space U1, the space of all admissible control operators for
T defined on U1 is equal to the corresponding space for Tcl.

This is almost an immediate consequence of Theorem 5.4.2, except for the minor
trouble that one has to verify that, if A,B, C are as in the theorem, then

D((A + BC)∗) = {z ∈ X | (A∗ + C∗B∗)z ∈ X} .

A direct proof seems a little more complicated than for Theorem 5.4.2.

In the sequel we investigate when admissible control operators for a semigroup
remain admissible for the perturbed semigroup obtained as in Theorem 5.4.2. In
general, this is not true. We use the assumptions and the notation of Theorem
5.4.2. Thus, Tcl is the semigroup generated by A + BC, where B ∈ L(Y, X) and
C ∈ L(X1, Y ) is an admissible observation operator for T. Strictly speaking the
question posed above makes no sense, for the following reason: If B1 is an admissible
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control operator for T, then it must be an element of L(U,X−1). Let us denote by
Xcl
−1 the analog of the space X−1 for the semigroup Tcl, i.e., Xcl

−1 is the completion
of X with respect to the norm

‖z‖cl
−1 = ‖(βI − (A + BC))−1z‖ .

Since, in general, Xcl
−1 is different from X−1, B1 does not qualify to be an admissible

control operator for Tcl (the integral in (4.2.1) does not make sense with Tcl in place
of T and B1 in place of B). In order to regard B1 as a control operator for Tcl,
we must identify a part of Xcl

−1 with a part of X−1 containing Ran B1. In other
words, we must find an operator J that maps a part of X−1 into Xcl

−1 and which,
when restricted to X, is the identity operator. If we identify z with Jz, then B1 is
identified with JB1, which is an element of L(U,Xcl

−1). There is no unique way to
find such a J , and different identifications may lead to different control operators for
Tcl (from the same B1). We shall see that redefining B1 as an element of L(U,Xcl

−1)
can be achieved by defining the product C(βI − A)−1B1 for some β ∈ ρ(A). A
priori, the product C(sI−A)−1B1 makes no sense, because (sI−A)−1B1 maps into
X and C is only defined on X1. However, the product will make sense if we use a
suitable extension of C in place of C. The precise statement is as follows:

Proposition 5.5.2. With the assumptions and the notation of Theorem 5.4.2, as-
sume that there exists a Banach space D(Ce) such that X1 ⊂ D(Ce) ⊂ X, with
continuous embeddings and C has an extension Ce ∈ L(D(Ce), Y ).

(1) We define an operator J ∈ L((βI − A)D(Ce), Xcl
−1) by

J = (βI − (A + BC))(βI − A)−1 + BCe(βI − A)−1 . (5.5.1)

Here, A+BC is the extended operator acting from X to Xcl
−1. Then J is independent

of β and it is an extension of the identity operator on X. We have

(A + BC)z = JAz + BCez ∀ z ∈ D(Ce) , (5.5.2)

where (again) A + BC is the extended operator acting from X to Xcl
−1.

(2) Let B1 ∈ L(U,X−1) such that for some (hence, for every) β ∈ ρ(A), we have

Ran B1 ⊂ (βI − A)D(Ce) .

Then for every β ∈ ρ(A) we have Ce(βI − A)−1B1 ∈ L(U, Y ), and hence

JB1 ∈ L(U,Xcl
−1) .

(3) If B1 as in part (2) is an admissible control operator for T, and if in addition
there exist α ∈ R and M > 0 such that Cα ⊂ ρ(A) and

‖Ce(sI − A)−1B1‖L(U,Y ) 6 M ∀ s ∈ Cα , (5.5.3)

then JB1 is an admissible control operator for Tcl.
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According to the terminology of the systems theory literature, the condition (5.5.3)
expresses that the transfer function Ce(sI − A)−1B1 is proper.

Proof. We prove (1). Let Ce and J be as in part (1). If z ∈ X then (βI−A)−1z ∈
D(A) = D(A + BC) and hence we may use the non-extended versions of A + BC
and of C in (5.5.1). Then we immediately get that Jz = z.

To prove that J is independent of β, we cannot use a density argument, because X
need not be dense in the domain of J . We denote for a moment by Jβ the operator
from (5.5.1) and by Js the operator obtained with s ∈ ρ(A) in place of β. Then

Js − Jβ = (sI − (A + BC))−1[(sI − A)−1 − (βI − A)−1]

+ (s− β)(sI − A)−1 + BCe[(sI − A)−1 − (βI − A)−1] .

From the resolvent identity (Remark 2.2.5) we see that (sI − A)−1 − (βI − A)−1

maps X−1 into D(A), so that we may replace Ce with C in the above formula, and
A+BC is no longer the extended operator, but just the original one (from D(A) to
X). From here we easily get that Js = Jβ.

Finally, apply both sides of (5.5.1) to (βI−A)z, where z ∈ D(Ce) (and Az ∈ X−1).
After some cancellation, we obtain (5.5.2).

We prove (2). The operator (βI−A)−1B1 is closed from U toD(Ce) (because of the
continuity of the embedding D(Ce) ⊂ X). It follows from the closed graph theorem
(Theorem 12.1.1) that (βI − A)−1B1 ∈ L(U,D(Ce)), and hence Ce(βI − A)−1B1 ∈
L(U, Y ). It is now clear (using (5.5.1)) that JB1 ∈ L(U,Xcl

−1).

We prove (3). Multiplying (5.5.1) with B1 from the right and then with the
resolvent (sI − (A + BC))−1 from the left, we obtain that for all s ∈ ρ(A),

(sI − (A + BC))−1JB1 = (sI − A)−1B1 + (sI − (A + BC))−1BCe(sI − A)−1B1 .

Take u ∈ L2([0,∞); U) and define the function y ∈ L2
loc([0,∞); Y ) via its Laplace

transform:

ŷ(s) = Ce(sI − A)−1B1û(s) ∀ s ∈ Cα ,

where α > 0 is such that (5.5.3) holds. According to Lemma 5.4.1 (with G(s) =
Ce(sI − A)−1B1) we have y ∈ L2

α([0,∞); Y ), so that indeed y ∈ L2
loc([0,∞); Y ).

Define the function z : [0,∞)→Xcl
−1 by

z(t) =

t∫

0

Tcl
t−σJB1u(σ)dσ.

Using Remark 4.1.9 (with A + BC in place of A) and our earlier formula to express
(sI − (A + BC))−1JB1, we obtain that the Laplace transform of z is given by

ẑ(s) = (sI − A)−1B1û(s) + (sI − (A + BC))−1Bŷ(s) ∀ s ∈ Cα ,
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whence

z(t) =

t∫

0

Tt−σB1u(σ)dσ +

t∫

0

Tcl
t−σBy(σ)dσ.

Since B1 is admissible for T and B is bounded, it follows that z ∈ C([0,∞); X).
Remembering the definition of z, this means that JB1 is admissible for Tcl.

The following simple example is meant to illustrate Proposition 5.5.2 and to high-
light the difficulties in identifying a part of X−1 with a part of Xcl

−1 (see the dis-
cussion before the proposition). This example has been constructed such that there
is no natural way to avoid the ambiguity in choosing an extension for C, and we
get infinitely many candidates for the operator JB1. A more substantial example
(a boundary controlled convection-diffusion equation) relying on Proposition 5.5.2,
where there is a natural way to extend C, will be discussed in Section 10.8.

Example 5.5.3. Let X = L2[0,∞) and let T be the unilateral left shift semigroup
on X, as discussed in Example 2.3.7. We have seen in Example 2.10.7 that

X1 = H1(0,∞) , X−1 = H−1(0,∞) , Xd
1 = H1

0(0,∞) .

We define the admissible observation operator C ∈ L(X1,C) by

Cz = z(1) .

(This is a slight modification of the observation operator from Example 4.4.4.) We
define B ∈ L(C, X) by (Bv)(x) = b(x)v, where b ∈ L2[0,∞), b 6= 0. According to
Theorem 5.4.2, A + BC generates a strongly continuous semigroup Tcl on X.

Consider B1 ∈ L(C, X−1) defined by B1 = δ1, where

〈ϕ, δ1〉Xd
1 ,X−1

= ϕ(1) ∀ ϕ ∈ Xd
1 .

It is easy to see that B1 is an admissible control operator for T. To regard B1 as a
control operator for Tcl, according to Proposition 5.5.2 we have to find an extension
of C, denoted Ce, such that Ce(sI − A)−1B1 makes sense (it should be a bounded
operator from C to C, i.e., a number). We have, for Re s > 0,

(sI − A)−1B1 =

{ −es(x−1) for x 6 1 ,
0 for x > 1 .

A possible way of extending C is by choosing D(Ce) to be the piecewise H1

functions, with a possible jump at x = 1,

D(Ce) = H1(0, 1)×H(1,∞) ,

and by defining Ce as a combination of the left and right limits at x = 1,

Cez = γ lim
x→ 1, x<1

z(x) + (1− γ) lim
x→ 1, x>1

z(x) ,
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where γ ∈ R. We have

Ce(sI − A)−1B1 = − γ ∀ s ∈ C0 ,

so that all the conditions in Proposition 5.5.2 are satisfied. Thus, JB1 is an admis-
sible control operator for Tcl. Note that each choice of the parameter γ leads to a
different operator J in (5.5.1), and hence to a different control operator JB1 for Tcl.
If we choose γ = 0, then the input signal u that enters the system through B1 never
enters the feedback loop, and hence it has no influence on z(x) for x > 1.

5.6 Remarks and bibliographical notes on Chapter 5

For papers covering much of the material of this chapter we refer again to Jacob
and Partington [112] and Staffans [209, Chapter 10] (see also the bibliographical
notes on the previous chapter).

Section 5.1. Theorem 5.1.1 appeared in Hansen and Weiss [89] (in dual form)
but important parts of this theorem were present already in Grabowski [73]. Even
earlier, some related results for bounded observation operators were contained in
Datko [41]. The connection between the Gramian and strong stability has been
known long before the papers cited above, usually considering bounded observation
or control operators (we cannot trace the first references on this).

Section 5.2. Theorem 5.2.2 is a generalization of Proposition 3.6 in Hansen and
Weiss [88] where T was assumed to be exponentially stable and invertible, and
(sI − A)−1B was assumed to be bounded on a right half-plane. The proof in [88]
was based in part on a result in Weiss [228]. The alternative proof for Corollary
5.2.4 is due to Zwart [247]. In the latter paper, other admissibility results were given
in terms of estimates on ‖C(sI − A)−1‖, of which we mention the following:

(1) If A and C satisfy (4.3.9), then for every r ∈ [1, 2) there is a Kr > 0 such that

1∫

0

‖CTtz0‖r dt 6 Kr‖z0‖r ∀ zo ∈ D(A) .

(2) A sufficient condition for the admissibility of C is that for some α > 0,

‖C(sI − A)−1‖ 6 K

log(Re s)
√

Re s
∀ s ∈ Cα .

Section 5.3. The admissibility statement in the first part of Theorem 5.3.2 (which
is the main part of the theorem) is due to Ho and Russell [100], and the remain-
ing more minor parts appeared in Weiss [226]. Actually, both of these references
considered admissibility, not infinite-time admissibility, which is not a big differ-
ence. The version of Theorem 5.3.2 for infinite-time admissibility has appeared in
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Grabowski [74], and this reference provided additional insights, including the fol-
lowing strengthening of Theorem 5.3.9: C ∈ L(X1,C) is an infinite-time admissible
observation operator for the diagonal semigroup T if and only if there is a K > 0
such that

‖C(−sI − A)−1‖ 6 K√
2Re s

∀ s ∈ σ(A) .

For the “only if” part, the above K is again the constant from (4.6.6).

Theorem 5.3.9 has been generalized to normal semigroups in Weiss [233] (the
necessary and sufficient condition for infinite-time admissibility remains the same).
This generalization needed a slight generalization of the Carleson measure theorem,
in which the Carleson measure µ is defined on the Borel subsets of the closed right
half-plane. (This is not the generalization that the title of [233] refers to.)

The part of Theorem 5.3.2 which states that (5.3.5) implies c ∈ X−1 can be
replaced with a stronger statement: (5.3.5) implies c ∈ X−µ for all µ > 1

2
, where Xµ

is defined for all µ > 0 as the completion of X with respect to the norm

‖z‖−µ =
∑

k∈N

|zk|2
(1 + |λk|2)µ

. (5.6.1)

This can be shown by the same elementary method that was employed in the proof
of Theorem 5.3.2 for µ = 1. A more general statement (not restricted to diagonal
semigroups) appeared in Weiss [230, Remark 3.3] (see also Rebarber and Weiss [188,
Theorem 1.4]). The infimum of those µ > 0 for which C ∈ X−µ is the degree of
unboundedness of C - this follows from Triebel [220, Chapter 1].

The second (converse) part of Theorem 5.3.2 is easy to generalize in the following
way. We work in the dual framework, i.e., we talk about admissible control operators.
First introduce p-admissibility as the natural generalization of admissibility for the
case when the inputs are of class Lp (1 6 p 6 ∞) rather than of class L2. Let T be
a diagonal semigroup on the Banach space lr, where 1 6 r < ∞. Let (λk) be the
sequence of eigenvalues of the generator A of T, with Re λk < 0. Assume that the
sequence b = (bk) determines an infinite-time p-admissible control operator for T.
Denote q = p

p−1
(for p = 1 we set q = ∞). Then there exists M > 0 such that

∑

−λk∈R(h,ω)

|bk|r 6 Mhr/q ∀ h > 0 , ω ∈ R . (5.6.2)

The proof of this is an easy extension of the proof of the corresponding part of
Theorem 5.3.2, as has been remarked in [226], with a mistake (p was written in
place of q). It is much more delicate to generalize the first part of Theorem 5.3.2.
The first result in this direction is in Unteregge [224]. He showed that for p 6 2 and
q 6 r, the condition (5.6.2) is sufficient for the p-admissibility of b.

Haak [80] has also investigated p-admissibility for diagonal semigroups on lr. He
obtained a sufficient condition for admissibility in the case q > r. Using different
techniques from [224] (not relying on Fourier transforms) he showed that for analytic



180 Testing admissibility

diagonal semigroups on lr, with 1 < p 6 r < ∞, the following condition is equivalent
to infinite-time p-admissibility:

∑

−λ−1
k ∈R(h,ω)

∣∣∣∣
bk

λk

∣∣∣∣
r

6 Mhr/p ∀ h > 0 , ω ∈ R .

Admissible observation operators for diagonal semigroups with infinite-
dimensional output space. If C ∈ L(X1,Cn), then it is clear that C is an admis-
sible observation operator for T iff each of its rows Cj (j ∈ {1, . . . n}) is admissible.
If C maps into an infinite-dimensional Hilbert space Y , then the admissibility ques-
tion becomes more difficult. Without loss of generality (using an orthonormal basis
in Y ) we may assume that Y = l2. In Hansen and Weiss [88, 89] Theorem 5.3.2 has
been partially generalized to the case when Y = l2. The condition (5.3.5) has to be
replaced with ∥∥∥∥∥∥

∑

−λk∈R(h,ω)

ckc
∗
k

∥∥∥∥∥∥
L(l2)

6 Mh, (5.6.3)

where ck = Cek is the k-th column of C (here (ek) is the standard basis of l2)
so that ckc

∗
k is an infinite matrix of rank one. It was shown in [88] that (5.6.3)

is equivalent to the following fact: for every v ∈ L(Y,C), vC is an infinite-time
admissible observation operator for T. Hence, (5.6.3) is a necessary condition for
the infinite-time admissibility of C. It was shown in [88] that (5.6.3) is a sufficient
condition for the infinite-time admissibility of C if T is exponentially stable and
invertible (i.e, the eigenvalues λk are in a closed vertical strip in the open left half-
plane) or exponentially stable and analytic (i.e., there are constants ρ < 0 and γ > 0
such that the eigenvalues λk satisfy Re λk 6 ρ, |Im λk| 6 γ|Re λk|). It was shown
in [89] that (5.6.3) is sufficient for infinite-time admissibility also for various other
classes of diagonal semigroups, that we do not describe here. Another result from
[89] is that (5.6.3) is equivalent to the estimate (5.3.14).

It was conjectured in [88] that (5.6.3) is sufficient for the admissibility of C ∈
L(X1, l

2) for every exponentially stable diagonal semigroup. This is false, as follows
from results in Nazarov, Treil and Volberg [175]. They have shown that the operator-
valued version of the Carleson measure theorem is not true. The paper Jacob,
Partington and Pott [115] contains (among other things) a presentation of the result
of [175] in the context of our admissibility problem. Another counterexample for a
closely related admissibility conjecture can be found in Zwart, Jacob and Staffans
[248], where the semigroup is analytic and compact.

Propositions 5.3.5 and 5.3.7 are new, as far as we know. Proposition 5.3.7 is
related to [89, Proposition 6.2]. A generalization of Proposition 5.3.7 to diagonal
semigroups on lr has been given in Haak [80, Theorem 4.1].

The Jacob-Partington theorem. In [230] it has been conjectured that if T is
a strongly continuous semigroup and C ∈ L(X1,C), then the estimate in Corol-
lary 5.3.10 (which is known to follow from admissibility) is also sufficient for the
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admissibility of C (actually, the dual conjecture was formulated in [230]). In [233]
this conjecture has been slightly modified: there it was conjectured that (5.3.14)
(which is known to follow from infinite-time admissibility) is also sufficient for the
infinite-time admissibility of C. (The version in [233] would imply the version in
[230].) In support of the conjecture from [233], it was known that it holds for normal
semigroups (see our earlier comments), as well as for exponentially stable and right-
invertible semigroups (this follows from Corollary 5.2.4). The conjecture turned
out to be false: Jacob and Zwart [121] gave a counterexample using an analytic
semigroup.

However, an important positive result in this direction has been obtained by Jacob
and Partington [111]: If T is a contraction semigroup and C ∈ L(X1,C) is such that
(5.3.14) holds, then C is infinite-time admissible for T. This is probably the most
important theorem in the area of admissibility. In particular, the parallel result for
normal semigroups can be derived from it easily. The proof uses functional models.
An alternative, proof using dilation theory has been given by Staffans [209]. We
cannot reproduce any of these proofs here because it would not be compatible with
the elementary nature of this book.

The paper Jacob, Partington and Pott [116] contains a wealth of new results
related to the conjecture mentioned above and to the Jacob-Partington theorem.
We mention two of these. The first: If T is a bounded strongly continuous semigroup
on X, Y is a Hilbert space and C ∈ L(X1, Y ), then C satisfies the estimate (5.3.14)
if and only if there exists m > 0 such that

1√
τ

∥∥∥∥∥∥

τ∫

0

eiωtCTtzdt

∥∥∥∥∥∥
6 m‖z‖ ∀ z ∈ D(A) , τ > 0 , ω ∈ R .

In the above condition, the interval of integration [0, τ ] may be replaced with [τ, 2τ ].
The second result that we quote from [116] is: Suppose that T is a contraction
semigroup on X, Y is a Hilbert space and C ∈ L(X1, Y ) satisfies, for some k > 0,

‖C(sI − A)−1‖HS 6 k√
Re s

∀ s ∈ C0 .

Then C is an infinite-time admissible observation operator for T. Here, ‖ · ‖HS

denotes the Hilbert-Schmidt norm.

Sections 5.4 and 5.5. There is a large literature devoted to perturbations of
operator semigroups, and each of the books on operator semigroups that we have
quoted at the beginning of Chapter 2 covers some results in this direction. We shall
only mention references that have results related to our Theorem 5.4.2. Related
classes of perturbations were considered in Desch and Schappacher [48], Morris [174],
Engel and Nagel [57], Davies [44], and surely we have left out many good references
here. The following references consider not only the perturbed semigroup, but also
the admissibility of control and observation operators for the perturbed semigroup:
Hadd [84], Hansen and Weiss [89], Staffans [209], Weiss [232]. Actually, Theorem
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5.4.2 and parts of Theorem 5.5.2 follow from the (more general) results in [232] and
[89, Proposition 4.2]. Proposition 5.4.7 is inspired by Haak, Haase and Kunstmann
[81], which contains much more sophisticated results in this direction.

For various generalizations of the concept of an admissible observation operator
we refer to Haak and Kunstmann [82] and to Haak and LeMerdy [83].



Chapter 6

Observability

Notation. Throughout this chapter, X and Y are complex Hilbert spaces which
are identified with their duals. T is a strongly continuous semigroup on X, with
generator A : D(A)→X and growth bound ω0(T). Recall from Section 2.10 that
X1 is D(A) with the norm ‖z‖1 = ‖(βI − A)z‖, where β ∈ ρ(A) is fixed.

For y ∈ L2
loc([0,∞); Y ) and τ > 0, the truncation of y to [0, τ ] is denoted by Pτy.

This function is regarded as an element of L2([0,∞); Y ) which is zero for t > τ . For
every τ > 0, Pτ is an operator of norm 1 on L2([0,∞); Y ).

For any open interval J , the spaces H1(J ; Y ) and H2(J ; Y ) are defined as at the
beginning of Chapter 2. H1

loc((0,∞); Y ) is defined as the space of those functions
on (0,∞) whose restriction to (0, n) is in H1((0, n); Y ), for every n ∈ N. The space
H2

loc((0,∞); Y ) is defined similarly.

6.1 Some observability concepts

For finite-dimensional LTI systems, we had one concept of observability, see
Section 1.4, which was shown to be independent of time. For infinite-dimensional
systems, the picture is much more complicated: we have at least three important
observability concepts, each depending on time. In this section we introduce these
concepts and explore how they are related to each other.

In the sequel we assume that Y is a complex Hilbert space and that C ∈ L(X1, Y )
is an admissible observation operator for T. Let τ > 0, and let Ψτ be the output
operator associated to (A,C), which has been introduced in (4.3.1).

Definition 6.1.1. Let τ > 0.

• The pair (A,C) is exactly observable in time τ if Ψτ is bounded from below.

• (A,C) is approximately observable in time τ if Ker Ψτ = {0}.

183
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• The pair (A,C) is final state observable in time τ if there exists a kτ > 0 such
that ‖Ψτz0‖ > kτ‖Tτz0‖ for all z0 ∈ X.

It is easy to see (using the density of D(A∞) in X) that the exact observability
of (A,C) in time τ is equivalent to the fact that there exists kτ > 0 such that

τ∫

0

‖CTtz0‖2dt > k2
τ‖z0‖2 ∀ z0 ∈ D(A∞) . (6.1.1)

Remark 6.1.2. The following relations between the three observability concepts
introduced earlier are easy to verify: Exact observability implies the other two
observability concepts. If T is left-invertible, then (A,C) is exactly observable in
time τ iff (A,C) is final state observable in time τ . If Ker Tτ = {0} and if (A,C) is
final state observable in time τ , then (A,C) is approximately observable in time τ .
Note that Ker Tτ = {0} holds, in particular, for every diagonalizable semigroup.

Remark 6.1.3. The following very simple observation will be needed several times:
Assume that 0 ∈ ρ(A). The pair (A,C) is exactly observable in time τ if and only if
the pair (A|D(A2), CA) (with state space X1) is exactly observable in time τ . Thus,
the exact observability of (A, C) in time τ is equivalent to the estimate

‖ẏ‖L2([0,τ ];Y ) > kτ‖Az0‖ ∀ z0 ∈ D(A∞) ,

where z0 is the initial state and y is the corresponding output signal (y = Ψτz0).
Similar statements hold if we replace exact observability with admissibility or with
approximate observability or with final state observability.

Remark 6.1.4. Recall from Section 5.1 that for every τ > 0, Qτ = Ψ∗
τΨτ is the

observability Gramian (for time τ) of (A,C). It is easy to see that (A,C) is exactly
observable in time τ iff Qτ > 0. Indeed, Ψτ is bounded from below iff Ψ∗

τΨτ > 0
(see Proposition 12.1.3 in Appendix I). Similarly, it is easy to see that (A, C) is
approximately observable in time τ iff Ker Qτ = {0}.
Remark 6.1.5. It is easy to see that exact observability in time τ is equivalent to the
following property: any initial state z0 ∈ X can be expressed from the corresponding
truncated output function y = Ψτz0 via a bounded operator. Indeed, suppose that
(A,C) is exactly observable in time τ . By the last remark Qτ is invertible, and this
implies

z0 = Q−1
τ Ψ∗

τy .

The converse implication is obvious. Some facts about observability Gramians for
finite-dimensional systems were given in Section 1.5. These facts remain valid with
very little change for infinite-dimensional systems. For example, Corollary 1.5.10
remains valid (with the same proof) if we insert “exactly” before “observable”.

Approximate observability in time τ is equivalent to the following: for any z0 ∈
X, if the corresponding truncated output function y is zero, then z0 = 0. The
following proposition shows that final state observability in time τ is equivalent to
the following: for any initial state z0 ∈ X, the final state Tτz0 can be expressed from
the corresponding truncated output function y = Ψτz0 via a bounded operator Eτ .
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Proposition 6.1.6. Suppose that (A,C) is final state observable in time τ . Then
there exist operators Eτ ∈ L(L2([0,∞); Y ), X) such that

Tτ = EτΨτ .

Any such Eτ is called a final state estimation operator associated to (A,C).

Proof. If we take in Proposition 12.1.2 F = (Tτ )
∗ and G = (Ψτ )

∗, we obtain
that there exists a bounded operator L ∈ L(X, L2([0,∞); U)) such that T∗τ = Ψ∗

τL.
Taking adjoints, we obtain the desired identity with Eτ = L∗.

Often we need the above observability concepts without having to specify the time
τ . For this reason we introduce the following:

Definition 6.1.7. (A, C) is exactly observable if it is exactly observable in some
finite time τ > 0. (A,C) is approximately observable if it is approximately observable
in some finite time τ > 0. The pair (A,C) is final state observable if it is final state
observable in some finite time τ > 0.

Remark 6.1.8. If (A,C) is approximatively observable and φ is an eigenvector of
A, then Cφ 6= 0. Indeed, if we had Cφ = 0 then it is easy to check that we would
have Ψφ = 0, which contradicts the approximate observability of (A,C).

For some systems described by PDEs, it might be useful to express the approxi-
mate observability of (A,C) in terms of Ψτz for z ∈ D(A∞) only, as follows.

Proposition 6.1.9. Suppose that for some τ > 0,

Ker Ψτ ∩ D(A∞) = {0} .
Then (A,C) is approximately observable in time τ + ε for any ε > 0.

Proof. The proof is by contradiction: we assume that the conclusion is false.
Then there exists ε > 0 and z0 ∈ X such that z0 6= 0 and Ψτ+εz0 = 0. We need
the operators Tϕ introduced in (2.3.6) with ϕ ∈ D(0, ε). By the arguments in the
proof of Proposition 2.3.6, ϕ can be chosen such that z1 = Tϕz0 6= 0 and we have
z1 ∈ D(A∞). For all t ∈ [0, τ ] we have

(Ψτz1) (t) = CTt

ε∫

0

ϕ(σ)Tσz0dσ =

ε∫

0

ϕ(σ)(Ψz0)(t + σ)dσ.

Indeed, the last equality is easy to prove for every z0 ∈ D(A), and it remains valid
for z0 ∈ X by continuous extension.

Since in the above expression, t+σ ∈ [0, τ+ε], we have (Ψz0)(t+σ) = (Ψτ+εz0)(t+
σ) = 0, so that Ψτz1 = 0. This contradicts the assumption of the proposition.

The conclusion of the above proposition could not be improved even if we replace
D(A∞) by D(A), as the following example shows.
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Example 6.1.10. Take X = C× L2[0, 1] and consider the operator A defined by

A

[
ϕ
w

]
=

[
0
dw
dx

]
, D(A) =

{
[ ϕ
w ] ∈ C×H1(0, 1)

∣∣ w(1) = ϕ
}

.

We define the observation operator C : D(A)→C by

C

[
ϕ
w

]
= w(0) .

A simple reasoning shows that A is the generator of a strongly continuous semigroup

T on X defined as follows: if t > 0 and

[
ϕ(t)
w(t)

]
= Tt

[
ϕ0

w0

]
, then

ϕ(t) = ϕ0 , w(t)(x) =

{
w0(x + t) if x + t < 1 ,

ϕ0 else .

The observation operator C is admissible since for almost every t 6 1, we have
(

Ψ1

[
ϕ0

w0

])
(t) = w0(t) .

It is now easy to see that Ker Ψ1∩D(A) = {0}. This is stronger than the condition
in Proposition 6.1.9, so that, according to this proposition, (A,C) is approximately
observable in any time τ > 1. In fact, this pair is exactly observable in any time
τ > 1. However, (A,C) is not approximately observable in time 1. Indeed, if ϕ0 6= 0
and w0 = 0 then the corresponding output function is 0 for almost every t 6 1.

We know from Proposition 4.3.4 that if z0 ∈ D(A), then Ψτz0 ∈ H1((0, τ); Y ). In
the proposition below we give a partial converse of this statement (the proposition
will be needed in Section 6.4).

Lemma 6.1.11. Let y ∈ H1((0,∞); Y ) and for every ε > 0 define the function
yε ∈ H1((0,∞); Y ) by

yε(t) =
y(t + ε)− y(t)

ε
.

Then lim
ε→ 0

yε = y′ (the derivative of y) in L2([0,∞); Y ).

Proof. Let T be the left shift semigroup on L2([0,∞); Y ), which a slight general-
ization of the unilateral left shift semigroup from Example 2.3.7. It is not difficult
to verify (by the same reasoning as in Example 2.3.7) that its generator is

A =
d

dx
, D(A) = H1((0,∞); Y ) .

Therefore, yε from the lemma can be written as

yε =
1

ε
(Tεy − y) .

Now the lemma follows from the definition of the infinitesimal generator.
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Proposition 6.1.12. Suppose that (A,C) is exactly observable in time τ0. If z0 ∈ X
and τ > τ0 are such that Ψτz0 ∈ H1((0, τ); Y ), then z0 ∈ D(A). For τ = τ0, the
implication is not true in general.

Proof. Denote y = Ψτz0, so that y ∈ H1((0, τ); Y ). Extend y to a function in
H1((0,∞); Y ) (still denoted by y). It follows from Lemma 6.1.11 that

sup
ε∈(0,τ−τ0)

τ0∫

0

∥∥∥∥
y(t + ε)− y(t)

ε

∥∥∥∥
2

Y

dt < ∞ .

Since, for almost every t ∈ [0, τ0], y(t+ ε)− y(t) = (Ψτ0(Tε− I)z0)(t), it follows that

sup
ε∈(0,τ−τ0)

∥∥∥∥Ψτ0

Tε − I

ε
z0

∥∥∥∥
L2([0,τ0];Y )

< ∞ .

Because of the definition of the exact observability we get that

sup
ε∈(0,τ−τ0)

∥∥∥∥
Tε − I

ε
z0

∥∥∥∥
X

< ∞ .

By Proposition 2.10.10 it follows that z0 ∈ D(A). To see that for τ = τ0 the
implication is false, consider the left-shift semigroup T on X = L2[0, 1] with point
observation at the left end. Thus A = d

dξ
, D(A) = {x ∈ H1(0, 1) | x(1) = 0} and

Cx = x(0). This system is exactly observable in time T0 = 1. However, if z0(ξ) = 1
for all ξ ∈ (0, 1), then Ψ1z0 ∈ H1(0, 1) but z0 6∈ D(A).

Proposition 6.1.13. Assume that (A,C) is final state observable and C is infinite-
time admissible for T. Then T is exponentially stable.

Proof. As usual, we denote by Ψ the extended output map of (A,C). Infinite-time
admissibility means that Ψ ∈ L(X, L2([0,∞); Y )), so that there exists K > 0 with

∞∫

0

‖(Ψz0)(t)‖2dt 6 K2‖z0‖2 ∀ z0 ∈ X.

Final state observability means that there exist τ > 0 and kτ > 0 such that

‖Ψτz0‖ > kτ‖Tτz0‖ ∀ z0 ∈ X.

Notice that his implies that for every T > 0,

τ+T∫

T

‖(Ψz0)(t)‖2dt =

τ∫

0

‖(ΨτTT z0)(t)‖2 > k2
τ‖Tτ+T z0‖2 ∀ z0 ∈ X.
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Hence,

K2‖z0‖2 >
∑

k∈N

kτ∫

(k−1)τ

‖(Ψz0)(t)‖2dt > k2
τ

∑

k∈N
‖Tkτz0‖2 . (6.1.2)

In particular, we see from the above that ‖Tkτ‖ 6 K
kτ

for every k ∈ N (and this
holds also for k = 0). Hence, for every n ∈ N and every z0 ∈ X,

‖Tnτz0‖2 =
1

n

n∑

k=1

‖T(n−k)τTkτz0‖2 6 K2

nk2
τ

n∑

k=1

‖Tkτz0‖2 .

By (6.1.2) we get that

‖Tnτz0‖2 6 K2

nk2
τ

· K2

k2
τ

‖z0‖2 ,

whence ‖Tnτ‖ < 1 for some large n. According to the definition (2.1.3) of the growth
bound, T is exponentially stable.

The following corollary is known as Datko’s theorem.

Corollary 6.1.14. The semigroup T has the property

∞∫

0

‖Ttz0‖2dt < ∞ ∀ z0 ∈ X,

if and only if it is exponentially stable.

Proof. The “if” part is obvious. To prove the “only if” part, first notice that the
condition in the corollary implies that there exists K > 0 such that

∞∫

0

‖Ttz0‖2dt 6 K2‖z0‖2 ∀ z0 ∈ X.

This follows from the closed graph theorem, applied to the operator that maps z0

into the function t 7→ Ttz0. Hence, the identity I is an infinite-time admissible
observation operator for T (with the output space X).

Take τ > 0 and let M > 1 be such that ‖Tt‖ 6 M for all t ∈ [0, τ ]. Then

‖Tτz0‖2 =
1

τ

τ∫

0

‖Tτ−tTtz0‖2dt 6 M2

τ

τ∫

0

‖Ttz0‖2dt ∀ z0 ∈ X,

which shows that (A, I) is final state observable in time τ . Now we can apply
Proposition 6.1.13 to conclude that T is exponentially stable.

Proposition 6.1.15. Suppose that (A,C) is exactly observable and that

lim
η→ 0

‖Ψη‖ = 0 .

Then T is bounded from below (i.e., left-invertible).
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Proof. Let τ0 > 0 and k > 0 be such that ‖Ψτ0z‖ > k‖z‖ for all z ∈ X. We have
for all η ∈ (0, τ0) and z ∈ D(A), using the dual composition property (4.3.2), that

k2‖z‖2 6 ‖Ψτ0z‖2 = ‖Ψηz‖2 + ‖Ψτ0−ηTηz‖2 6 ‖Ψη‖2‖z‖2 + ‖Ψτ0‖2‖Tηz‖2

(we have used that ‖Ψτ0−η‖ 6 ‖Ψτ0‖). Hence we have that

‖Tηz‖2 > k2 − ‖Ψη‖2

‖Ψτ0‖2
‖z‖2 .

For η sufficiently small, the above fraction becomes positive.

6.2 Some examples based on the string equation

In this section we give several simple examples of exactly observable systems based
on the string equation, as discussed in Examples 2.7.13 and 2.7.15.

Denote X = H1
0(0, π)× L2[0, π] and A : D(A) → X is defined by

D(A) =
[H2(0, π) ∩H1

0(0, π)
]×H1

0(0, π) , (6.2.1)

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) . (6.2.2)

Define ϕn(x) =
√

2
π

sin(nx), for every n ∈ Z∗. We recall from Example 2.7.13 that

the family (φn)n∈Z∗ defined by

φn =
1√
2

[
1
in

ϕn

ϕn

]
∀ n ∈ Z∗ , (6.2.3)

is an orthonormal basis in X formed by eigenvectors of A and that the corresponding
eigenvalues are λn = in, with n ∈ Z∗. We also recall from Example 2.7.13 that A
generates a unitary group T on X, which is given by

Tt

[
f
g

]
=

1√
2

∑

n∈Z∗
eint

(
i

n

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

)
φn . (6.2.4)

Recall from Remark 2.7.14 that the interpretation in terms of PDEs of the above
facts is the following: for f ∈ H2(0, π) ∩ H1

0(0, π) and g ∈ H1
0(0, π), there exists a

unique function w continuous from [0,∞) to H2(0, π) ∩ H1
0(0, π) and continuously

differentiable from [0,∞) to H1
0(0, π), satisfying (2.7.3).

Our first result concerns the string equation with Neumann boundary observation.

Proposition 6.2.1. Let X = H1
0(0, π)×L2[0, π] and let A be the operator defined by

(6.2.1), (6.2.2). Denote Y = C and consider the observation operator C ∈ L(X1, Y )
defined by

C

[
f
g

]
=

df

dx
(0) ∀

[
f
g

]
∈ D(A) . (6.2.5)

Then the pair (A,C) is exactly observable in any time τ > 2π. For τ < 2π, the
pair (A,C) is not approximately observable in time τ .
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Proof. By using formulas (6.2.3) and (6.2.4), we have that, for all

[
f
g

]
∈ D(A),

CTt

[
f
g

]
=

1√
2π

∑

n∈Z∗
eint

(〈
df

dx
, ψn

〉

L2[0,π]

− i〈g, ϕn〉L2[0,π]

)
, (6.2.6)

where ψn(x) =
√

2
π

cos(nx) for all n ∈ Z. The above formula and the orthogonality

of the family (eint)n∈Z∗ in L2[0, 2π] imply that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt =
∑

n∈Z∗

∣∣∣∣∣
〈

df

dx
, ψn

〉

L2[0,π]

− i〈g, ϕn〉L2[0,π]

∣∣∣∣∣

2

. (6.2.7)

Since ϕ−n = −ϕn and ψ−n = ψn, from (6.2.7) it follows that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt = 2
∑

n∈N




∣∣∣∣∣
〈

df

dx
, ψn

〉

L2[0,π]

∣∣∣∣∣

2

+
∣∣〈g, ϕn〉L2[0,π]

∣∣2

 .

The above relation, together with the facts that (ψn)n>0 and (ϕn)n>1 are orthonormal
bases in L2[0, π], implies that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt = 2

∥∥∥∥
[
f
g

]∥∥∥∥
2

∀
[
f
g

]
∈ D(A).

This clearly implies that C is an admissible observation operator for T and that
(A,C) is exactly observable in any time τ > 2π.

In order to show that (A,C) is not approximately observable in any time τ < 2π,
we first notice that from (6.2.6) it follows, by density, that the output map Ψτ of
(A,C) is given by the right-hand side of (6.2.6), for every

[
f
g

] ∈ X. On the other
hand, for 0 < τ < 2π we take F ∈ L2[0, 2π], F 6≡ 0, satisfying F (t) = 0 for t ∈ [0, τ ]

and
∫ 2π

0
F (t)dt = 0. It follows that there exists a sequence c = (cn)n∈Z∗ ∈ l2, c 6= 0

such that

F (t) =
∑

n∈Z∗
cneint ,

the convergence being understood in L2[0, 2π]. Using the fact, easy to check, that
for every sequence c ∈ l2(Z∗) different from zero there exist

[
f
g

] ∈ X \ [ 0
0 ] such that

〈
df

dx
, ψn

〉

L2[0,π]

− i〈g, ϕn〉L2[0,π] =
√

2πcn ∀ n ∈ Z∗ ,

it follows that there exists
[

f
g

] ∈ X \ [ 0
0 ] such that Ψτ

[
f
g

]
= 0 in L2[0, τ ]. Thus the

pair (A,C) is not approximately observable in any time τ < 2π.
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Remark 6.2.2. In terms of PDEs, the above proposition can be restated as follows:
for every τ > 2π there exists kτ > 0 such that the solution w of (2.7.3) satisfies

τ∫

0

∣∣∣∣
∂w

∂x
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖f‖2

H1
0(0,π) + ‖g‖2

L2[0,π]

)
∀

[
f
g

]
∈ X1 .

Moreover, the above estimate is false for every τ < 2π and kτ > 0.

The next example concerns the string equation with distributed observation.

Proposition 6.2.3. Let X = H1
0(0, π) × L2[0, π] and let A be the operator defined

by (6.2.1), (6.2.2). Denote Y = L2[0, π], take ξ, η ∈ [0, π] with ξ < η and consider
the observation operator C ∈ L(X1, Y ) defined by

C

[
f
g

]
= gχ[ξ,η] ∀

[
f
g

]
∈ X1 , (6.2.8)

where χ[ξ,η] is the characteristic function of [ξ, η] ⊂ [0, π].

Then the pair (A,C) is exactly observable in any time τ > 2π.

Proof. Since C is bounded, it is an admissible observation operator for T. More-
over, following the same steps as in the proof of Proposition 6.2.1 we obtain that

2π∫

0

∥∥∥∥CTt

[
f
g

]∥∥∥∥
2

dxdt =
1

4

∑

n∈Z∗

∣∣∣∣∣i
〈

df

dx
, ψn

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

∣∣∣∣∣

2 η∫

ξ

|ϕn|2dx.

The sequence n 7→ ∫ η

ξ
|ϕn(x)|2dx converges to 1

2
(η − ξ), hence it is bounded away

from zero. From here we can deduce, using a similar reasoning as in the proof of
Proposition 6.2.1, that (A,C) is exactly observable in any time τ > 2π.

Remark 6.2.4. If we consider again the initial and boundary value problem (2.7.3),
the last proposition implies that that for every τ > 2π there exists kτ > 0 such that

τ∫

0

η∫

ξ

∣∣∣∣
∂w

∂t
(x, t)

∣∣∣∣
2

dxdt > k2
τ

(
‖f‖2

H1
0(0,π) + ‖g‖2

L2[0,π]

)
, (6.2.9)

holds for every f ∈ H2(0, π) ∩H1
0(0, π) and g ∈ H1

0(0, π).

In the remaining part of this section we consider a related but different semigroup,
corresponding to a vibrating string of length π with a Neumann boundary condition
at x = 0, as discussed in Example 2.7.15. We denote X = H1

R(0, π)×L2[0, π], where

H1
R(0, π) = {f ∈ H1(0, π) |f(π) = 0} ,
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with the inner product as in (2.7.4), and A : D(A) → X is defined by

D(A) =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
×H1

R(0, π) , (6.2.10)

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) . (6.2.11)

For n ∈ N, denote ϕn(x) =
√

2
π

cos
[(

n− 1
2

)
x
]

and µn = n − 1
2
. If −n ∈ N we

set ϕn = −ϕ−n and µn = −µ−n. We recall from Example 2.7.15 that the family
(φn)n∈Z∗ defined by

φn =
1√
2

[
1

iµn
ϕn

ϕn

]
∀ n ∈ Z∗ , (6.2.12)

is an orthonormal basis in X formed by eigenvectors of A and the corresponding
eigenvalues are λn = iµn, with n ∈ Z∗. We also recall from Example 2.7.15 that A
generates a unitary group T on X, which is given by

Tt

[
f
g

]
=

1√
2

∑

n∈Z∗
eiµnt

(
i

µn

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

)
φn . (6.2.13)

The interpretation of T in terms of PDEs has been discussed starting with (2.7.7).

Proposition 6.2.5. Let X = H1
R(0, π)× L2[0, π] and let A be the operator defined

by (6.2.10), (6.2.11). Consider the observation operator C ∈ L(X1,C) defined by

C

[
f
g

]
= g(0) ∀

[
f
g

]
∈ D(A) . (6.2.14)

Then C is an admissible observation operator for the semigroup T generated by A
and the pair (A,C) is exactly observable in any time τ > 2π. For τ < 2π, the pair
(A,C) is not approximatively observable in time τ .

Proof. By using formulas (6.2.12) and (6.2.13), we have that, for all

[
f
g

]
∈ D(A),

CTt

[
f
g

]
=

1√
π

∑

n∈Z∗
eiµnt

(
i

µn

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

)
. (6.2.15)

The above formula and the orthogonality of the family (eiµnt)n∈Z∗ in L2[0, 2π] imply
that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt =
∑

n∈Z∗

∣∣∣∣∣
i

µn

〈
df

dx
,
dϕn

dx

〉

L2[0,π]

+ 〈g, ϕn〉L2[0,π]

∣∣∣∣∣

2

. (6.2.16)
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Since ϕ−n = −ϕn and µ−n = µn, from (6.2.16) it follows that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt = 2
∑

n∈N


 1

µ2
n

∣∣∣∣∣
〈

df

dx
,
dϕn

dx

〉

L2[0,π]

∣∣∣∣∣

2

+
∣∣〈g, ϕn〉L2[0,π]

∣∣2

 .

The above relation, together with the facts that
(

1
µn

dϕn

dx

)
n∈N

and (ϕn)n∈N are or-

thonormal in L2[0, π], implies that

2π∫

0

∣∣∣∣CTt

[
f
g

]∣∣∣∣
2

dt = 2

∥∥∥∥
[
f
g

]∥∥∥∥
2

∀
[
f
g

]
∈ D(A).

This clearly implies that C is an admissible observation operator for T and that
(A, C) is exactly observable in any time τ > 2π.

In order to show that (A,C) is not approximately observable in any time τ < 2π,
we can follow the same steps as in the proof of the similar result in Proposition
6.2.1, so that we skip the details.

Remark 6.2.6. In terms of PDEs, the above proposition can be restated as follows:
for every τ > 2π there exists kτ > 0 such that the solution w of (2.7.7) satisfies

τ∫

0

∣∣∣∣
∂w

∂t
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖f‖2

H1(0,π) + ‖g‖2
L2[0,π]

)
∀

[
f
g

]
∈ X1 .

Moreover, the above estimate is false for every τ < 2π and kτ > 0.

Let us compute the space X−1 for the generator A defined in (6.2.10) and (6.2.11).
For this, notice that A fits the framework of Proposition 3.7.6, with H = L2[0, π],

H1 =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
,

A0 = − d2

dx2 , H 1
2

= H1
R(0, π). According to Proposition 3.7.6, X−1 = H×H− 1

2
, where

H− 1
2

=
(H1

R(0, π)
)′

(the dual of H1
R(0, π) with respect to the pivot space L2[0, π]). We would like to

have a more concrete description of the space H− 1
2
. For this, define q : [0, π]→C by

q(x) =
π − x

π

and notice that every f ∈ H1
R(0, π) has the orthogonal decomposition

f(x) = f0(x) + f(0)q(x) , f0 ∈ H1
0(0, π) .
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Hence, every v ∈ H− 1
2

can be thought of as a pair (v0, α) ∈ H−1(0, π)×C such that

〈v, f〉H− 1
2

,H 1
2

= 〈(v0, α), f0 + f(0)q〉H− 1
2

,H 1
2

= 〈v0, f0〉H−1,H1
0
+ αf(0) .

In the next proposition and its proof, we deviate from our habit of denoting
extensions of an operator by the same symbol as the original operator.

Corollary 6.2.7. We denote by T̃ be the extension of the operator semigroup from
Proposition 6.2.5 to the space X−1 = L2[0, π]× (H1

R(0, π))′, so that its generator is
Ã : X→X−1, an extension of A from Proposition 6.2.5. We define the observation
operator C̃ ∈ L(X,C) by

C̃

[
f
g

]
= f(0) ∀

[
f
g

]
∈ X. (6.2.17)

Then C̃ is an admissible observation operator for T̃ and the pair (Ã, C̃) is exactly
observable in any time τ > 2π. For τ < 2π, the pair (Ã, C̃) is not approximatively
observable in time τ .

This corollary follows from Proposition 6.2.5 together with Remark 6.1.3 (with
X−1 in place of X). Note that in terms of PDEs, the first part of the conclusion of
the above corollary can be restated as follows: for every τ > 2π there exists kτ > 0
such that the solution w of (2.7.7) satisfies

τ∫

0

|w(0, t)|2 dt > k2
τ

(
‖f‖2

L2[0,π] + ‖g‖2
(H1

R(0,π))′

)
∀

[
f
g

]
∈ X1 .

6.3 Robustness of exact observability with respect to ad-
missible perturbations of the generator

In this section we show that if (A,C1) is exactly observable in time τ then for
certain possibly unbounded perturbations P , the pair (A + P, C1) is again exactly
observable in time τ . We decompose P = BC, with C = DC1 + C2, where B,D are
bounded and C2 is admissible (like C1). We show that if C2 is small in a suitable
sense, then exact observability is preserved. The operator B could be omitted from
this theory without loss of generality (by taking B = I). However, we have included
it, because its presence corresponds more to the engineering intuition, where the
output y = Cz is in a different space from the state. We also include a version of
our main result where C2 is only small on an (A + P )-invariant subspace of X, and
we conclude that the exact observability estimate remains true on this subspace.
This system is shown as a block diagram in Figure 6.1.

As usual in this chapter, T will denote a strongly continuous semigroup on X, with
generator A, X1 = D(A) with the graph norm, and Y1, Y are other Hilbert spaces.
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- (sI−A)−1B

?

C2

?h
+

+

- C1
-

¾D¾

z

y = Cz

y1

Figure 6.1: The block diagram of the system ż = Az+By with the feedback y = Cz,
where C = DC1 + C2. If (A,C1) is exactly observable and C2 is sufficiently small,
then (A + BC, C1) is exactly observable.

———————

For every τ > 0, we introduce the following norm on the space of all admissible
observation operators in L(X1, Y ):

|||C|||τ = sup
‖z0‖61




τ∫

0

‖Ψz0(t)‖2dt




1
2

= ‖Ψτ‖L(X,L2([0,∞);Y )) ,

where Ψ and Ψτ are as in Section 4.3. If C ∈ L(X1, Y ) is not admissible, then we
set |||C|||τ = ∞. This norm is useful for estimating the norm of an input-output
operator on the interval [0, τ ], as the following proposition shows.

Proposition 6.3.1. Suppose that C ∈ L(X1, Y ) is an admissible observation oper-
ator for T, U is a Hilbert space and B ∈ L(U, Y ). Let Fω be the input-output maps
associated with the transfer function C(sI −A)−1B, as in Lemma 5.4.1. We regard
PτFω = PτFωPτ as an operator in L(L2([0, τ ]; U), L2([0, τ ]; Y )). Then

‖PτFω‖L(L2[0,τ ]) 6
√

τ |||C|||τ · ‖B‖ .

Proof. As in the first step of the proof of Theorem 5.4.2, we consider u ∈
H1

comp((0,∞); U). Then we can see that Fωu is independent of ω and it is a contin-
uous Y -valued function given by

(Fωu)(t) = C

t∫

0

Tt−σBu(σ)dσ ∀ t > 0 .

We denote by Ψ the extended output map of (A,C). Let ϕ ∈ L2([0, τ ]; Y ). We
have, using Fubini’s theorem,

〈Fωu, ϕ〉L2([0,τ ];Y ) =

τ∫

0

t∫

0

〈[ΨBu(σ)] (t− σ), ϕ(t)〉Y dσ dt

=

τ∫

0

τ−σ∫

0

〈[ΨBu(σ)] (µ), ϕ(µ + σ)〉Y dµ dσ.
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Applying the Cauchy-Schwarz inequality for the integral with respect to µ, we obtain

|〈Fωu, ϕ〉L2([0,τ ];Y )| 6
τ∫

0

‖ΨBu(σ)‖L2([0,τ ];Y ) · ‖ϕ‖L2([0,τ ];Y )dσ

6 |||C|||τ · ‖B‖ · ‖ϕ‖L2([0,τ ];Y )

τ∫

0

‖u(σ)‖U dσ.

Since this is true for every ϕ ∈ L2([0, τ ]; Y ), we conclude that

‖PτFωu‖ 6 |||C|||τ · ‖B‖ · ‖u‖L1([0,τ ];U) 6 |||C|||τ · ‖B‖ ·
√

τ · ‖u‖L2([0,τ ];U) .

Since H1([0, τ ]; U) is dense in L2([0, τ ]; U), our claim follows.

Theorem 6.3.2. Suppose that C1 ∈ L(X1, Y1) is an admissible observation operator
for T and (A,C1) is exactly observable in time τ > 0, i.e., there exists kτ > 0 such
that τ∫

0

‖C1Ttz0‖2dt > k2
τ‖z0‖2 ∀ z0 ∈ D(A) .

Let B ∈ L(Y, X) and D ∈ L(Y1, Y ). If C2 ∈ L(X1, Y ) satisfies

|||C2|||τ 6 kτ√
τ ‖B‖ (|||C1|||τ + kτ )

, (6.3.1)

then denoting
C = DC1 + C2 ,

we have that (A + BC, C1) is exactly observable in time τ .

Proof. We know from Theorem 5.4.2 that A + BC, with D(A + BC) = D(A),
generates a strongly continuous semigroup Tcl on X. From the same theorem we
also know that C1 and C2 (and hence also C) are admissible for Tcl (both of these
statements are true regardless if the estimate (6.3.1) holds).

Our plan is to consider first the case D = 0, which means that C = C2, and to
determine a sufficient condition for (A + BC2, C1) to be exactly observable in time
τ . Afterwards, we show that the additional feedback through D has no influence on
the exact observability. We shall use the notation C in place of C2.

As in Theorem 5.4.2 and Proposition 5.4.3, we use the following notation: Ψ and
Ψ1 are the extended output maps of (A,C) and (A, C1), respectively. Similarly,
Ψcl and Ψ1,cl are the extended output maps of (A + BC, C) and (A + BC, C1),
respectively. All these operators can be truncated to the interval [0, τ ], and then
they get a subscript τ , as in Section 4.3. Thus, for example, Ψ1,cl

τ = PτΨ
1,cl, where

Pτ is as in Chapter 4. The operators Fω and F1
ω are the input-output maps associated

with the transfer functions C(sI−A)−1B and C1(sI−A)−1B, respectively, and they
are defined on L2

ω([0,∞); Y ), where ω > ω0(T).
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We know from Proposition 5.4.3 that

Ψcl = (I − Fω)−1Ψ , Ψ1,cl = Ψ1 + F1
ωΨcl . (6.3.2)

From the causality of F1
ω (see (5.4.3)) we know that PτF1

ω = PτF1
ωPτ . Using this

we apply Pτ to both sides of the second equation in (6.3.2) to obtain

Ψ1,cl
τ = Ψ1

τ + PτF1
ωΨcl

τ . (6.3.3)

If we regard PτF1
ω as an operator from L2([0, τ ]; Y ) to L2([0, τ ]; Y1), then according

to Proposition 6.3.1 it satisfies ‖PτF1
ω‖ 6 √

τ |||C1|||τ‖B‖. Hence, for every z0 ∈ X,

‖Ψ1,cl
τ z0‖ > ‖Ψ1

τz0‖ − ‖PτF1
ω‖ · ‖Ψcl

τ z0‖

> kτ‖z0‖ −
√

τ |||C1|||τ · ‖B‖ · ‖Ψcl
τ z0‖ . (6.3.4)

We rewrite the first formula in (6.3.2) in the form (I − Fω)Ψcl = Ψ, and we apply
Pτ to both sides. The causality of Fω (see (5.4.3)) implies that PτFω = PτFωPτ , so
that we get the equation

(I −PτFω)Ψcl
τ = Ψτ , (6.3.5)

with both sides in L(L2([0.τ ]; Y )). According to Proposition 6.3.1 we have

‖PτFω‖ 6
√

τ |||C|||τ · ‖B‖ .

This with (6.3.5) shows that if

|||C|||τ <
1√

τ ‖B‖ , (6.3.6)

then ‖Ψcl
τ ‖ 6 |||C|||τ

1−√τ |||C|||τ · ‖B‖ .

Substituting this into (6.3.4), we obtain that if (6.3.6) holds, then

‖Ψ1,cl
τ z0‖ > kτ‖z0‖ −

√
τ |||C1|||τ · ‖B‖ · |||C|||τ
1−√τ |||C|||τ · ‖B‖ · ‖z0‖ ,

for all z0 ∈ X. Thus, if (6.3.6) holds and

√
τ |||C1|||τ · ‖B‖ · |||C|||τ
1−√τ |||C|||τ · ‖B‖ < kτ ,

then Ψ1,cl
τ is bounded from below, i.e., (A + BC, C1) is exactly observable in time τ .

The last inequality is equivalent to

|||C|||τ 6 kτ√
τ ‖B‖ (|||C1|||τ + kτ )

.

This condition implies (6.3.6), so we do not have to impose also (6.3.6). Thus, we
got the condition in the theorem, for the particular case when D = 0.
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Now assume that the closed-loop system corresponding to D = 0, i.e., the pair
(A + BC2, C1), is exactly observable in time τ . The extended output map of this
system is Ψ1,cl from the earlier part of this proof. We denote by ΨD the extended
output map of the closed-loop system with an arbitrary D ∈ L(Y1, Y ), i.e., the
extended output map of the pair (A+BC2 +BDC1, C1). This pair is obtained from
(A + BC2, C1) through the perturbation BDC1 of the generator. We denote by FD

ω

the input-output maps corresponding to the transfer function

GD(s) = C1(sI − (A + BC2))
−1B,

In this new situation (having now A + BC2 in place of A and DC1 in place of C2)
the second formula in (6.3.2) becomes

ΨD = Ψ1,cl + FD
ω DΨD .

Indeed, DΨD corresponds to what used to be Ψcl in the earlier part of the proof.
Applying Pτ to both sides and using the causality of FD, we obtain

ΨD
τ = Ψ1,cl

τ + PτFD
ω DΨD

τ . (6.3.7)

We claim that I − PτFD
ω D is invertible. We know from (5.4.2) and (5.4.5) (with

A + BC2 in place of A and C1 in place of C) that for ω large enough, we have
‖FD

ω D‖ < 1, hence I − FD
ω D is invertible as an operator on L2

ω([0,∞); Y1). Both
this operator and its inverse are causal. It follows that the part of I − FD

ω D acting
[0, τ ], namely I − PτFD

ω D, is invertible as an operator on L2([0, τ ]; Y1). (This can
be checked by verifying that its inverse is the part of (I − FD

ω D)−1 acting on [0, τ ].)

From (6.3.7) we now see that

ΨD
τ = (I −PτFD

ω D)−1Ψ1,cl
τ .

Since Ψ1,cl
τ is bounded from below, as shown earlier, so is ΨD

τ .

In certain arguments, we need a version of the last theorem in which the pertur-
bation is small only on a closed invariant subspace of the closed-loop semigroup,
and we conclude exact observability only on this subspace. To simplify matters, we
assume that the perturbation is bounded and we do not assume a decomposition of
the perturbation as in Theorem 6.3.2.

Proposition 6.3.3. Suppose that C ∈ L(X1, Y ) is an admissible observation oper-
ator for T. Assume that (A,C) is exactly observable in time τ > 0, i.e., there exists
kτ > 0 such that 


τ∫

0

‖CTtz0‖2dt




1
2

> kτ‖z0‖ ∀ z0 ∈ D(A) .

Let P ∈ L(X) and let Tcl be the strongly continuous semigroup on X generated by
A + P . Let V be a closed invariant subspace of Tcl and let PV ∈ L(V,X) be the
restriction of P to V . Denote

MV = sup
{‖Tcl

t z0‖
∣∣ t ∈ [0, τ ] , z0 ∈ V , ‖z0‖ 6 1

}
.
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If
‖PV ‖ 6 kτ

τ MV |||C|||τ , (6.3.8)

then (A + P, C) is exactly observable in time τ on V , i.e., there exists kV
τ > 0 such

that 


τ∫

0

‖CTcl
t z0‖2dt




1
2

> kV
τ ‖z0‖ ∀ z0 ∈ V ∩ D(A) .

Proof. This proof resembles the first part of the proof of Theorem 6.3.2. We know
from Theorem 5.4.2 that A + P generates a strongly continuous semigroup Tcl on
X. From the same theorem we also know that C is admissible for Tcl.

We use the following notation: Ψ and ΨP are the extended output maps of (A, C)
and (A,P ), respectively. Similarly, Ψcl and ΨP,cl are the extended output maps
of (A + P,C) and (A + P, P ), respectively. All these operators can be truncated
to the interval [0, τ ], and then they get a subscript τ . The operators Fω and FP

ω

are the input-output maps associated with the transfer functions C(sI − A)−1 and
P (sI −A)−1, respectively, and they are defined on L2

ω([0,∞); X), where ω > ω0(T).

We know from Proposition 5.4.3 that

ΨP,cl = (I − FP
ω )−1ΨP , Ψcl = Ψ + FωΨP,cl . (6.3.9)

From the causality of Fω (see (5.4.3)) we know that PτFω = PτFωPτ . Using this
we apply Pτ to both sides of the second equation in (6.3.9) to obtain

Ψcl
τ = Ψτ + PτFωΨP,cl

τ . (6.3.10)

If we regard PτFω as an operator from L2([0, τ ]; X) to L2([0, τ ]; Y ), then according
to Proposition 6.3.1 it satisfies ‖PτFω‖ 6 √

τ |||C|||τ . Hence, for every z0 ∈ X,

‖Ψcl
τ z0‖ > ‖Ψτz0‖ − ‖PτFω‖ · ‖ΨP,cl

τ z0‖
> kτ‖z0‖ −

√
τ |||C|||τ · ‖ΨP,cl

τ z0‖ . (6.3.11)

It is easy to see that for every z0 ∈ V ,

‖ΨP,cl
τ z0‖2 =

τ∫

0

‖PTcl
t z0‖2dt 6 ‖PV ‖2τ M2

V ‖z0‖2 .

Substituting this into (6.3.11) we obtain

‖Ψcl
τ z0‖ > kτ‖z0‖ − τ |||C|||τ · ‖PV ‖ ·MV ‖z0‖ .

Thus, if
τ |||C|||τ · ‖PV ‖ ·MV < kτ ,

then Ψcl
τ is bounded from below, i.e., (A+P,C) is exactly observable in time τ . The

last inequality is equivalent to the condition (6.3.8).
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6.4 Simultaneous exact observability

In this section we investigate the simultaneous (exact or approximate) observability
of two systems. This concept means that by observing the sum of their outputs, we
can recover the initial states of both systems.

Definition 6.4.1. For j ∈ {1, 2}, let Aj be the generator of a strongly continuous
semigroup Tj acting on the Hilbert space Xj. Let Y be a Hilbert space and let
Cj ∈ L(Xj

1 , Y ) be an admissible observation operator for Tj. For τ > 0 we denote
by Ψj the output map associated to (Aj, Cj), as defined in Section 4.3.

The pairs (Aj, Cj) are called simultaneously exactly observable in time τ > 0, if
there exists kτ > 0 such that for all (z1

0 , z
2
0) ∈ D(A1)×D(A2) we have

‖Ψ1
τz

1
0 + Ψ2

τz
2
0‖L2([0,τ ];Y ) > kτ

(‖z1
0‖X1 + ‖z2

0‖X2

)
. (6.4.1)

The same pairs are called simultaneously approximately observable in time τ > 0, if
the fact that (z1

0 , z
2
0) ∈ X1 ×X2 satisfies

Ψ1
τz

1
0 + Ψ2

τz
2
0 = 0, for almost every t ∈ [0, τ ], (6.4.2)

implies that (z1
0 , z

2
0) = (0, 0).

The main result of this section is the following :

Theorem 6.4.2. Let A be the generator of the strongly continuous semigroup T on
X. Let Y be another Hilbert space, let C ∈ L(X1, Y ) be an admissible observation
operator for T and assume that (A, C) is exactly observable in time τ0 > 0. Let
a ∈ L(Cn) and c ∈ L(Cn, Y ) be such that (a, c) is observable. Assume that A and
a have no common eigenvalues. Then the pairs (A,C) and (a, c) are simultaneously
exactly observable in any time τ > τ0.

First we prove the following approximate observability result.

Lemma 6.4.3. Suppose that (A,C), (a, c) and τ0 satisfy the assumptions of The-
orem 6.4.2. Then these two pairs are simultaneously approximately observable in
time τ , for every τ > τ0.

Proof. Let τ > τ0 be fixed and let Ψτ be the output map associated to (A,C).
Denote by V the set of all v0 ∈ Cn such that there exists a z0 ∈ X with

(Ψτz0)(t) + ceatv0 = 0, for almost every t ∈ [0, τ ] . (6.4.3)

The approximate observability of (A,C) in time τ0 implies that for every z0 ∈ X, the
function Ψτz0 determines z0. By (6.4.3), this function is determined by v0. Thus, if
v0 ∈ V , then z0 satisfying (6.4.3) is unique and depends linearly on v0 : z0 = Tv0.
Since the function t→ ceatv0 is smooth, by Proposition 6.1.12 we have that

Tv0 ∈ D(A), ∀ v0 ∈ V .
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Now we show that for all v0 ∈ V , we have

Tav0 = ATv0 . (6.4.4)

Indeed, by differentiating (6.4.3) with respect to time and using Proposition 4.3.4,
we obtain that

(ΨτAT v0)(t) + ceatav0 = 0 , (6.4.5)

for almost every t ∈ [0, τ ], which shows that av0 ∈ V and (6.4.4) holds.

Let ã denote the restriction of a to its invariant subspace V . If V 6= {0}, then
ã must have an eigenvalue λ ∈ σ(a) and a corresponding eigenvector ṽ. Formula
(6.4.4) implies that AT ṽ = λT ṽ. Since T is one-to-one, we have that T ṽ 6= 0, so that
λ is an eigenvalue of A. This is in contradiction to the assumption in Theorem 6.4.2
that A and a have no common eigenvalues. Hence we must have V = {0}. Thus,
(6.4.3) implies that (z0, v0) = (0, 0), so that (A,C) and (a, c) are simultaneously
approximately observable in time τ .

Proof of Theorem 6.4.2. Let τ > τ0 be fixed. We need to show that the pair

A =

[
A 0
0 a

]
, C =

[
C c

]
(6.4.6)

is exactly observable in time τ . We already know from Lemma 6.4.3 that (A, C) is
approximately observable in time τ . Let Qτ denote the observability Gramian for
time τ of (A, C), so that Ker Qτ = {0} (see Remark 6.1.4). We partition Qτ in a
natural way, according to the product space X × Cn:

Qτ =

[
Qτ L
L∗ qτ

]
.

We want to show that Qτ > 0. It is not difficult to see that Qτ is the observability
Gramian for time τ of (A,C) and qτ is the observability Gramian for time τ of (a, c).
As (A,C) and (a, c) are exactly observable in time τ , by Remark 6.1.4, Qτ > 0 and
qτ > 0. We bring in the Schur-type factorization

[
Qτ L
L∗ qτ

]
=

[
Qτ 0
L∗ I

] [
Q−1

τ 0
0 ∆

] [
Qτ L
0 I

]
,

where ∆ = qτ − L∗Q−1
τ L (this is checked by multiplying out). Notice that the

first factor is the adjoint of the last, and they are invertible. Therefore, ∆ > 0
and we have Qτ > 0 if (and only if) the middle factor is strictly positive (i.e.,
> 0). Since obviously Q−1

τ > 0, we see that Qτ > 0 if (and only if) ∆ > 0. Since
Ker Qτ = {0}, from the factorization we see that Ker ∆ = {0}. But ∆ is a matrix,
so that Ker ∆ = {0} and ∆ > 0 implies that ∆ > 0. Thus we have proved that
Qτ > 0. By Remark 6.1.4, (A, C) is exactly observable in time τ .

The simultaneous observability result that we have just proved enables us to tackle
exact observability problems for diagonalizable semigroups by separating the high
frequencies from the low frequencies, as the following proposition shows. For this,
we have to recall the concept of the part of A in V , as introduced in Section 2.3.
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Proposition 6.4.4. Assume that there exists an orthonormal basis (φk)k∈N formed
of eigenvectors of A and the corresponding eigenvalues λk satisfy lim |λk| = ∞. Let
C ∈ L(X1, Y ) be an admissible observation operator for T. For some bounded set
J ⊂ C denote

V = span {φk | λk ∈ J}⊥

and let AV be the part of A in V . Let CV be the restriction of C to D(AV ). Assume
that (AV , CV ) is exactly observable in time τ0 > 0 and that Cφ 6= 0 for every
eigenvector φ of A. Then (A,C) is exactly observable in any time τ > τ0.

Proof. Denote by a the part of A in V ⊥ (which is finite-dimensional) and let c be
the restriction of C to V ⊥. Since Cφ 6= 0 for every eigenvector φ, according to the
finite-dimensional Hautus test (a, c) is observable (see Remark 1.5.2). Since AV and
a have no common eigenvalues, we can apply Theorem 6.4.2 to get that the pairs
(AV , CV ) and (a, c) are simultaneously exactly observable in any time τ > τ0. Thus
(A,C) is exactly observable in any time τ > τ0.

Finally, we give a result on simultaneous approximate observability. For this we
need a notation. Suppose that A be the generator of a strongly continuous semigroup
on X. We denote by ρ∞(A) the connected component of ρ(A) which contains some
right half-plane (obviously, there is only one such component). In particular, if
σ(A) is countable, as is often the case in applications, then ρ∞(A) = ρ(A). (We
have already encountered this set in Proposition 2.4.3.)

Proposition 6.4.5. Let A be the generator of the strongly continuous semigroup
T acting on X. Let C ∈ L(X1,Cm) be an admissible observation operator for T
and assume that (A,C) is approximately observable in time τ0. Let a ∈ Cn×n and
c ∈ Cm×n be matrices such that (a, c) is observable. Further, assume that

σ(a) ⊂ ρ∞(A) . (6.4.7)

Then there exists τ > 0 such that the pairs (A,C) and (a, c) are simultaneously
approximately observable in time τ .

Proof. To arrive at a contradiction, we assume that the opposite holds: (A, C)
from (6.4.6) is not approximately observable in any time. Thus, for every k ∈ N
there exist a zk ∈ X and a vk ∈ Cn such that (zk, vk) 6= (0, 0) and

(Ψk zk)(t) + ceatvk = 0 , for all t ∈ [0, k] , (6.4.8)

where Ψk is the output map of (A,C) on the interval [0, k]. It follows from the
approximate observability in time τ0 of (A,C) that for all k > τ0 we must have
vk 6= 0. Hence we may assume without loss of generality that ‖vk‖Cn = 1. By
the compactness of the unit ball in Cn, we may assume further that the sequence
(vk) is convergent: lim vk = v0. Then it follows that if we define the functions
yk ∈ L2

loc([0,∞);Cm) by

yk(t) = ceatvk , for k ∈ {0, 1, 2, ... } ,
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then lim yk = y0 (in L2
loc). Clearly (6.4.8) implies that

Ψτ0zk + Pτ0yk = 0 ∀ k > τ0 .

Since Ker Ψτ0 = {0}, the above equation shows that zk is uniquely determined
by yk, which in turn is obtained from vk. All these dependencies are linear, so that
there is an operator R : Cn→X (possibly non-unique, depending on the span of all
vk) such that zk = Rvk, for all k ∈ N. Hence, the sequence (zk) is convergent and
we put z0 = lim zk = Rv0. Now it is easy to conclude from (6.4.8) that

(Ψz0)(t) + ceatv0 = 0 , for almost every t > 0 .

Taking Laplace transforms, we obtain from the last formula that for some α ∈ R
and every s ∈ Cα,

C(sI − A)−1z0 + c(sI − a)−1v0 = 0 . (6.4.9)

By analytic continuation, this formula remains valid on ρ∞(A)\σ(a). (On the other
connected components of ρ(A) we have no such information.) Since v0 6= 0 (actually,
its norm is 1) and (a, c) is observable, the rational function c(sI−a)−1v0 is not zero.
Therefore it has poles at a nonempty subset of σ(a), which by (6.4.7) is contained
in ρ∞(A). The first term in (6.4.9) being analytic around σ(a), it follows that the
left-hand side of (6.4.9) has poles, which is absurd. Thus we have proved that (A, C)
must be approximately observable in some time τ .

Note that the last proposition says nothing about the time τ in which (A, C) is
approximately observable. If τ0 is minimal for (A,C) then of course τ > τ0.

6.5 A Hautus type necessary condition for exact
observability

We give a necessary condition for exact observability which may be regarded as a
generalization of the Hautus test for finite-dimensional systems (see Section 1.5).

Notation. In this section, X and Y are Hilbert spaces, T is an exponentially
stable semigroup on X, with generator A, and C ∈ L(X1, Y ) is an admissible
observation operator for T. Ψ is the extended output map of (A,C), which is a
bounded operator from X to L2([0,∞); Y ) (see Remark 4.3.5). We denote

C− = {s ∈ C | Re s < 0} .

The exponential stability is assumed because it simplifies the presentation, but
it is not a real restriction. Indeed, for any strongly continuous semigroup T with
generator A, we may replace A with A − λI, where λ > ω0(T), obtaining a shifted
semigroup that is exponentially stable. The admissibility of C for the original or for
the shifted semigroup are equivalent. Similarly, the exact (or approximate) observ-
ability of (A,C) in time τ is equivalent to the exact (or approximate) observability
of (A− λI, C) in time τ , as it is easy to verify.
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Definition 6.5.1. The pair (A,C) is exactly observable in infinite time if Ψ is
bounded from below. Equivalently, there is a k > 0 such that

∞∫

0

‖CTtz‖2dt > k2‖z‖2 ∀ z ∈ D(A) . (6.5.1)

The pair (A, C) is approximately observable in infinite time if Ker Ψ = {0}.

Note that the above property is equivalent to Q > 0, where Q is the infinite-time
observability Gramian of (A,C), as defined in Section 5.1.

Proposition 6.5.2. If (A,C) is exactly observable in infinite time, then this system
is exactly observable.

Proof. For any z ∈ D(A) and any τ > 0, we have

τ∫

0

‖CTtz‖2dt =

∞∫

0

‖CTtz‖2dt −
∞∫

0

‖CTtTτ x‖2dt.

Note that by Remark 4.3.5 there exists K > 0 such that

∞∫

0

‖CTtz‖2dt 6 K2‖z‖2 ∀ z ∈ D(A) .

Combining the last two formulas with (6.5.1) we obtain

τ∫

0

‖CTtz‖2dt > k2 · ‖z‖2 −K2 · ‖Tτ z‖2

>
(
k2 −K2 · ‖Tτ ‖2

) · ‖z‖2 .

Since T is exponentially stable, the paranthesis above becomes positive for τ suffi-
ciently big. For such τ , (A,C) is exactly observable.

Theorem 6.5.3. If (A,C) is exactly observable in infinite time, then there is an
m > 0 such that for every s ∈ C− and every z ∈ D(A),

1

|Re s|2 ‖(sI − A)z‖2 +
1

|Re s| ‖Cz‖2 > m · ‖z‖2 . (6.5.2)

We shall refer to (6.5.2) as the (infinite-dimensional) Hautus test.

Proof. We shall prove the following estimate: For all s ∈ C− and z ∈ D(A),

1

|Re s|2 ‖(sI − A)z‖2 +
1

|Re s| ‖Cz‖2 > µ · ‖Ψz‖2
L2 , (6.5.3)
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where 1

µ
=

1

2
+ ‖Ψ‖2 .

Clearly, this implies the theorem. We choose s ∈ C−, z ∈ D(A), we denote

q = (A− sI)z ,

and we define ξ : [0,∞)→X by ξ(t) = Ttz. Then

ξ̇(t) = TtAz = Tt (sz + q) = sξ(t) + Ttq ,

whence

ξ(t) = estz +

t∫

0

es(t−σ)Tσ qdσ.

Without loss of generality we may assume that z ∈ D(A2) (by density in X1) so
that q ∈ D(A). Then

(Ψz)(t) = Cξ(t) = estCz +

t∫

0

es(t−σ)CTσ qdσ = estCz + (es ∗Ψq)(t) ,

where ∗ denotes the convolution product and es denotes the function es(t) = est.
We use the following well-known property of convolutions:

‖u ∗ v‖L2 6 ‖u‖L1 · ‖v‖L2 ,

to obtain that

‖Ψz‖L2 6 ‖es‖L2 · ‖Cz‖+ ‖es‖L1 · ‖Ψq‖L2

6 1√
2|Re s| ‖Cz‖+

1

|Re s| ‖Ψ‖ · ‖q‖ .

Using that (αa + βb)2 6 (α2 + β2)(a2 + b2), we get

‖Ψz‖2
L2 6

(
1

2
+ ‖Ψ‖2

)[
1

|Re s|2 ‖q‖
2 +

1

|Re s| ‖Cz‖2

]
,

which is the same as (6.5.3).

Remark 6.5.4. The above theorem remains valid (with the same proof) if we
replace the exponential stability assumption on T (from the beginning of the section)
with the requirement that C is infinite-time admissible for T.

Lemma 6.5.5. Let Ã be the generator of an operator semigroup on a Hilbert space
Z. If ‖(sI − Ã)−1‖ is bounded on ρ(Ã), then Z = {0} (the trivial space).
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Proof. According to Remark 2.2.8, for every s ∈ ρ(Ã) we have

‖(sI − Ã)−1‖ > 1

min
λ∈σ(Ã)

|s− λ| .

If ‖(sI − Ã)−1‖ is bounded then it follows that σ(Ã) = ∅, so that (sI − Ã)−1 is a
bounded entire function. By Liouville’s theorem, (sI − Ã)−1 is constant. We know
from Corollary 2.3.3 that ‖(λI − Ã)−1‖ decays like 1/λ for large positive λ, so that
we must have (sI − Ã)−1 = 0, for all s ∈ C. Since the range of (sI − Ã)−1 is dense
in Z, it follows that Z = {0}.
Proposition 6.5.6. If the estimate (6.5.2) holds, then the system (A,C) is approx-
imately observable in infinite time.

Proof. It follows from (4.3.7) that

‖ΨTτ z‖ 6 ‖Ψz‖ ∀ τ > 0 . (6.5.4)

If we denote Z = Ker Ψ, then (6.5.4) implies that Z is invariant under T. Let T̃
be the restriction of T to Z, so T̃ is a strongly continuous semigroup on Z, and let
Ã be the generator of T̃. It is easy to see that

D(Ã) = D(A) ∩ Z , D(Ã) ⊂ Ker C ,

and Ã is the restriction of A to D(Ã).

Now suppose that (6.5.2) holds. Then for every s ∈ C− and every z ∈ D(Ã),

1

|Re s|2 ‖(sI − Ã)z‖2 > m · ‖z‖2 ,

or equivalently, for any s ∈ ρ(Ã) ∩ C−,

‖(sI − Ã)−1‖ 6 1√
m |Re s| . (6.5.5)

Since T̃ is exponentially stable, ‖(sI − Ã)−1‖ is defined and bounded on some half-
plane Cα, where α < 0 (see Corollary 2.3.3). Together with (6.5.5) we obtain that
‖(sI − Ã)−1‖ is bounded on all of ρ(Ã). By Lemma 6.5.5, Z = {0}. By definition,
this means that (A,C) is approximately observable in infinite time.

Proposition 6.5.7. If there exists α 6 0 such that the estimate (6.5.2) holds for all
s ∈ (−∞, α) with m > 1, then the system (A,C) is exactly observable.

Proof. For s ∈ (−∞, α), (6.5.2) with m > 1 implies that

‖(sI − A)z‖2 − s‖Cz‖2 > s2‖z‖2 ∀ z ∈ D(A)
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which is clearly equivalent to

2Re 〈Az, z〉+
1

|s|‖Az‖2 + ‖Cz‖2 > 0 ∀ z ∈ D(A) .

Taking limits, the term containing s disappears. Now replacing z with Ttz and
integrating from 0 to ∞, we obtain (as at (5.1.5) with Π = I) that

∞∫

0

‖CTtz‖2dt > ‖z‖2 ∀ z ∈ D(A) ,

so that (A,C) is exactly observable in infinite time. Now the conclusion follows from
Proposition 6.5.2.

6.6 Hautus type tests for exact observability with a
skew-adjoint generator

In this section, A : D(A)→X is a skew-adjoint operator, so that (by Stone’s
theorem) A generates a unitary group T. Y is a Hilbert space and C ∈ L(X1, Y ) is
an admissible observation operator for the group T. For such operators, the following
infinite-dimensional version of the Hautus test (Proposition 1.5.1) holds.

Theorem 6.6.1. The pair (A,C) is exactly observable if and only if there exist
constants M, m > 0 such that

M2‖(iωI − A)z0‖2 + m2‖Cz0‖2 > ‖z0‖2 ∀ ω ∈ R, z0 ∈ D(A). (6.6.1)

If (6.6.1) holds then (A, C) is exactly observable in time τ for any τ > Mπ.

Proof. Suppose that (A,C) is exactly observable. It is easy to see that the
operator A− I generates an exponentially stable semigroup on X and (A− I, C) is
exactly observable. According to Theorem 6.5.3, taking only s with Re s = −1 in
(6.5.2), we obtain that there exists m0 > 0 such that

‖(iωI − A)z0‖2 + ‖Cz0‖2 > m0 · ‖z0‖2 ,

for all z0 ∈ D(A) and for all ω ∈ R. This clearly implies (6.6.1).

Now we prove that (6.6.1) implies that the pair (A, C) is exactly observable. We
first show that, for all χ ∈ H1(R) and for all z0 ∈ D(A) we have

∫

R

‖Ttz0‖2
(
χ2(t)−M2χ̇2(t)

)
dt 6 m2

∫

R

‖CTtz0‖2χ2(t)dt. (6.6.2)

Indeed, let us denote z(t) = Ttz0, w(t) = χ(t)z(t) and f(t) = ẇ(t) − Aw(t). If we

take the Fourier transform of the last equality, we get that f̂(ω) = (iωI − A)ŵ(ω)
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for all ω ∈ R. By applying (6.6.1) with z0 = ŵ(ω) and integrating with respect to
ω ∈ R we obtain that

∫

R

‖ŵ(ω)‖2dω 6 M2

∫

R

‖f̂(ω)‖2dω + m2

∫

R

‖Cŵ(ω)‖2dω.

The above inequality and Plancherel’s theorem imply that

∫

R

‖w(t)‖2dt 6 M2

∫

R

‖f(t)‖2dt + m2

∫

R

‖Cw(t)‖2dt.

The above relation and the fact that f(t) = χ̇(t)z(t) for all t ∈ R imply (6.6.2).

We choose χ(t) = ϕ
(

t
τ

)
with supp(ϕ) ⊂ [0, 1] and τ > 0. The integral in the

right-hand side of (6.6.2) satisfies:

∫

R

‖CTtz0‖2χ2(t)dt 6 ‖ϕ‖2
L∞(R)

∫

R

‖CTtz0‖2dt. (6.6.3)

A lower bound for the left-hand side of (6.6.2) can be derived as follows: Since T is
unitary, we have

∫

R

‖Ttz0‖2
(
χ2(t)−M2χ̇2(t)

)
dt = ‖z0‖2Iτ (ϕ), (6.6.4)

where

Iτ (ϕ) =

τ∫

0

(
ϕ2

(
t

τ

)
− M2

τ 2
ϕ̇2

(
t

τ

))
dt = τ

1∫

0

ϕ2(t)dt− M2

τ

1∫

0

ϕ̇2(t)dt.

For ϕ 6= 0 and τ large enough we have that Iτ (ϕ) > 0. Consequently, the relations
(6.6.2), (6.6.3) and (6.6.4) imply the exact observability estimate

τ∫

0

‖CTtz0‖2dt > Iτ (ϕ)

‖ϕ‖2
L∞(R)

‖z0‖2 ∀ z0 ∈ D(A) . (6.6.5)

If we choose ϕ(t) = sin (πt) for t ∈ [0, 1] (and zero else), then a short computation
shows that Iτ (ϕ) > 0 for every τ > Mπ. According to the comment after Definition
6.1.1, (A,C) is exactly observable for every τ > Mπ.

Remark 6.6.2. It is not difficult to show that the choice of ϕ at the end of the
last proof is optimal, in the sense that it minimizes the ratio ‖ϕ̇‖L2/‖ϕ‖L2 over all
non-zero functions in H1

0(0, 1).
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Remark 6.6.3. The first part of the last proof (the necessity of the condition (6.6.1)
for exact observability) can be proved also directly, without going through Theorem
6.5.3. The direct proof in Miller [170] is along the following lines:

For z0 ∈ D(A) and ω ∈ R, we denote z(t) = Ttz0, v(t) = z(t) − eitωz0 and
f = (A− iω)z0. By using Proposition 2.1.5 we obtain that

ż(t) = TtAz0 = Tt(iωz0 + f) = iωz(t) + Ttf .

From the above relation we obtain that

v̇(t) = iωv(t) + Ttf ,

which implies that v(t) =
∫ t

0
eiω(t−s)Tsf ds. The last formula, combined to the fact

that z(t) = eitωz0 + v(t) yields the estimate

τ∫

0

‖Cz(t)‖2dt 6 2τ‖Cz0‖2 + 2

τ∫

0

t

t∫

0

‖CTsf‖2dsdt.

The above relation together with the inequality

τ∫

0

t

t∫

0

‖CTsf‖2dsdt 6 τ 2

2

τ∫

0

‖CTsf‖2ds,

implies that

τ∫

0

‖Cz(t)‖2dt 6 2τ‖Cz0‖2 + τ 2

τ∫

0

‖CTs(A− iω)z0‖2ds.

By using the facts that the pair (A,C) is admissible (see (4.3.3)) and exactly ob-
servable in time τ (see Definition 6.1.1 and the comment after it) we conclude that

(6.6.1) holds with M = τKτ

kτ
and m =

√
2τ

kτ
.

The range of exact observability times given in Theorem 6.6.1 is not sharp, in
general. In some cases, a smaller exact observability time can be found based on the
following proposition, which amounts to looking only at “high frequencies”. For this
proposition, the reader should recall the representation of self-adjoint operators with
compact resolvents (Proposition 3.2.12), since obviously a similar representation
holds for skew-adjoint operators with compact resolvents.

Proposition 6.6.4. Assume that A has compact resolvents. Let (φk)k∈I (where
I ⊂ Z) be an orthonormal basis of eigenvectors of A and denote by iµk the eigen-
value corresponding to φk. For any λ > 0 we denote by Eλ the closure in X of
span {φk | |µk| > λ}. Assume that
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1. there exist M, m, α > 0 such that for all ω ∈ R with |ω| > α,

M2‖(iωI − A)z0‖2 + m2‖Cz0‖2 > ‖z0‖2 ∀ z0 ∈ Eα ∩ D(A) ,

2. Cφ 6= 0 for every eigenvector φ of A.

Then (A,C) is exactly observable in any time τ > Mπ.

Proof. Denote by Aα the part of A in Eα+M−1 and by Cα the restriction of C to
D(Aα). Let aα be the part of A in E⊥

α+M−1 and let cα be the restriction of C to
E⊥

α+M−1 . It is easy to see that if z0 ∈ Eα+M−1 and |ω| 6 α then

M2‖(iωI − A)z0‖2 > ‖z0‖2 .

The above inequality and the first assumption in the proposition imply that

M2‖(iωI − A)z0‖2 + m2‖Cz0‖2 > ‖z0‖2 ∀ z0 ∈ Eα+M−1 , ω ∈ R .

By Theorem 6.6.1 the pair (Aα, Cα) is exactly observable in any time τ > Mπ.
The second assumption in the proposition implies, by using Proposition 6.4.4 with
V = Eα+M−1 , that (A,C) is exactly observable in any time τ > Mπ.

6.7 From ẅ = −A0w to ż = iA0z

In this section we show that if a system is described by the second order equation
ẅ = −A0w and either y = C1w or y = C0ẇ (y being the output signal) and if this
system is exactly observable, then this property is inherited by the system described
by the first order equation ż = iA0z, with either y = C1z or y = C0z. Thus, we
can prove the exact observability of systems governed by the Schrödinger equation,
using results available for systems governed by the wave equation.

Throughout this section H stands for a Hilbert space with inner product 〈·, ·〉
and induced norm ‖ · ‖. The operator A0 : D(A0)→H is assumed to be strictly
positive. As in Section 3.4 we denote by H1 the space D(A0) endowed with the norm
‖z‖1 = ‖A0z‖ and by H 1

2
the completion of D(A0) with respect to the norm

‖w‖ 1
2

=
√
〈A0w,w〉 ,

which coincides with D(A
1
2
0 ) with the norm ‖w‖ 1

2
= ‖A

1
2
0 w‖. We also need the space

D(A
3
2
0 ) = A−1

0 D(A
1
2
0 ). If we restrict A0 to a densely defined positive operator on H 1

2
,

then its domain is D(A
3
2
0 ).

Define X = H 1
2
×H, which is a Hilbert space with the scalar product

〈[
w1

v1

]
,

[
w2

v2

]〉

X

= 〈A
1
2
0 w1, A

1
2
0 w2〉+ 〈v1, v2〉 .
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We define a dense subspace of X by D(A) = H1 × H 1
2

and the linear operator

A : D(A)→X by

A =

[
0 I

−A0 0

]
, i.e., A

[
f
g

]
=

[
g

−A0f

]
. (6.7.1)

Recall from Proposition 3.7.6 that A is skew-adjoint, so that it generates a unitary
group T on X. As usual, X1 stands for D(A) endowed with the graph norm.

We assume that A−1
0 is compact so that, according to Proposition 3.2.12, there

exists an orthonormal basis (ϕk)k∈N in H consisting of eigenvectors of A0. We denote
by (λk)k∈N the corresponding sequence of strictly positive eigenvalues of A0.

Proposition 6.7.1. Let Y be a Hilbert space, let C1 ∈ L(H1, Y ) and define
C ∈ L(X1, Y ) by

C =
[
C1 0

]
. (6.7.2)

Assume that C is an admissible observation for the unitary group T generated by
A. Let S be the unitary group generated by iA0 on H 1

2
. Then C1 is an admissible

observation operator for S.

Proof. It is easy to verify that for every s ∈ C for which s2 ∈ ρ(A0),

(sI − A)−1 =

[
(s2I + A0)

−1 0
0 (s2I + A0)

−1

]
·
[

sI I
−A0 sI

]
,

so that
C(sI − A)−1 =

[
sC1(s

2I + A0)
−1 C1(s

2I + A0)
−1

]
.

We know from Theorem 4.3.8 that for any α > 0, the norm of the above operator in
L(X,Y ) is bounded on C0 by K(1 + 1

Re s
) (where K > 0). Looking at the left term

of C(sI − A)−1, which is in L(H 1
2
, Y ), we obtain that

|s| · ‖C1(s
2I + A0)

−1‖L(H 1
2

,Y ) 6 K

(
1 +

1

Re s

)
∀ s ∈ C0 . (6.7.3)

We consider only the points s = a + ib with a, b > 0 for which s2 = −ω + i, where
ω ∈ R. Hence, a, b > 0 satisfy a2 − b2 = −ω, 2ab = 1. By elementary algebra,

a2 =
1

2

[
−ω +

√
ω2 + 1

]
, b =

1

2a
.

Now (6.7.3) shows that for every ω ∈ R,

(ω2 + 1)
1
4 · ‖C1((1 + iω)I − iA0)

−1‖L(H 1
2

,Y ) 6 K

(
1 +

1

a

)
.

To show that the function ω 7→ C1((1 + iω)I − iA0)
−1 is bounded in L(H 1

2
, Y ),

we only have to examine its limit behavior as ω→∞ and as ω→ −∞. For large
positive ω we have a2 ≈ 1

4ω
, so that

K

(
1 +

1

a

)
/(ω2 + 1)

1
4 ≈ K

1 + 2
√

ω

(ω2 + 1)
1
4

→ 2K.
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For large negative ω we have a2 ≈ −ω − 1
4ω

, so that a ≈
√
|ω| and

K

(
1 +

1

a

)
/(ω2 + 1)

1
4 ≈ K

1 + 1√
|ω|

(ω2 + 1)
1
4

→ 0 .

It follows that we have

sup
ω∈R

‖C1((1 + iω)I − iA0)
−1‖L(H 1

2
,Y ) < ∞ .

According to Corollary 5.2.4, C1 is admissible for the semigroup S.

Theorem 6.7.2. With the assumptions in Proposition 6.7.1, assume that the pair
(A,C) is exactly observable. Then the pair (iA0, C1), with the state space H 1

2
, is

exactly observable in any time τ > 0.

Proof. The exact observability of (A,C) implies, according to Theorem 6.6.1, that
there exist M, m > 0 such that

M2‖(i√ωI − A)z̃‖2 + m2‖Cz̃‖2 > ‖z̃‖2 ∀ ω > 0, z̃ ∈ D(A) .

Taking z̃ =

[
z

iA
1
2
0 z

]
, with z ∈ D(A0), it is easy to verify that

‖Cz̃‖Y = ‖C1z‖Y , ‖z̃‖X =
√

2‖z‖ 1
2
,

‖(i√ωI − A)z̃‖X =
√

2‖(√ωI − A
1
2
0 )z‖ 1

2
.

The last four displayed formulas imply that

M2‖(√ωI − A
1
2
0 )z‖2

1
2

+
m2

2
‖C1z‖2 > ‖z‖2

1
2

∀ z ∈ D(A0) . (6.7.4)

Since, for all ω > 0 and for all z ∈ D(A
3
2
0 ), we have

‖(ωI − A0)z‖ 1
2

= ‖(√ωI + A
1
2
0 )A

1
2
0 (
√

ωI − A
1
2
0 )z‖ >

√
ω‖(√ωI − A

1
2
0 )z‖ 1

2
,

it follows from (6.7.4) that

M2

ω
‖(ωI − A0)z‖2

1
2

+
m2

2
‖C1z‖2 > ‖z‖2

1
2

∀ ω > 0, z ∈ D(A
3
2
0 ) .

The above estimate implies that for every T > 0 and every ω >
π2M2

T 2
we have that

T 2

π2
‖(ωI − A0)z‖2

1
2

+
m2

2
‖C1z‖2 > ‖z‖2

1
2

∀ z ∈ D(A
3
2
0 ) . (6.7.5)
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On the other hand, for every T > 0 and every ω < −π

T
, we have (using the fact

that A0 is a positive operator on H 1
2
)

T 2

π2
‖(ωI − A0)z‖2

1
2

> ‖z‖2
1
2

∀ z ∈ D(A
3
2
0 ) .

This fact together with (6.7.5) implies, denoting α = max

{
π2M2

T 2
,
π

T

}
, that for

every |ω| > α, (6.7.5) holds.

In addition, the exact observability of (A,C) implies, by using Remark 6.1.8, that
Cφ 6= 0 for every eigenvector φ of A. According to Proposition 3.7.7, this implies
that C1ϕ 6= 0 for every eigenvector ϕ of A0. Applying Proposition 6.6.4, it follows
that (iA0, C) is exactly observable in any time τ > T . Since T > 0 was arbitrary, it
follows that (iA0, C) is exactly observable in any time τ > 0.

Example 6.7.3. Let H = L2[0, π] and A0 : D(A0)→H be defined by

D(A0) = H2(0, π) ∩H1
0(0, π) ,

A0f = −d2f

dx2
∀ f ∈ D(A0) .

With the above choice of H and A0, the space X = H 1
2
× H and the operator A

from (6.7.1) coincide with X and A considered in Section 6.2. Let Y = C and
consider the observation operator C ∈ L(X1, Y ) defined by (6.2.5). We know from
Proposition 6.2.1 that the pair (A,C) is exactly observable in any time τ > 2π.
On the other hand, C is of the form (6.7.2), with C1ϕ = dϕ

dx
(0) for all ϕ ∈ D(A0).

According to Theorem 6.7.2, the pair (iA0, C1), with the state space H1
0(0, π), is

exactly observable in any time τ > 0. In PDEs terms, this means that for every
τ > 0 there exists kτ > 0 such that the solution z of the Schrödinger equation

∂z

∂t
(x, t) = −i

∂2z

∂x2
(x, t) ∀ (x, t) ∈ (0, π)× [0,∞) ,

with

z(0, t) = z(π, t) = 0 , t > 0 ,

and z(·, 0) = z0 ∈ H2(0, π) ∩H1
0(0, π) satisfies

τ∫

0

∣∣∣∣
∂z

∂x
(0, t)

∣∣∣∣
2

dt > k2
τ‖z0‖2

H1
0(0,π) ∀ z0 ∈ D(A

3
2
0 ) .

In this case,

D(A
3
2
0 ) =

{
f ∈ H3(0, π) ∩H1

0(0, π) | d2f

dx2
(0) =

d2f

dx2
(π) = 0

}
.
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Proposition 6.7.4. Let Y be a Hilbert space, let C0 ∈ L(H 1
2
, Y ) and define

C ∈ L(X1, Y ) by
C =

[
0 C0

]
. (6.7.6)

Assume that C is an admissible observation for the unitary group T generated by
A. Let S be the unitary group generated by iA0 on H. Then C0 is an admissible
observation operator for S.

The proof of the above proposition can be obtained by obvious adaptations of the
proof of Proposition 6.7.1, so we do not give it here.

Theorem 6.7.5. With the assumptions in Proposition 6.7.4, assume that the pair
(A,C) is exactly observable. Then the pair (iA0, C0), with state space H, is exactly
observable in any time τ > 0.

Proof. The exact observability of (A,C) implies, according to Theorem 6.6.1, that
there exist M, m > 0 such that

M2‖(i√ωI − A)z̃‖2 + m2‖Cz̃‖2 > ‖z̃‖2 ∀ ω > 0, z̃ ∈ D(A) .

Taking here z̃ =

[
A
− 1

2
0 z
iz

]
, with z ∈ H 1

2
and using the facts that, with the above

choice of z̃, we have

‖Cz̃‖Y = ‖C0z‖Y , ‖z̃‖X =
√

2‖z‖ ,

‖(i√ωI − A)z̃‖X =
√

2‖(√ωI − A
1
2
0 )z‖ ,

we obtain

M2‖(√ωI − A
1
2
0 )z‖2 +

m2

2
‖C0z‖2 > ‖z‖2 ∀ z ∈ D(A0) .

The proof can now be completed following line by line the corresponding part of the
proof of Theorem 6.7.2, and this is left to the reader.

Example 6.7.6. Let H, A0, X and A be as in Example 6.7.3. Let Y = L2[0, π]
and C ∈ L(X, Y ) be the observation operator defined in (6.2.8). We know from
Proposition 6.2.3 that the pair (A,C) is exactly observable in any time τ > 2π.
Since C is of the form (6.7.6), with

C0ϕ = ϕχ[ξ,η] ∀ ϕ ∈ L2[0, π] ,

we can apply Theorem 6.7.5 to get that the pair (iA0, C0), with the state space
L2[0, π], is exactly observable in any time τ > 0. In PDEs terms, this means that if
τ > 0 then there exists kτ > 0 such that the solution z of the Schrödinger equation

∂z

∂t
(x, t) = −i

∂z

∂x2
(x, t) , (x, t) ∈ (0, π)× [0,∞) ,
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with
z(0, t) = z(π, t) = 0 , t > 0 ,

and with z(·, 0) = z0 ∈ H2(0, π) ∩H1
0(0, π) satisfies

τ∫

0

η∫

ξ

|z(x, t)|2 dxdt > k2
τ‖z0‖2

L2[0,π] ∀ z0 ∈ H2(0, π) ∩H1
0(0, π) .

6.8 From first to second order equations

In this section we show how the exact observability for systems described by certain
Schrödinger type equations implies the exact observability for systems described by
certain Euler-Bernoulli type equations.

Notation and preliminaries. We use the same notation as in Section 6.7. In
particular, 〈·, ·〉 and ‖ · ‖ are the inner product and the norm on H, A0 > 0 and
H1 = D(A0) with the norm ‖z‖1 = ‖A0z‖. We denote X = H1 × H, which is a
Hilbert space with the inner product

〈[
f1

g1

]
,

[
f2

g2

]〉

X
= 〈A0f1, A0f2〉+ 〈g1, g2〉 .

We define A : D(A)→X by D(A) = D(A2
0)×D(A0) and

A =

[
0 I

−A2
0 0

]
, i.e., A

[
f
g

]
=

[
g

−A2
0f

]
. (6.8.1)

Since A2
0 > 0 (see Remark 3.3.7), according to Proposition 3.7.6 A is skew-adjoint

and 0 ∈ ρ(A). By the theorem of Stone, A generates a unitary group T on X . As
usual, we denote by X1 the space D(A) endowed with the graph norm.

Proposition 6.8.1. Let Y be a Hilbert space and let C0 ∈ L(H1, Y ) be an admissible
observation operator for the unitary group generated by iA0. Define C ∈ L(X1, Y )
by C =

[
0 C0

]
. Then C is an admissible observation operator for T.

Proof. An easy computation similar to the one in the proof of Proposition 6.7.1
shows that for all s ∈ ρ(A),

C(sI −A)−1 =
[−C0A

2
0(s

2I + A2
0)
−1 C0s(s

2I + A2
0)
−1

]
.

The admissibility assumption in the proposition implies that there exists K > 0
such that ∥∥C0(sI − iA0)

−1
∥∥
L(H,Y )

6 K for Re s = 1 , (6.8.2)

see Theorem 4.3.7. On the other hand, for all ω > 0 we have

∥∥((−ω + i)I − A0)
−1

∥∥ =
1

min
λ∈σ(A0)

| − ω + i− λ| <
1

| − ω + i| ,
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because of (3.2.3) and the fact that σ(A0) ⊂ (0,∞). Hence, for all ω > 0,

∥∥((1 + iω)I + iA0)
−1

∥∥ <
1

|1 + iω| . (6.8.3)

Combining this with (6.8.2), we obtain that for Re s = 1 and Im s > 0,

∥∥C0(s
2I + A2

0)
−1

∥∥
L(H,Y )

<
K

|s| . (6.8.4)

Now we redo the argument with every number replaced with its complex conjugate:
we obtain that (6.8.2) holds with the minus sign replaced with plus, and (6.8.3)
holds with −i in place of i everywhere. Combining these two modified formulas, we
obtain that (6.8.4) holds for Re s = 1 and Im s 6 0. Together with the first version
of (6.8.4) this implies that (6.8.4) holds for all s ∈ C with Re s = 1.

For s ∈ C0 we have

‖C0A
2
0(s

2I + A2
0)
−1‖L(H1,Y ) = ‖C0(sI − iA0)

−1A0(sI + iA0)
−1‖L(H,Y )

6 ‖C0(sI − iA0)
−1‖L(H,Y ) · ‖I − s(sI + iA0)

−1‖L(H) .

Using (6.8.2) to estimate the first factor and (6.8.3) to estimate the second factor,
we obtain that for all s ∈ C with Re s = 1 and Im s > 0,

‖C0A
2
0(s

2I + A2
0)
−1‖L(H1,Y ) 6 2K. (6.8.5)

If we redo the computations leading to (6.8.5) but with every number replaced with
its complex conjugate, we obtain that (6.8.5) also holds for Re s = 1 and Im s 6 0.
Thus, it holds for all s ∈ C with Re s = 1.

The estimate (6.8.5) together with (6.8.4) shows that the L(X , Y )-valued function
C(sI − A)−1 (as decomposed into components at the beginning of this proof) is
bounded on the vertical line where Re s = 1. According to Corollary 5.2.4, C is an
admissible observation operator for T.

In the sequel we assume that A−1
0 is compact, which implies that there exists

an orthonormal basis (ϕk)k∈N in H such that A0ϕk = λkϕk, with λk > 0. We set
ϕ−n = − ϕn, for all n ∈ N. According to Proposition 3.7.7 the eigenvalues of A
are (iµn)n∈Z∗ with µn = λn if n > 0 and µn = −λn if n < 0. There is in X an
orthonormal basis formed of eigenvectors of A, given by

φn =
1√
2

[
1

iµn
ϕn

ϕn

]
∀ n ∈ Z∗ . (6.8.6)

The above facts imply that the group T is diagonalizable and

Ttz =
∑

n∈Z∗
eiµnt〈z, φn〉φn ∀ (t, z) ∈ R×X . (6.8.7)



From first to second order equations 217

Proposition 6.8.2. Assume that A−1
0 is compact. Let Y be a Hilbert space and

C0 ∈ L(H1, Y ) be such that the pair (iA0, C0) is exactly observable in some time τ0.
Moreover, assume that there exists d ∈ N such that

∑

j∈N
λ−d

j < ∞ , (6.8.8)

and define C ∈ L(X1, Y ) by C =
[
0 C0

]
.

Then the pair (A, C) is exactly observable in any time τ > τ0.

Proof. For N ∈ N which will be made precise later, let z =

[
f
g

]
∈ D(A) be such

that 〈[
f
g

]
, φk

〉

X
= 0 if |k| 6 N . (6.8.9)

From (6.8.6) and (6.8.7) it follows that

√
2CTt

[
f
g

]
=

∑
n>N

eiλnt (iλn〈f, ϕn〉+ 〈g, ϕn〉) C0ϕn

+
∑
n>N

e−iλnt (−iλn〈f, ϕn〉+ 〈g, ϕn〉) C0ϕn.

The above relation implies that

√
2CTt

[
f
g

]
= C0T+

t z+ + C0T−t z− , (6.8.10)

where T+ (respectively T−) is the group of isometries on H generated by iA0 (re-
spectively by −iA0) and

z+ =
∑
n>N

z+
n ϕn, where zn

+ = iλn〈f, ϕn〉+ 〈g, ϕn〉 ,

z− =
∑
n>N

z−n ϕn, where z−n = − iλn〈f, ϕn〉+ 〈g, ϕn〉 .

Let ε be such that ε, ε + τ0 ∈ (0, τ) and let κ ∈ D(R) such that κ(t) = 1 for
t ∈ (ε, ε + τ0), 0 6 κ(t) 6 1 for all t ∈ R and κ(t) = 0 if t 6∈ [0, τ ]. Then

τ∫

0

∥∥C0T+
t z+ + C0T−t z−

∥∥2
dt >

∫

R

κ(t)
∥∥C0T+

t z+ + C0T−t z−
∥∥2

dt.

By using the properties of κ and by denoting by k0 a common observability constant
of (iA0, C0) and (−iA0, C0), it follows that

τ∫

0

∥∥C0T+
t z+ + C0T−t z−

∥∥2
dt > k2

0(‖z+‖2 + ‖z−‖2)
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+ 2

∫

R

κ(t)Re
〈
C0T+

t z+, C0T−t z−
〉

dt. (6.8.11)

We compute the last integral term as follows:
∫

R

κ(t)Re
〈
C0T+

t z+, C0T−t z−
〉

dt =
∑

m,n>N

∫

R

ei(λm+λn)tκ(t)〈C0z
+
m, C0z

−
n 〉dt.

Since C0 is admissible for iA0, there exists a K0 > 0 such that ‖C0ϕn‖ 6 K0 for all
n ∈ N. Hence

∣∣∣∣∣∣

∫

R

κ(t)Re
〈
C0T+

t z+, C0T−t z−
〉

dt

∣∣∣∣∣∣
6 K2

0

√
2π

∑
m,n>N

∣∣κ̂(−λm − λn)z+
mz−n

∣∣ ,

where κ̂ is the Fourier transform of κ, as defined in (12.4.1). The above estimate
together with (6.8.11) implies that

τ∫

0

∥∥C0T+
t z+ + C0T−t z−

∥∥2
dt > k2

0(‖z+‖2 + ‖z−‖2)

−2K2
0

√
2π

∑
m,n>N

∣∣κ̂(−λm − λn)z+
mz−n

∣∣ .

Since κ(d) ∈ D(R) and since the Fourier transformation maps D(R) into C0(R) (see
Section 12.4 in Appendix 1), it follows that ω 7→ ωdκ̂(ω) is a bounded function on
R. Therefore there exists C1 > 0 such that

|κ̂(−λm − λn))| 6 C1(λm + λn)−d ∀ m,n ∈ N ,

which implies (using 2|z+
mz−n | 6 |z+

n |2 + |z−m|2) that

τ∫

0

∥∥C0T+
t z+ + C0T−t z−

∥∥2
dt > k2

0

(‖z+‖2 + ‖z−‖2
)

−C1K
2
0

∑
m>N

|z+
m|2

∑
n>N

(λm + λn)−d − C1K
2
0

∑
n>N

|z−n |2
∑
m>N

(λm + λn)−d .

By choosing N from the beginning of this proof large enough, the above relation
and assumption (6.8.8) imply the existence of a constant cτ > 0 such that

τ∫

0

∥∥C0T+
t z+ + C0T−t z−

∥∥2
dt > c2

τ

(‖z+‖2 + ‖z−‖2
)

.

This estimate combined with (6.8.10) implies that the inequality

τ∫

0

∥∥∥∥CTt

[
f
g

]∥∥∥∥
2

Y

dt > c2
τ

2

(
‖f‖2

1
2

+ ‖g‖2
)
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holds for every

[
f
g

]
∈ D(A) satisfying (6.8.9). Thus, the “high frequency part” of

(A, C) is exactly observable in time τ .

To apply Proposition 6.4.4, we notice that, according to Proposition 3.7.7, if φ is
an eigenvector of A, corresponding to the eigenvalue iµ (where µ ∈ R), then

φ =
1√
2

[
1
iµ

ϕ

ϕ

]
,

where ϕ is an eigenvector of A0. It follows that

Cφ =
1√
2
C0ϕ,

so that Cφ 6= 0, since (iA0, C0) is exactly observable. Thus, (A, C) is exactly
observable in time τ .

Example 6.8.3. Let H = L2[0, π] and let −A0 be the Dirichlet Laplacian on [0, π]
as in Examples 6.7.3 and 6.7.6. Then A2

0 is the fourth order derivative operator

defined on the space of all f ∈ H4(0, π) with f and
d2f

dx2
vanishing at x = 0 and at

x = π. The space X = D(A0)×H is, in this case, given by X = H2
0(0, π)×L2[0, π].

Let Y = L2[0, π], ξ, η ∈ [0, π] with ξ < π and let C0 ∈ L(H, Y ) be the observation
operator defined by

C0f = fχ[ξ,η] ∀ f ∈ L2[0, π] .

We have seen in Example 6.7.6 that the pair (iA0, C0), with the state space L2[0, π],
is exactly observable in any time τ > 0. Moreover, the eigenvalues of A0 clearly
satisfy (6.8.8) for d = 1. By applying Theorem 6.8.2 we get that the pair (A,C),
with A given by (6.8.1) and C =

[
0 C0

]
, is exactly observable in any time τ > 0.

In PDEs terms, this means that if τ > 0 then there exists kτ > 0 such that the
solution w of the Euler-Bernoulli beam equation

∂2w

∂t2
(x, t) +

∂4w

∂x4
(x, t) = 0 , (x, t) ∈ (0, π)× [0,∞) ,

with

w(0, t) = w(π, t) = 0 , t > 0 ,

∂2w

∂x2
(0, t) =

∂2w

∂x2
w(π, t) = 0 , t > 0 ,

and w(·, 0) = w0 ∈ H2(0, π)×H1
0(0, π), ∂w

∂t
(·, 0) = w1 ∈ L2[0, π] satisfies

τ∫

0

η∫

ξ

∣∣∣∣
∂w

∂t
(x, t)

∣∣∣∣
2

dxdt > k2
τ

(
‖w0‖2

H2(0,π) + ‖w1‖2
L2[0,π]

)
∀

[
w0

w1

]
∈ X.
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Example 6.8.4. We show here that the admissibility and the exact observability of
a boundary observed hinged Euler-Bernoulli equation can be obtained from the cor-
responding properties of a one-dimensional Schrödinger equation. Let H = H1

0(0, π)
and

D(A0) =

{
f ∈ H

∣∣∣∣
d2f

dx2
∈ H

}
.

Let Y = C and let C0 ∈ L(H1, Y ) be the observation operator defined by

C0f =
df

dx
(0) ∀ f ∈ H1 .

We have seen in Example 6.7.3 that the pair (iA0, C0), is exactly observable in any
time τ > 0. Moreover, the eigenvalues of A0 clearly satisfy (6.8.8) for d = 1. We
define H1 = D(A0) with the graph norm, which is equivalent to the norm inherited
from H3(0, π). By applying Proposition 6.8.2 we get that the pair (A, C), with
A given by (6.8.1) and C = [0 C0], on the state space X = H1 × H, is exactly
observable in any time τ > 0. In PDEs terms, this means that if τ > 0 then there
exists kτ > 0 such that the solution w of the Euler-Bernoulli beam equation with
hinged ends

∂2w

∂t2
(x, t) +

∂4w

∂x4
(x, t) = 0 , (x, t) ∈ (0, π)× [0,∞) ,

with
w(0, t) = w(π, t) = 0 , t > 0 ,

∂2w

∂x2
(0, t) =

∂2w

∂x2
w(π, t) = 0 , t > 0 ,

and w(·, 0) = w0 ∈ D(A2
0),

∂w
∂t

(·, 0) = w1 ∈ D(A0) satisfies

τ∫

0

∣∣∣∣
∂2w

∂x∂t
(0, t)

∣∣∣∣
2

dt >
(
‖w0‖2

H3(0,π) + ‖w1‖2
H1

0(0,π)

)
∀

[
w0

w1

]
∈ D(A) .

Note that we have derived the admissibility and the exact observability of this
boundary observed hinged beam equation by reducing them to the corresponding
properties of a (one-dimension) Schrödinger equation. If we go back to Example
6.7.3, we see that the admissibility and the exact observability of the Schrödinger
equation have in turn been obtained from the corresponding properties of a (one-
dimensional) wave equation. Thus, we have here a very indirect proof for the prop-
erties of the hinged beam, relying on nontrivial theorems for the reductions. The
proof of the admissibility and the exact observability (in arbitrary positive time) for
the hinged beam can also be approached directly, using the fact that the generator
A is diagonalizable. Indeed, after computing the eigenvalues and the Fourier coeffi-
cients of the observation operator, the desired properties follow from a consequence
of Ingham’s theorem, which appears later in this book as Proposition 8.1.3. We
mention that the admissibility and the exact observability of this system in time 2π
(but not in shorter times) can be shown also in a completely elementary fashion, as
was done in Proposition 6.2.1 for the string equation.
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6.9 Spectral conditions for exact observability with a
skew-adjoint generator

Recall that in the finite-dimensional case the observability of (A,C) is equivalent
to Cφ 6= 0 for every eigenvector φ of A (see Remark 1.5.2). The situation is much
more complicated in the infinite-dimensional case. In this section we assume that A
is skew-adjoint and has compact resolvents. We denote by (φk)k∈Λ an orthonormal
basis consisting of eigenvectors of A and by (iµk)k∈Λ, with µk ∈ R the corresponding
eigenvalues of A. The index set Λ is a subset of Z. Y is another Hilbert space
and C ∈ L(X1, Y ) is an admissible observation operator for the unitary group T
generated by A. We denote

ck = Cφk ∀ k ∈ Λ .

First we give a simple necessary and sufficient condition for approximate observ-
ability in infinite time (as defined in Definition 6.5.1).

Proposition 6.9.1. The following conditions are equivalent:

(C1) ck 6= 0 for all k ∈ Λ,

(C2) (A,C) is approximately observable in infinite time.

Proof. First we show that (C1) implies (C2). Let z ∈ X and let y = Ψz, then
according to Theorem 4.3.7 the Laplace transform of y is ŷ(s) = C(sI − A)−1z, for
all s ∈ C0. Let η ∈ Y be fixed. It follows that

〈ŷ(s), η〉 = 〈C(sI − A)−1z, η〉 = η∗C(sI − A)−1z ∀ s ∈ C0 ,

where η∗ is the linear functional on Y associated to η. Since η∗C(sI − A)−1 is a
bounded functional on X, it is represented in the orthonormal basis (φk) by a family
(vk) ∈ l2(Λ). Using formula (2.6.6) (with φ̃k = φk and with iµk in place of λk), it is

easy to compute that vk = 〈ck,η〉
s−iµk

. It follows that

〈ŷ(s), η〉 =
∑

k∈Λ

〈ck, η〉 zk

s− iµk

∀ s ∈ C0 , (6.9.1)

where zk = 〈z, φk〉, so that (zk) ∈ l2(Λ). Since both (vk) and (zk) are in l2(Λ), it
follows that (vkzk) ∈ l1(Λ), so that the series in (6.9.1) is absolutely convergent.
Now it follows from (6.9.1) that

〈ck, η〉zk = lim
s→ iµk

s ∈ C0

(s− iµk)〈ŷ(s), η〉 ∀ k ∈ Λ .

If for some z ∈ X we have Ψz = 0, then it follows that 〈ck, η〉zk = 0 for all η ∈ Y
and for all k ∈ Λ. For each k ∈ Λ we can argue as follows: Since by assumption
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ck 6= 0, taking η = ck it follows that zk = 0. Thus we have proved that z = 0, so
that (C2) holds. The converse implication follows from Remark 6.1.8.

We remark that the last proposition can be generalized easily to diagonalizable
semigroups whose generator has compact resolvents.

Now we turn our attention to exact observability. For ω ∈ R and r > 0, set

J(ω, r) = {k ∈ Λ such that |µk − ω| < r} . (6.9.2)

Note that J(ω, r) is finite. An important role will be played by elements z ∈ X of
the form

z =
∑

k∈J(ω,r)

zkφk, zk ∈ C . (6.9.3)

We call such an element z a wave packet of A of parameters ω and r. Notice that
z ∈ D(A∞). We show that the admissibility of C can be verified using wave packets.

Proposition 6.9.2. For A and T as above, assume that C ∈ L(X1, Y ). Then C is
an admissible observation operator for T if and only if for some γ > 0,

‖Cz‖Y 6 γ‖z‖ ,
for every z that is a wave packet of A of parameters n and 1, where n ∈ Z.

Proof. To prove the “if” part, assume that the condition in the proposition holds.
Take v ∈ Y , then for every z as in (6.9.3), with ω = n ∈ Z and r = 1,

∣∣∣∣∣∣
∑

k∈J(n,1)

zk〈ck, v〉Y

∣∣∣∣∣∣
= |〈Cz, v〉Y | 6 γ‖z‖ · ‖v‖Y . (6.9.4)

Taking the supremum over all finite sequences (zk) (where k ∈ J(n, 1)) with Eu-
clidean norm ‖z‖ = 1, we obtain that


 ∑

k∈J(n,1)

|〈ck, v〉Y |2



1
2

6 γ‖v‖Y ∀ n ∈ Z . (6.9.5)

Define the observation operator Cv ∈ L(X1,C) by Cvz = 〈Cz, v〉, so that it is
represented by the scalar sequence cv

k = Cvφk = 〈Cφk, v〉 = 〈ck, v〉. Then (6.9.5)
shows that ∑

Im λk∈(n−1,n+1)

|cv
k|2 6 γ2‖v‖2

Y .

It follows from Proposition 5.3.5 and Remark 5.3.6 that Cv is admissible for T. Since
this conclusion holds for every v ∈ Y , it follows from Corollary 5.2.5 that C is an
admissible observation operator for T.

Conversely, suppose that C is admissible. For every v ∈ Y we define Cv and cv
k as

earlier, let Ψτ be the output maps corresponding to T and C and let Ψv
τ be the output
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maps corresponding to T and Cv. Then it is easy to see that ‖Ψv
τ‖ 6 ‖Ψτ‖ · ‖v‖Y .

From the last part of Proposition 5.3.5 (with a = 1) we see that

∑

Im λk∈[n,n+1)

|cv
k|2 6 25

9(1− e−2)
‖Ψv

1‖2 ∀ n ∈ Z , v ∈ Y ,

so that, for a suitable γ > 0,
∑

Im λk∈[n,n+1)

|〈ck, v〉|2 6 γ‖v‖2
Y ∀ n ∈ Z , v ∈ Y ,

which implies (6.9.5). With the finite-dimensional version of the Cauchy-Schwarz
inequality we obtain that (6.9.4) holds for every z as in (6.9.3), with ω = n ∈ Z and
r = 1. Clearly this implies the condition in the proposition.

It is clear that in the above proposition, the parameter 1 could be replaced with
any positive number (by rescaling the time, and hence the frequency axis).

The main result of this section is the following:

Theorem 6.9.3. For A and C as above, the following statements are equivalent:

(S1) There exist r, δ > 0 such that for all ω ∈ R and for every wave packet of A of
parameters ω and r, denoted by z, we have

‖Cz‖Y > δ‖z‖X . (6.9.6)

(S2) There exist r, δ > 0 such that (6.9.6) holds for every wave packet of A of
parameters µn and 2r, where n ∈ Λ.

(S3) (A,C) is exactly observable.

Moreover, if (S1) or (S2) holds for some r, δ > 0, then (A,C) is exactly observ-
able in any time

τ > π

√
1

r2
+

4K2(r)

rδ2
. (6.9.7)

where K : (0,∞)→ [0,∞) is the nonincreasing function defined by

K(r) = sup
s∈Cr

√
Re s ‖C(sI − A)−1‖L(X,Y ) . (6.9.8)

Note that K(r) is finite according to Theorem 4.3.7, and it is obviously nonin-
creasing. In order to prove this theorem, we need a lemma.

Lemma 6.9.4. For each r > 0 and ω ∈ R, we define the subspace V (ω, r) ⊂ X by

V (ω, r) = {φk | k ∈ J(ω, r)}⊥, (6.9.9)

where J(ω, r) is as in (6.9.2). Let Aω,r be the part of A in V (ω, r) (see Definition
2.4.1). If K is the nonincreasing positive function from (6.9.8), then

‖C(iωI − Aω,r)
−1‖L(V (ω,r),Y ) 6 2K(r)√

r
∀ ω ∈ R . (6.9.10)
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Proof. For ω ∈ R and r > 0, set s = r + iω. Using the resolvent identity,

(iωI − Aω,r)
−1 = (sI − Aω,r)

−1
[
I + r(iωI − Aω,r)

−1
]
. (6.9.11)

First we show that

‖(iωI − Aω,r)
−1‖L(V (ω,r)) 6 1

r
. (6.9.12)

Indeed, let f =
∑

k∈Λ\J(ω,r)

fkφk be an element of V (ω, r). Then

‖(iωI − Aω,r)
−1f‖2 =

∑

k∈Λ\J(ω,r)

|fk|2
|µk − ω|2 .

This and the fact that |µk − ω| > r for all k ∈ Λ \ J(ω, r) imply (6.9.12).

On the other hand, clearly we have

‖C(sI − Aω,r)
−1‖L(V (ω,r),Y ) 6 ‖C(sI − A)−1‖L(X,Y ) .

Using (6.9.8) (in which we take s = r + iω) we obtain that

‖C(sI − Aω,r)
−1‖L(V (ω,r),Y ) 6 K(r)√

r
∀ ω ∈ R .

Applying C to both sides of (6.9.11) and using the last estimate, we obtain

‖C(iωI − Aω,r)
−1‖ 6 ‖C(sI − Aω,r)

−1‖ ·
∥∥I + r(iωI − Aω,r)

−1
∥∥

6 K(r)√
r

[
1 + r‖(iωI − Aω,r)

−1‖] .

Using (6.9.12), this reduces to (6.9.10).

Proof of Theorem 6.9.3. First we show that the statements (S1) and (S2) are
equivalent. It is clear that (S1) implies (S2) with r/2 in place of r (take ω = µn).
Conversely, assume that (S2) holds for some r, δ > 0, and let ω ∈ R. Then either
J(ω, r) is empty, or there exists n ∈ J(ω, r). In the latter case, one can easily check
that J(ω, r) ⊂ J(µn, 2r). Consequently, in both cases (S1) holds for r and δ.

Now we show that (S3) implies (S1). Assume that (A, C) is exactly observable.
By Theorem 6.6.1, there exist constants M, m > 0 such that (6.6.1) holds. For

r =
1

M
√

2
and ω ∈ R, let z =

∑

k∈J(ω,r)

zkφk, where zk ∈ C. Then we have

‖(iωI − A)z‖2 =
∑

k∈J(ω,r)

|i(ω − µk)zk|2 6 1

2M2
‖z‖2 .

The above and (6.6.1) imply that (S1) holds with r =
1

M
√

2
and δ =

1

m
√

2
.
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Finally we prove that (S1) implies (S3), and also that (A,C) is exactly observable
in any time τ satisfying (6.9.7). For this, we show that (S1) implies (6.6.1), and
then we apply Theorem 6.6.1. Take z ∈ D(A) and represent it in the basis (φk):

z =
∑

k∈Λ

zkφk . Take ω ∈ R and r > 0 and decompose z = ζ1 + ζ2, where

ζ1 =
∑

k∈J(ω,r)

zkφk , ζ2 =
∑

k 6∈J(ω,r)

zkφk .

Then we have
‖Cz‖2 = ‖Cζ1‖2 + ‖Cζ2‖2 + 2Re 〈Cζ1, Cζ2〉 .

The above implies, by using the elementary inequality

2Re 〈Cζ1, Cζ2〉 > − η‖Cζ1‖2 − 1

η
‖Cζ2‖2 ∀ η > 0 ,

that

‖Cz‖2 > (1− η)‖Cζ1‖2 − 1− η

η
‖Cζ2‖2 ∀ η > 0 . (6.9.13)

According to (S1) we can choose r, δ > 0 such that (6.9.6) holds for all ω ∈ R and
for every wave packet of A of parameters ω and r. Since ζ1 is such a wave packet,
from (6.9.13) and (6.9.6) we obtain that, for every η > 0,

‖Cz‖2 > δ2(1− η)‖ζ1‖2 − 1− η

η
‖C(iωI − Aω,r)

−1(iωI − Aω,r)ζ2‖2 ,

where Aω,r is as in Lemma 6.9.4. By Lemma 6.9.4 it follows that

‖Cz‖2 > δ2(1− η)‖ζ1‖2 − 1− η

η
· 4K2(r)

r
‖(iωI − Aω,r)ζ2‖2 ∀ η ∈ (0, 1) .

(6.9.14)
On the other hand we have

‖(iωI − A)z‖2 > ‖(iωI − Aω,r)ζ2‖2 .

The above relation and (6.9.14) imply that, for every M,m > 0,

M2‖(iωI − A)z‖2 + m2‖Cz‖2 > m2δ2(1− η)‖ζ1‖2

+

(
M2 −m2 1− η

η
· 4K2(r)

r

)
‖(iωI − Aω,r)ζ2‖2 . (6.9.15)

We shall have to be careful in choosing good values for M , η and m, in order to
obtain (6.6.1) with M as small as possible. First we choose M such that

M >

√
1

r2
+

4K2(r)

rδ2
. (6.9.16)
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Afterwards, we choose η ∈ (0, 1) sufficiently close to 1 such that

M2 >
1

r2
+

4K2(r)

ηrδ2
>

1

r2
+

4K2(r)

rδ2
,

and we choose m =
1

δ
√

1− η
. These choices imply that

M2 −m2 1− η

η
· 4K2(r)

r
>

1

r2
.

With these choices, we can rewrite (6.9.15) as follows:

M2‖(iωI − A)z‖2 + m2‖Cz‖2 > ‖ζ1‖2 +
1

r2
‖(iωI − Aω,r)ζ2‖2 .

The above estimate, the fact that ‖(iωI−Aω,r)ζ2‖2 > r2‖ζ2‖2 and the orthogonality
of ζ1 and ζ2 imply (6.6.1). According to Theorem 6.6.1 the pair (A,C) is exactly
observable in any time τ > Mπ. Since M can be any number satisfying (6.9.16), it
follows that (A,C) is exactly observable in any time τ satisfying (6.9.7).

If (S2) holds for some r, δ > 0 then, as we have seen earlier in this proof, (S1)
holds with the same constants r, δ. Therefore, again it follows that (A,C) is exactly
observable in any time τ satisfying (6.9.7).

In some cases it is more convenient to check the conditions (S1) or (S2) only for
“high frequencies”. More precisely, the following result holds.

Proposition 6.9.5. With the notation of this section, assume that:

1. There exist α, r, δ > 0 such that (S2) in Theorem 6.9.3 holds for for every µk

with |µk| > α).

2. If φ is an eigenvector of A, then Cφ 6= 0.

Then (A,C) is exactly observable in any time τ satisfying (6.9.7).

Proof. As in Lemma 6.9.4 we denote V (0, α) = {φk | k ∈ J(0, α)}⊥ and A0,α is
the part of A in V (0, α). We also introduce C0,α as the restriction of C to D(A0,α).
Note that C0,α is an admissible observation operator for the semigroup generated
by A0,α. The first assumption in the proposition means that (A0,α, C0,α) satisfy
condition (S2) in Theorem 6.9.3). According to this theorem, (A0,α, C0,α) is exactly
observable in any time τ satisfying (6.9.7). Since Cφ 6= 0 for every eigenvector φ
of A, all the assumptions in Proposition 6.4.4 are satisfied. Consequently, (A,C) is
exactly observable in any time τ satisfying (6.9.7).

Corollary 6.9.6. Assume that the eigenvalues (iµk)k∈Λ of A are simple and that
they are ordered such that the sequence (µk)k∈Λ is strictly increasing. Moreover,
assume that lim|k|→∞(µk+1 − µk) = ∞ and that there exist β1, β2 > 0 such that

β1 6 ‖ck‖ 6 β2 ∀ k ∈ Λ .

Then C is an admissible observation operator for T and the pair (A,C) is exactly
observable in any time τ > 0.
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Proof. The admissibility of C for T follows from Remark 5.3.8.

For an arbitrary τ > 0 we chose r > 0 such that

τ > π

√
1

r2
+

4K2(r)

rβ2
1

,

where K(r) is as in (6.9.8). Since µk+1 − µk → ∞, there exists α > 0 such that
every wave packet of A of parameters µn and 2r with |µn| > α is formed of only φn.
Consequently, we can apply Proposition 6.9.5 with δ = β1 to get the conclusion.

Remark 6.9.7. It is easy to check that the above corollary provides alternative
proofs for the exact observability results from Examples 6.7.3 and 6.7.6.

6.10 The clamped Euler-Bernoulli beam with torque
observation at an endpoint

In this section we consider a system modeling the vibrations of an Euler-Bernoulli
beam clamped at both ends. The output is the torque at the left end. Due to
the boundary conditions, the fourth order derivative operator appearing here is not
the square of a second order derivative operator, as it was in Examples 6.8.3 and
6.8.4. Thus, unlike in those examples, the study of this system cannot be based on
properties of a corresponding system governed by the Schrödinger equation.

The system we study is described by the equations

∂2w

∂t2
(x, t) +

∂4w

∂x4
(x, t) = 0 , (x, t) ∈ (0, 1)× [0,∞) , (6.10.1)

w(0, t) = w(1, t) = 0 , t > 0 , (6.10.2)

∂w

∂x
(0, t) =

∂w

∂x
(1, t) = 0 , t > 0 , (6.10.3)

w(x, 0) = w0(x) ,
∂w

∂t
(x, 0) = w1(x) , x ∈ [0, 1] , (6.10.4)

where w stands for the transverse displacement of the beam. The output is

y(t) =
∂2w

∂x2
(0, t) ∀ t > 0 .

Let H = L2[0, 1] and let A0 : D(A0) → H be the strictly positive fourth derivative
operator defined in Example 3.4.13. Recall that

H1 = H4(0, 1) ∩H2
0(0, 1) , H 1

2
= H2

0(0, 1) .

Denote X = H 1
2
×H and let A : X1 → X be the operator defined by

X1 = H1 ×H 1
2
, A =

[
0 I

−A0 0

]
.
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We know from Proposition 3.7.6 that A is skew-adjoint, so that it generates a unitary
group T on X. Let C ∈ L(X1,C) be the observation operator defined by

C

[
f
g

]
=

d2f

dx2
(0) ∀

[
f
g

]
∈ X1 . (6.10.5)

The main result in this section is the following:

Proposition 6.10.1. C is an admissible observation operator for T and (A,C) is
exactly observable in any time τ > 0. In PDEs terms, this means that if τ > 0 then
there exists kτ > 0 such that the solution w of (6.10.1)–(6.10.4) satisfies

τ∫

0

∣∣∣∣
∂2w

∂x2
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖w0‖2

H2(0,1) + ‖w1‖2
L2[0,1]

)
∀

[
w0

w1

]
∈ D(A) .

We know from Example 3.4.13 that there exists an orthonormal basis (ϕk)k∈N in
H formed of eigenvectors of A0. In order to prove Proposition 6.10.1 we need more
information on the eigenvalues and the eigenfunctions of A0.

Lemma 6.10.2. With the above notation, the eigenvalues of A0 are simple and they
can be ordered in a strictly increasing sequence (λk)k∈N such that

λk = π4

(
k − 1

2

)4

+ ak , (6.10.6)

where (ak)k∈R is a sequence converging exponentially to zero. Denote by ϕk a nor-
malized eigenvector corresponding to λk. There exists m > 0 such that

1√
λk

∣∣∣∣
d2ϕk

dx2
(0)

∣∣∣∣ > m ∀ k ∈ N , (6.10.7)

and

lim
1√
λk

∣∣∣∣
d2ϕk

dx2
(0)

∣∣∣∣ = 2 . (6.10.8)

Proof. λ > 0 is an eigenvalue of A0 iff there exists f ∈ D(A0), f 6= 0 such that





d4f

dx4
(x) = λf(x), x ∈ (0, 1),

f(0) = f(1) = 0,
df

dx
(0) =

df

dx
(1) = 0.

From the first equation above it follows that

f(x) = p1 cos(ξx) + p2 sin(ξx) + p3 cosh(ξx) + p4 sinh(ξx) ,
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where ξ = λ
1
4 and p1, p2, p3, p4 ∈ C. From f(0) = 0 we get that p1 + p3 = 0 while

from df
dx

(0) = 0 we get that p2 + p4 = 0. Thus,

f(x) = p1 [cos(ξx)− cosh(ξx)] + p2 [sin(ξx)− sinh(ξx)] . (6.10.9)

This and the boundary conditions f(1) = 0 and df
dx

(1) = 0 yield

{
[cos(ξ)− cosh(ξ)]p1 + [sin(ξ)− sinh(ξ)]p2 = 0 ,
−[sin(ξ) + sinh(ξ)]p1 + [cos(ξ)− cosh(ξ)]p2 = 0 .

This homogeneous system of equations in the unknowns p1 and p2 admits a non-
trivial solution iff the corresponding determinant is zero, i.e.,

[cos(ξ)− cosh(ξ)]2 + [sin(ξ)− sinh(ξ)][sin(ξ) + sinh(ξ)] = 0 ,

which is equivalent to
cos(ξ) cosh(ξ) = 1 . (6.10.10)

If ξ satisfies (6.10.10) then, by solving the homogeneous system of two equations,
we obtain

p1 = γ(cos(ξ)− cosh(ξ)) , p2 = γ(sin(ξ) + sinh(ξ)) , (6.10.11)

where γ ∈ C \ {0} is arbitrary. It follows that the eigenvalues of A0 are simple.

On the other hand, it is not difficult to check that the set formed by all the
positive solutions of (6.10.10) can be ordered to form strictly increasing sequence
(ξk)k>1 such that

ξk = π

(
k − 1

2

)
+ ãk , (6.10.12)

where (ãk)k>1 is a sequence converging exponentially to zero. From this we clearly
obtain (6.10.6), since λk = ξ4

k.

We still have to show (6.10.7). By combining (6.10.9) and (6.10.11) it follows that

ϕk(x) = γkψk(x) ∀ k ∈ N , (6.10.13)

where

ψk(x) = [cos(ξk)− cosh(ξk)][cos(ξkx)− cosh(ξkx)]

+ [sin(ξk) + sinh(ξk)][sin(ξkx)− sinh(ξkx)] ∀ k ∈ N (6.10.14)

and γk > 0 is chosen such that ‖ϕk‖H = 1. From (6.10.14) it follows that

ψk(x) = gk(x) + hk(x) , (6.10.15)

where the significant term is

gk(x) =
1

2
eξk [sin(ξkx)− cos(ξkx)] ,
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in the sense that lim e−ξk‖gk‖H = 1
2
, while lim e−ξk‖hk‖H = 0. Therefore, the

condition ‖ϕk‖H = 1 implies that

lim γke
ξk = 2 . (6.10.16)

On the other hand, from (6.10.13) and (6.10.14) it follows that

d2ϕk

dx2
(0) = 2γkξ

2
k [cosh(ξk)− cos(ξk)] ∀ k ∈ N . (6.10.17)

From the above, (6.10.16) and the fact that lim cos(ξk) = 0 it follows that (6.10.8)
holds. Therefore, in order to get the conclusion (6.10.7) it suffices to show that

d2ϕk

dx2
(0) 6= 0 ∀ k ∈ N . (6.10.18)

If we had that
d2ϕk

dx2
(0) = 0 for some k ∈ N, then from (6.10.10) and (6.10.17) it

would follow that

cos(ξk) cosh(ξk) = 1 and cos(ξk) = cosh(ξk) .

These equations imply that either cos(ξk) = cosh(ξk) = 1 or cos(ξk) = cosh(ξk) =
−1, with ξk > 0, which is not possible. We have thus shown (6.10.18).

We are now in a position to prove the main result in this section.

Proof of Proposition 6.10.1. Denote µk =
√

λk. For all k ∈ N we define ϕ−k = −ϕk

and µ−k = −µk. We know from Proposition 3.7.7 that A is diagonalizable, with the
eigenvalues (iµk)k∈Z∗ corresponding to the orthonormal basis of eigenvectors

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ . (6.10.19)

Therefore, by applying Lemma 6.10.2 it follows that the the eigenvalues (iµk)k∈Z∗ of
A are simple with lim

|k|→∞|
|µk+1 − µk| = ∞. Moreover, from (6.10.19) it follows that

Cφk =
1

iµk

√
2

d2ϕk

dx2
(0) ∀ k ∈ Z∗ .

From the above formula, together with (6.10.7) and (6.10.8), it follows, by applying
Corollary 6.9.6, that C is an admissible observation operator for T and that the pair
(A,C) is exactly observable in any time τ > 0.

6.11 Remarks and bibliographical notes on Chapter 6

General remarks. For finite-dimensional linear systems, the concept of observabil-
ity has been introduced in the works of Rudolf Kalman around 1960. Besides being
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the dual property to controllability, an important motivation for studying this con-
cept was that it implies the existence of state observers with any desired exponential
decay rate of the estimation error. Various infinite-dimensional generalizations were
soon formulated, see for example Delfour and Mitter [47], Fattorini and Russell [62],
and we refer to the survey paper by Russell [199] for an overview of (approximately)
the first ten years of the development of this theory. In general, the approach was
more of an ad-hoc PDE nature, using eigenfunction expansions and moment prob-
lems. The general functional analytic formulation of infinite-dimensional control
or observation problems was not well understood, except for bounded control or
observation operators.

The next big step was the so-called HUM (Hilbert Uniqueness Method) approach,
which by itself is a very simple idea (renorm the state space of an approximately
observable system by ‖z‖HUM = ‖Ψτz‖ and it becomes exactly observable), but
coupled with a clever use of multipliers for specific PDEs this yielded powerful new
results for wave and plate equations, see Lions [156] and Lagnese and Lions [139]. We
refer to the survey paper of Lagnese [138] for an account of this development. The
next big breakthrough was the application of microlocal analysis to observability
problems initiated in Bardos, Lebeau and Rauch [15] (we say more on this in the
bibliographic comments on Chapter 7). The functional analytic approach to exact
observability started late and was overshadowed by the PDE developments. An
important early paper is Dolecki and Russell [51], and the book by Avdonin and
Ivanov [9] belongs to this stream (also Nikolskii [178]).

Section 6.1. The material here is fairly standard. We are not aware of any reference
that contains Proposition 6.1.9. Proposition 6.1.12 is taken from Tucsnak and Weiss
[222]. A stronger version of Proposition 6.1.13 has appeared in Weiss and Rebarber
[234, Proposition 5.5]. Corollary 6.1.14 has appeared in Datko [41] and has been
generalized in various directions, see for example Weiss [227] and the references
therein. Proposition 6.1.15 is due to Xu, Liu and Yung [238].

Section 6.2 contains simple and well-known examples whose origin we cannot trace.
Interesting problems which can be seen as extensions (still in one space dimension)
of these examples concern networks of strings and of beams, which have been studied
in the monographs Lagnese and Leugering [140] and Dager and Zuazua [40].

Section 6.3 contains new results inspired by the results of Hadd [84].

Section 6.4. Simultaneous exact observability is the dual concept of simultaneous
exact controllability. The latter concept will be studied in Chapter 11 and relevant
bibliographic comments on it are contained in Section 11.7. The results in this
Section are taken from from Tucsnak and Weiss [222], except the simple Proposition
6.4.4, which is new. (The paper [222] had a mistake in the statement of the main
result, which of course has been rectified here.)

Section 6.5. The material in this section (except for the last proposition) is based
on Russell and Weiss [201] (the Hautus test (6.5.2) appeared for the first time in
[201]). Proposition 6.5.7 is due to Jacob and Zwart [122, Section 4], and it is the
strengthening of an earlier result by Grabowski and Callier [75].
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We mention that in [201] the following result has also been derived:

Theorem 6.11.1. Suppose that A ∈ L(X) and C ∈ L(X, Y ). If for every s ∈ C−
there is an ms > 0 such that for each z ∈ X,

‖(sI − A)z‖2 + ‖Cz‖2 > ms · ‖z‖2 ,

then (A,C) is exactly observable in infinite time.

This theorem follows also from results in Rodman [191]. We mention that Hautus
type necessary conditions for estimatability (a weaker property than exact observ-
ability) were given in Weiss and Rebarber [234]. The paper Hadd and Zhong [85]
contains some necessary as well as some sufficient Hautus type conditions for the
stabilizability of systems with delays.

Assume that A is diagonalizable and its eigenvalues are properly spaced, which
means that |λj − λk| > δ · |Re λk| for all j, k ∈ N with j 6= k, where δ > 0. We
denote ck = Cϕk, where (ϕk) is an orthonormal basis in X such that Aϕk = λkϕk.
It has been shown in [201, Section 4] that under these assumptions, the estimate
(6.5.2) is equivalent to the existence of a κ > 0 such that

‖ck‖2
Y > κ|Re λk| ∀ n ∈ N .

It has been conjectured in [201] that the Hautus test (6.5.2) is a sufficient con-
dition for exact observability. This turned out to be false, a counterexample has
been constructed in Jacob and Zwart [121] (with an analytic semigroup). Another
counterexamle in Jacob and Zwart [122] shows that (6.5.2) does not even imply ap-
proximate observability, if we weaken the exponential stability assumption to strong
stability. (More details on [122] are at the end of this section.) Today, we have a
good hope that the conjecture from [201] may be true for normal semigroups, and
a weaker hope that it may be true for contraction semigroups.

The paper Grabowski and Callier [75] contains the following theorem:

Theorem 6.11.2. With the notation of Section 6.5, (A,C) is exactly observable if
and only if there exists H ∈ L(X), H > 0 such that for all s ∈ C and z ∈ D(A),

1

|Re s|2 〈(sI − A)z, H(sI − A)z〉 +
1

|Re s| ‖Cz‖2 > 〈z, Hz〉 . (6.11.1)

This theorem implies (by taking H = I) that if T is a contraction semigroup and
the Hautus condition (6.5.2) holds with m = 1, then (A,C) is exactly observable.
Indeed, for s ∈ C− the estimate (6.11.1) follows from (6.5.2), while for s ∈ C0

(6.11.1) follows from (3.1.2). The above theorem also implies Theorem 6.5.3 (see
[75] for the details). The same paper [75] also gives interesting (but difficult to
verify) necessary and sufficient conditions for admissibility.

Section 6.6. Most of the results in Sections 6.6 and 6.9 have been proved first for
bounded observation operators and without specifying the exact observability time.
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This was done by using the equivalence of the exact observability property to the
exponential stability of a certain semigroup obtained by feedback (a particular case
of this implication has been used to prove Proposition 7.4.5 below). For example,
earlier versions of Theorem 6.6.1 with bounded C (and without information on the
observability time) were published in Zhou and Yamamoto [243], Chen, Fulling,
Narcowich and Sun [34] and Liu [160].

The sufficiency of the Hautus type condition in Theorem 6.6.1 for skew-adjoint
generators with an unbounded admissible C and the estimates of the observability
time have been obtained first in Burq and Zworski [27], with some additional tech-
nical assumptions on A and C. Our presentation of Theorem 6.6.1 follows closely
Miller [170], who simplified the argument and generalized the result from [27]. The
result in Proposition 6.6.4 is new, as far as we know.

Section 6.7. The derivation of exact observability results for abstract Schrödinger
type equations from properties of abstract wave type equations are due to Miller
[170]. Our contribution is a simpler proof, using instead of the “transmutation
method” from [170] our simultaneous observability approach from Proposition 6.6.4.
Moreover, we have made precise the state spaces and proved the admissibility results
in Propositions 6.7.1 and 6.7.4.

Section 6.8. In its abstract form, the result in Proposition 6.8.2 is new, but its
proof is essentially based on ideas used in Lebeau [150] in the study of the exact
observability of the Euler-Bernoulli plate equation.

Section 6.9. Proposition 6.9.2 was given, with a different proof, in Ervedoza,
Zheng and Zuazua [58]. As far as we know, the estimate of the observability time
τ in Theorem 6.9.3 is new. Theorem 6.9.3 without information on τ was proved in
Ramdani, Takahashi, Tenenbaum and Tucsnak [186]. Earlier versions with bounded
C are in Chen et al [34] and in Liu, Liu and Rao [161].

Section 6.10. The material here is standard and we cannot trace its origins. Ha-
raux [94] investigated the exact observability of a clamped beam with distributed
observation and we have used this reference for the computation of the eigenfunc-
tions. Related material is also in Lagnese and Lions [139], Zhao and Weiss [242] and
various papers by B.Z. Guo, see for example [79] and the references therein.

The observability results of B. Jacob and H. Zwart. Recently, Birgit Jacob
and Hans Zwart have obtained the following results, contained in [122].

Theorem 6.11.3. Let A be the generator of a strongly continuous group T on X
satisfying

M1e
α1t‖z‖ 6 ‖Ttz‖ 6 M2e

α2t‖z‖ ∀ z ∈ X, t > 0 ,

for some constants M1, M2 > 0 and α1 < α2 < 0.

Assume that there exists m > 0 such that

‖((α2 + iω)I − A)z‖2 + |α2| · ‖Cz‖2 > m|α2|2 · ‖z‖2 ∀ z ∈ D(A), ω ∈ R ,
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α2 − α1

|α2| <

√
mM1

4eM2

.

Then (A,C) is exactly observable in time τ = 1/(α2 − α1).

Note that the second condition in the above theorem is the Hautus test (6.5.2)
restricted to the vertical line where Re s = α2. The above theorem is used in the
proof of the following result about final state observability:

Theorem 6.11.4. Let A be the generator of an exponentially stable and normal
semigroup T. Let C be an admissible observation operator for T. Then the Hautus
test (6.5.2) is sufficient for the final state observability of (A,C).

From this theorem and Theorem 6.5.3 we can easily obtain the following general-
ization of Theorem 6.6.1 (a partial converse of Theorem 6.5.3):

Corollary 6.11.5. Let A be the generator of an exponentially stable normal group
T. Let C be an admissible observation operator for T. Then the Hautus test (6.5.2)
is equivalent to the exact observability of (A, C).

The above (not yet published) results from [122] are a natural continuation of
important earlier results by the same authors. The main result of the paper Jacob
and Zwart [119], partially reproduced below, refers to systems with a diagonalalisable
semigroup and a finite-dimensional output space.

Theorem 6.11.6. Assume that A is diagonalizable, it generates a strongly stable
semigroup T and Y = Cn. Let C ∈ L(X1, Y ) be infinite-time admissible. Then the
following conditions are equivalent:

(1) (A,C) is exactly observable in infinite time.

(2) (A,C) satisfies the Hautus test (6.5.2).

(3) There exists µ > 0 such that for every (n+1)-dimensional subspace V ⊂ X that
is invariant under T, the solution PV of the Lyapunov equation

A∗
V PV + PV AV = − C∗

V CV

(which is unique, see Theorem 5.1.1) satisfies PV > µI. Here, AV and CV denote
the restrictions of A and C to D(A) ∩ V .

We mention that the one-dimensional version (n = 1) of the above result was
obtained earlier by the same authors in [120], using different techniques.



Chapter 7

Observation for the wave equation

Notation. Throughout this chapter Ω denotes a bounded open connected set in
Rn, where n ∈ N. We assume that either the boundary ∂Ω is of class C2 or that
Ω is a rectangular domain. The remaining part of the notation described below is
used in the whole chapter, with the exception of Section 7.6, where some notation
(like X and A) will have a different meaning.

Let A0 be the Dirichlet Laplacian on Ω as defined in (3.6.3), so that A0 : D(A0) →
L2(Ω). Recall from Section 3.6 that A0 is strictly positive. As usual, we denote

H = L2(Ω), H 1
2

= D(A
1
2
0 ) and H1 = D(A0), while H− 1

2
is the dual of H 1

2
with

respect to the pivot space H.

According to Proposition 3.6.1 we have H 1
2

= H1
0(Ω), H− 1

2
= H−1(Ω). According

to Theorem 3.6.2 and Remark 3.6.6, our assumptions on Ω imply that

H1 = D(A0) = H2(Ω) ∩ H1
0(Ω) .

The norm in H will be simply denoted by ‖ · ‖.
We define X = H 1

2
×H, which is a Hilbert space with the inner product

〈[
f1

g1

]
,

[
f2

g2

]〉

X

= 〈A
1
2
0 f1, A

1
2
0 f2〉+ 〈g1, g2〉 .

We define D(A) = H1 × H 1
2

(this is a dense subspace of X) and we define the

operator A : D(A)→X by

A =

[
0 I

−A0 0

]
, i.e., A

[
f
g

]
=

[
g

−A0f

]
. (7.0.1)

Recall from Proposition 3.7.6 that A is skew-adjoint, so that it generates a unitary
group T on X. In this chapter (as in Section 3.9) we denote by v · w the bilinear
product of v, w ∈ Cn defined by v · w = v1w1 . . . + vnwn, and by | · | the Euclidean
norm on Cn.

235
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For some fixed x0 ∈ Rn we denote

m(x) = x− x0 ∀ x ∈ Rn , (7.0.2)

and we set (see Figure 7.1)

Γ(x0) = {x ∈ ∂Ω | m(x) · ν(x) > 0} , r(x0) = sup
x∈Ω

|m(x)| . (7.0.3)

x
0

Figure 7.1: The set Γ(x0) is an open part of the boundary ∂Ω.

7.1 An admissibility result for boundary observation

In this section we denote Y = L2(Γ), where Γ is an open subset of ∂Ω and consider
the operator C ∈ L(X1, Y ) defined by

C

[
f
g

]
=

∂f

∂ν
|Γ ∀

[
f
g

]
∈ X1 = H1 ×H 1

2
, (7.1.1)

where ν is the unit outward normal vector field on ∂Ω. For the definition of the
normal derivative ∂f

∂ν
see Section 13.6 in Appendix II.

Consider the following initial and boundary value problem:

∂2η

∂t2
−∆η = 0 in Ω× (0,∞), (7.1.2)
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η = 0 on ∂Ω× (0,∞), (7.1.3)

η(x, 0) = f(x),
∂η

∂t
(x, 0) = g(x) for x ∈ Ω . (7.1.4)

By applying Proposition 3.8.7 with A0 chosen as at the beginning of this chapter,
we obtain the following result:

Proposition 7.1.1. If f ∈ H1 = H2(Ω) ∩ H1
0(Ω) and g ∈ H 1

2
= H1

0(Ω), then the

initial and boundary value problem (7.1.2)-(7.1.4) has a unique solution

η ∈ C([0,∞), H1) ∩ C1([0,∞), H 1
2
) ∩ C2([0,∞), H) , (7.1.5)

and this solution satisfies

‖∇η(·, t)‖2 +

∥∥∥∥
∂η

∂t
(·, t)

∥∥∥∥
2

= ‖∇f‖2 + ‖g‖2 ∀ t > 0 . (7.1.6)

Remark 7.1.2. Recall from Proposition 3.4.3 and Remark 3.4.4 that A
1
2
0 is unitary

from H 1
2

to H and from H to H− 1
2
. This fact, combined with (7.1.6), implies that

the solution η from Proposition 7.1.1 satisfies

‖η(·, t)‖2 +

∥∥∥∥
∂η

∂t
(·, t)

∥∥∥∥
2

H−1(Ω)

= ‖f‖2 + ‖g‖2
H−1(Ω) ∀ t > 0 . (7.1.7)

The main result of this section is the following:

Theorem 7.1.3. For every τ > 0 there exists a constant Kτ > 0 such that for every
f ∈ H2(Ω) ∩H1

0(Ω), g ∈ H1
0(Ω) the solution η of (7.1.2)–(7.1.4) satisfies

T∫

0

∫

∂Ω

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσ 6 K2
τ

(‖∇f‖2 + ‖g‖2
)

, (7.1.8)

where dσ is the surface measure on ∂Ω.

In other words, C is an admissible observation operator for T.

The integral identities given in the next two lemmas are important tools for the
proof of the above theorem and of other results in later sections.

Lemma 7.1.4. Let ϕ ∈ H2(Ω) ∩H1
0(Ω) and q ∈ C1(clos Ω,Rn). Then

Re

∫

Ω

(q · ∇ϕ) ∆ϕdx =
1

2

∫

∂Ω

(q · ν)

∣∣∣∣
∂ϕ

∂ν

∣∣∣∣
2

dσ +
1

2

∫

Ω

(div q)|∇ϕ|2dx

−
n∑

l,k=1

Re

∫

Ω

∂qk

∂xl

∂ϕ

∂xk

∂ϕ

∂xl

dx. (7.1.9)
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Proof. By an integration by parts (see Theorem 13.7.1 in Appendix II) we obtain

(taking f =
∂ϕ

∂xl

, g = qk
∂ϕ

∂xk

, and then doing summation with respect to all the

indices l, k) that

Re

∫

Ω

(q · ∇ϕ) ∆ϕdx =
n∑

k,l=1

Re

∫

Ω

qk
∂ϕ

∂xk

∂2ϕ

∂x2
l

dx

= −
n∑

k,l=1

Re

∫

Ω

∂

∂xl

(
qk

∂ϕ

∂xk

)
∂ϕ

∂xl

dx + Re

∫

∂Ω

(q · ∇ϕ)
∂ϕ

∂ν
dσ.

This formula and the fact that ∇ϕ|∂Ω = ∂ϕ
∂ν

ν|∂Ω (which follows from the fact that ϕ
is vanishing on ∂Ω) imply that

Re

∫

Ω

(q · ∇ϕ) ∆ϕdx = − 1

2

∫

Ω

q · ∇(|∇ϕ|2)dx−
n∑

l,k=1

Re

∫

Ω

∂qk

∂xl

∂ϕ

∂xk

∂ϕ

∂xl

dx

+

∫

∂Ω

(q · ν)

∣∣∣∣
∂ϕ

∂ν

∣∣∣∣
2

dσ. (7.1.10)

From formula (13.3.1) we see that

q · ∇(|∇ϕ|2) = div
(|∇ϕ|2q)− (div q)|∇ϕ|2 .

This, combined with the Gauss formula (13.7.3) and (7.1.10) leads to (7.1.9).

Lemma 7.1.5. Let

w ∈ C
(
[0,∞);H2(Ω) ∩H1

0(Ω)
) ∩ C1

(
[0,∞);H1

0(Ω)
) ∩ C2

(
[0,∞); L2(Ω)

)
,

let q ∈ C1(clos Ω,Rn) and let G ∈ C1([0,∞);R). If we denote

∂2w

∂t2
−∆w = F , (7.1.11)

then for every τ > 0,

τ∫

0

G

∫

∂Ω

(q · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt = 2Re


G

∫

Ω

∂w

∂t
(q · ∇w)dx




t=τ

t=0

+ 2
n∑

k,l=1

Re

τ∫

0

G

∫

Ω

∂qk

∂xl

∂w

∂xk

∂w

∂xl

dxdt +

τ∫

0

G

∫

Ω

(div q)

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

− |∇w|2
)

dxdt

− 2Re

τ∫

0

G

∫

Ω

F (q · ∇w)dxdt− 2Re

τ∫

0

dG

dt

∫

Ω

∂w

∂t
(q · ∇w)dxdt. (7.1.12)
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Proof. We take the inner products in L2([0, τ ]; L2(Ω)) of both sides (7.1.11) with
Gq · ∇w. For the first term we integrate by parts with respect to time:

τ∫

0

∫

Ω

G
∂2w

∂t2
(q · ∇w)dxdt =


G

∫

Ω

∂w

∂t
(q · ∇w)dx




t=τ

t=0

−
τ∫

0

G

∫

Ω

∂w

∂t

[
q · ∇

(
∂w

∂t

)]
dxdt−

τ∫

0

dG

dt

∫

Ω

∂w

∂t
(q · ∇w)dxdt.

From here, using an integration by parts in space applied to the second term on the

right (the Green formula (13.7.2)) and using that
∂w

∂t
= 0 on ∂Ω, we obtain

Re

τ∫

0

G

∫

Ω

∂2w

∂t2
(q · ∇w)dxdt = Re


G

∫

Ω

∂w

∂t
(q · ∇w)dx




t=τ

t=0

+
1

2

τ∫

0

G

∫

Ω

∣∣∣∣
∂w

∂t

∣∣∣∣
2

(div q)dxdt− Re

τ∫

0

dG

dt

∫

Ω

∂w

∂t
(q · ∇w)dxdt. (7.1.13)

By applying Lemma 7.1.4 we obtain that the contribution of the second term from
the left-hand side of (7.1.11) is

Re

τ∫

0

G

∫

Ω

(q · ∇w) ∆wdxdt =
1

2

τ∫

0

G

∫

∂Ω

(q · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt

+
1

2

τ∫

0

G

∫

Ω

(div q)|∇w|2dxdt−
n∑

k,l=1

Re

τ∫

0

G

∫

Ω

∂qk

∂xl

∂w

∂xk

∂w

∂xl

dxdt.

The above relation, combined to (7.1.11) and (7.1.13), implies (7.1.12).

The proof of Theorem 7.1.3 is based on the above lemma, applied to a particular
vector field q, which is constructed below.

Lemma 7.1.6. Assume that the boundary ∂Ω is of class C2. Then there exists a
vector field h ∈ C1(clos Ω,Rn) such that h(x) = ν(x) for all x ∈ ∂Ω.

Proof. The compactness of ∂Ω implies that there exists a finite set {x1, . . . xm} ⊂
∂Ω such that for every k ∈ {1, . . . m} there exists a neighborhood Vk of xk in Rn and
a system of orthonormal coordinates denoted by (yk,1, . . . yk,n) such that, in these
coordinates

Vk = {(yk,1, . . . , yk,n) | − ak,j < yk,j < ak,j, 1 6 j 6 n}
and the sets Vk cover ∂Ω (i.e., ∂Ω is contained in their union). The fact that ∂Ω is of
class C2 (see Definition 13.5.2 in Appendix II) implies that for every k ∈ {1, . . . m}
there exists a C2 function ϕk defined on

V ′
k = {(yk,1, . . . , yk,n−1) | − ak,j < yj < ak,j, 1 6 j 6 n− 1} ,
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such that

|ϕk(y
′
k)| 6

ak,n

2
for every y′k = (yk,1, . . . yk,n−1) ∈ V ′

k ,

Ω ∩ Vk = {yk = (y′k, yk,n) ∈ Vk | yk,n < ϕk(y
′
k)} ,

∂Ω ∩ Vk = {yk = (y′k, yk,n) ∈ Vk | yn = ϕk(y
′)} .

Moreover, from the definition of the outward normal field ν in Appendix II it follows
that

ν(x) = ψk(x) ∀ x ∈ ∂Ω ∩ Vk ,

where, for every k ∈ {1, . . . m} and x ∈ Vk we have

ψk(x) =
1√

1 +
[

∂ϕk

∂yk,1
(y′k)

]2

+ · · ·+
[

∂ϕk

∂yn−1,k
(y′k)

]2




− ∂ϕk

∂yk,1
(y′k)
·
·
·

− ∂ϕk

∂yk,n−1
(y′k)

1




.

Let V0 be an open set such that

clos V0 ⊂ Ω , Ω ⊂
m⋃

k=0

Vk .

Let K be the compact set

K = clos
m⋃

k=0

Vk ,

and let (φk)06k6m ⊂ D(Rn) be a real-valued partition of unity subordinated to the
covering (Vk)06k6m of K (see Proposition 13.1.6). We extend ψk by 0 outside Vk

and we denote

h(x) =
m∑

k=0

φk(x)ψk(x) ∀ x ∈ Rn .

Then clearly h ∈ C1(clos Ω;Rn) and h(x) = ν(x) on ∂Ω.

We are now in a position to prove the main result of this section.

Proof of Theorem 7.1.3. First we consider the case when ∂Ω is of class C2. Let h
be the vector field from Lemma 7.1.6. By applying Lemma 7.1.5 with w = η, where
η is the solution of (7.1.2)-(7.1.4) (so that F = 0), q = h and G = 1 we obtain that

τ∫

0

∫

∂Ω

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt = 2Re

∫

Ω

∂η

∂t
(h · ∇η)dx

∣∣∣∣∣∣

t=τ

t=0

+ 2
n∑

k,l=1

Re

τ∫

0

∫

Ω

∂hk

∂xl

∂η

∂xk

∂η

∂xl

dxdt +

τ∫

0

∫

Ω

div (h)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

− |∇η|2
)

dxdt.
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The second term in the right-hand side can be estimated using that for each t > 0,
∣∣∣∣∣∣

n∑

k,l=1

Re

∫

Ω

∂hk

∂xl

∂η

∂xk

∂η

∂xl

dx

∣∣∣∣∣∣
6 n‖h‖C1(Ω)

∫

Ω

|∇η|2dx.

The other terms on the right-hand side can be estimated similarly, leading to

τ∫

0

∫

∂Ω

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt 6 M2

τ∫

0

∫

Ω

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2
)

dxdt

+M2

∫

Ω

(∣∣∣∣
∂η

∂t
(x, 0)

∣∣∣∣
2

+ |∇η(x, 0)|2
)

dx+M2

∫

Ω

(∣∣∣∣
∂η

∂t
(x, τ)

∣∣∣∣
2

+ |∇η(x, τ)|2
)

dx,

where M > 0 is a constant depending only on ‖h‖C1(Ω). This, combined to (7.1.6)

implies that (7.1.8) holds for K2
τ = M2(τ + 2).

If Ω is rectangular we can assume, without loss of generality, that it is centered at
zero and aligned with the coordinate system. We do similar calculations, but with
q = xjej, where (ej) is the j-th vector in the standard basis of Rn. We obtain an
estimate similar to (7.1.8) but instead of integration on ∂Ω we now have integration
on the two faces perpendicular to ej only. Adding these estimates for j = 1, . . . n
we obtain the desired estimate.

7.2 Boundary exact observability

In this section we study the exact observability of the wave equation with Neumann
boundary observation. Recall that the particular case of the wave equation in one
space dimension has been already investigated in Example 6.2.1. In other terms,
this section is devoted to the exact observability of the pair (A,C), with A given
by (7.0.1) and C given by (7.1.1). We first show that the observed part Γ of the
boundary cannot be chosen arbitrarily.

Proposition 7.2.1. Assume that n = q + r with q, r ∈ N and that Ω = Ω1 × Ω2,
where Ω1 (respectively Ω2) is an open bounded set in Rq (respectively Rr). Assume
that there exists a non-empty open set O1 ⊂ Ω1 such that Γ ∩ clos (O1 × Ω2) = ∅.
Then the pair (A,C) is not exactly observable.

Proof. Indeed, let (ω2
p)p∈N be the strictly increasing sequence of the eigenval-

ues of the Dirichlet Laplacian on Ω2 and let (ψp)p∈N be a corresponding sequence
of orthonormal (in L2(Ω2)) eigenvectors. Choose a fixed f ∈ D(O1) such that
‖f‖L2(Ω1) = 1. For x ∈ Rn we denote x = [ x1

x2 ], where x1 ∈ Rq and x2 ∈ Rr. For all
p ∈ N we set

ϕp(x) = ψp(x2)f(x1) , zp =

[
ϕp

iωpϕp

]
.
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From our assumption on Γ it follows that

Czp =
∂ϕp

∂ν
|Γ = 0 ∀ p ∈ N . (7.2.1)

On the other hand

‖(iωp − A)zp‖2
X = ‖(ω2

p − A0)ϕp‖2
H

=

∫

Ω

|ψp(x2)∆f(x1)|2dx1dx2 = ‖∆f‖2
L2(Ω1) . (7.2.2)

Relations (7.2.1) and (7.2.2), together with the fact that limp→∞ ‖zp‖X = ∞, show
that the pair (A, C) does not satisfy condition (6.6.1) in Theorem 6.6.1. Conse-
quently the pair (A,C) is not exactly observable.

In order to give a sufficient condition for the exact observability of the pair (A,C),
first we derive an integral relation.

Lemma 7.2.2. Let τ > 0, x0 ∈ Rn and let m be defined by (7.0.2). Let

w ∈ C
(
[0, τ ];H2(Ω) ∩H1

0(Ω)
) ∩ C1

(
[0, τ ];H1

0(Ω)
) ∩ C2

(
[0, τ ]; L2(Ω)

)

and denote
∂2w

∂t2
−∆w = F . (7.2.3)

Then

τ∫

0

∫

∂Ω

(m · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt =

τ∫

0

∫

Ω

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

+ |∇w|2
)

dxdt

+ Re




∫

Ω

[2m · ∇w + (n− 1)w]
∂w

∂t
dx




t=τ

t=0

− 2Re

τ∫

0

∫

Ω

F (m · ∇w)dxdt− (n− 1)Re

τ∫

0

∫

Ω

F wdxdt. (7.2.4)

Proof. We apply Lemma 7.1.5 with q = m and G = 1. By using the facts that
div m = n and that ∂mk

∂xl
= δkl (the Kronecker symbol), relation (7.1.12) yields that

τ∫

0

∫

∂Ω

(m · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt =

τ∫

0

∫

Ω

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

+ |∇w|2
)

dxdt

+ (n− 1)

τ∫

0

∫

Ω

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

− |∇w|2
)

dxdt + 2Re

∫

Ω

(m · ∇w)
∂w

∂t
dx

∣∣∣∣∣∣

t=τ

t=0

− 2Re

τ∫

0

∫

Ω

F (m · ∇w)dxdt. (7.2.5)
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On the other hand, by taking the inner product in L2([0, τ ]; L2(Ω)) of both sides of
(7.2.3) with w it follows (integrating by parts using (13.7.2)) that

τ∫

0

∫

Ω

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

− |∇w|2
)

dxdt = Re

∫

Ω

∂w

∂t
w dx

∣∣∣∣∣∣

τ

0

− Re

τ∫

0

∫

Ω

F wdxdt.

From the above relation and (7.2.5) we obtain the conclusion (7.2.4).

We shall also need the following technical lemma.

Lemma 7.2.3. Let x0 ∈ Rn, let the vector field m and the number r(x0) be as in
(7.0.2) and (7.0.3). Then we have

∣∣∣∣∣∣

∫

Ω

g [2m · ∇f + (n− 1)f ] dx

∣∣∣∣∣∣
6 r(x0)

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ X. (7.2.6)

Proof. We have, using (13.3.1) in the last step,

‖2m · ∇f + (n− 1)f‖2 =

∫

Ω

|2m · ∇f |2dx + (n− 1)2

∫

Ω

|f |2dx

+ 2(n− 1)

∫

Ω

m · ∇(|f |2)dx =

∫

Ω

|2m · ∇f |2dx + (n− 1)2

∫

Ω

|f |2dx

+ 2(n− 1)

∫

Ω

div (|f |2m)dx− 2n(n− 1)

∫

Ω

|f |2dx.

By the Gauss formula (13.7.3) and since f = 0 on ∂Ω, the above formula yields

‖2m · ∇f + (n− 1)f‖2 = ‖2m · ∇f‖2 − (n2 − 1)‖f‖2 ,

so that

‖2m · ∇f + (n− 1)f‖ 6 ‖2m · ∇f‖ .
From the above and the Cauchy-Schwarz inequality it follows that

∣∣∣∣∣∣

∫

Ω

g [2m · ∇f + (n− 1)f)]dx

∣∣∣∣∣∣
6 2‖g‖ · ‖m · ∇f‖

6 r(x0)‖g‖2 +
1

r(x0)
‖m · ∇f‖2

L2(Ω) 6 r(x0)
(‖∇f‖2 + ‖g‖2

)
,

where we have used that |m(x)| 6 r(x0) for all x ∈ Ω.

For the following theorem, recall the definition of Γ(x0) from (7.0.3).
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Theorem 7.2.4. Assume that Γ is an open subset of ∂Ω such that Γ ⊃ Γ(x0) for
some x0 ∈ Rn and that τ > 2r(x0). Then for every f ∈ H2(Ω)∩H1

0(Ω), g ∈ H1
0(Ω),

the solution η of (7.1.2)-(7.1.4) satisfies

τ∫

0

∫

Γ

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > τ − 2r(x0)

r(x0)
(‖∇f‖2 + ‖g‖2) , (7.2.7)

so that the pair (A,C) is exactly observable in any time τ > 2r(x0).

Proof. We apply Lemma 7.2.2 with w = η. By using the facts that (7.2.3) holds
with F = 0 and that, by (7.1.6),

τ∫

0

∫

Ω

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

+ |∇w|2
)

dxdt = τ(‖∇f‖2 + ‖g‖2) ,

relation (7.2.4) yields

τ∫

0

∫

∂Ω

(m · ν)

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt = τ(‖∇f‖2 + ‖g‖2)

+ Re




∫

Ω

[2m · ∇η + (n− 1)η]
∂η

∂t
dx




t=τ

t=0

. (7.2.8)

On the other hand, by applying Lemma 7.2.3 and (7.1.6) it follows that, for every
t > 0, we have

∣∣∣∣∣∣

∫

Ω

[2m · ∇η + (n− 1)η]
∂η

∂t
dx

∣∣∣∣∣∣
6 r(x0)

(
‖∇η‖2 +

∥∥∥∥
∂η

∂t

∥∥∥∥
2
)

= r(x0)
(‖∇f‖2 + ‖g‖2

)
.

Consequently

∣∣∣∣∣∣




∫

Ω

∂η

∂t
[2m · ∇η + (n− 1)η] dx




t=τ

t=0

∣∣∣∣∣∣
6 2r(x0)

(‖∇f‖2 + ‖g‖2
)

.

By using the above estimate in (7.2.8) we obtain that

τ∫

0

∫

∂Ω

(m · ν)

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > (τ − 2r(x0))
(‖∇f‖+ ‖g‖2

)
.

Finally, by using the fact that m(x) · ν(x) 6 0 for x ∈ ∂Ω \Γ and then the fact that
|m(x) · ν(x)| 6 r(x0) for all x ∈ Γ, we obtain the conclusion (7.2.7).
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Remark 7.2.5. The assumption Γ ⊃ Γ(x0) in Theorem 7.2.4 is a simple sufficient
condition for the observability inequality (7.2.7). This condition is not necessary:
there are also other open subsets Γ of ∂Ω for which the exact observability estimate

τ∫

0

∫

Γ

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > k2
τ (‖∇f‖2 + ‖g‖2) (7.2.9)

holds for some τ > 0, kτ > 0 and every solution η of (7.1.2)-(7.1.4). For a discussion
of other sufficient conditions, of which one is “almost” necessary, see Section 7.7.

Remark 7.2.6. According to Remark 6.1.3, the estimate (7.2.9) is equivalent to

τ∫

0

∫

Γ

∣∣∣∣
∂η̇

∂ν

∣∣∣∣
2

dσdt > k2
τ (‖∆f‖2 + ‖∇g‖2) ∀

[
f
g

]
∈ D(A2) . (7.2.10)

7.3 A perturbed wave equation

In this section we consider the following perturbation of the initial and boundary
value problem (7.1.2)-(7.1.4):

∂2η

∂t2
−∆η + aη = 0 in Ω× (0,∞) , (7.3.1)

η = 0 on ∂Ω× (0,∞) , (7.3.2)

η(x, 0) = f(x),
∂η

∂t
(x, 0) = g(x) for x ∈ Ω , (7.3.3)

where a ∈ L∞(Ω) is a real-valued function.

Recall the notation H = L2(Ω), H1 = H2(Ω) ∩ H1
0(Ω), A0 : H1→H, A0 = −∆,

H 1
2

= H1
0(Ω), X = H 1

2
×H, A =

[
0 I

−A0 0

]
and D(A) = X1 = H1×H 1

2
introduced at

the beginning of this chapter. Recall that ‖ · ‖ (without subscripts) stands for the
norm in L2(Ω). As in Section 7.1, Γ is an open subset of ∂Ω and Y = L2(Γ). The
operator C ∈ L(X1, Y ) corresponds to Neumann boundary observation on Γ, as in
(7.1.1). In order to study (7.3.1)-(7.3.3) we introduce several operators. First we
define P0 ∈ L(H) by

P0f = − af ∀ f ∈ H. (7.3.4)

We define P ∈ L(X) by P =
[

0 0
P0 0

]
and AP : D(AP ) → X by

D(AP ) = D(A) , AP = A + P . (7.3.5)

Clearly we have ‖P‖L(X) 6 ‖a‖∞.

By combining Theorem 2.11.2 and Proposition 2.3.5 we obtain the following:



246 Observation for the wave equation

Proposition 7.3.1. The operator AP defined by (7.3.5) is the generator of a strongly
continuous semigroup T on X with ‖Tt‖ 6 et‖a‖∞ for every t > 0. In other words,
if f ∈ H1 and g ∈ H 1

2
, then the initial and boundary value problem (7.3.1)-(7.3.3)

has a unique solution

η ∈ C([0,∞), H1) ∩ C1([0,∞), H 1
2
) ∩ C2([0,∞), H) ,

and this solution satisfies

∥∥∥∥
∂η

∂t
(·, t)

∥∥∥∥
2

+ ‖∇η(·, t)‖2 6 e2t‖a‖∞ (‖g‖2 + ‖∇f‖2
) ∀ t > 0 . (7.3.6)

We mention that the following identity is easy to prove (by checking that for any
initial state in D(A), the time-derivative of the left-hand side is zero):

∫

Ω

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + a|η|2
)

dx =

∫

Ω

(|g|2 + |∇f |2 + a|f |2) dx.

The main result of this section is the following.

Theorem 7.3.2. Assume that Γ is such that (A,C) is exactly observable in time
τ0. Then (AP , C) is exactly observable in any time τ > τ0. In other words, for every
τ > τ0, there exists kP,τ > 0 such that the solution η of (7.3.1)-(7.3.3) satisfies

τ∫

0

∫

Γ

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > k2
P,τ

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ D(AP ) . (7.3.7)

To prove the above theorem, we will use an appropriate decomposition of X as
a direct sum of invariant subspaces. To obtain this decomposition, we need the
following characterization of the eigenvalues and eigenvectors of AP .

Proposition 7.3.3. With the above notation, φ =

[
ϕ
ψ

]
∈ D(AP ) is an eigenvector

of AP , associated to the eigenvalue iµ, if and only if ϕ is an eigenvector of A0−P0,
associated to the eigenvalue µ2, and ψ = iµϕ.

Note that the number µ appearing above does not have to be real.

Proof. Suppose that µ ∈ C and
[ ϕ

ψ

] ∈ X \ {[ 0
0 ]} are such that AP

[ ϕ
ψ

]
= iµ

[ ϕ
ψ

]
.

According to the definition of AP this is equivalent to

ψ = iµϕ and (−A0 + P0)ϕ = iµψ.

The above conditions hold iff

(A0 − P0)ϕ = µ2ϕ and ψ = iµϕ.
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Clearly, A0 − P0 is self-adjoint. By Remarks 2.11.3 and 3.6.4 it has compact
resolvents, so that we may apply Proposition 3.2.12. We obtain that A0 − P0

is diagonalizable with an orthonormal basis (ϕk)k∈N of eigenvectors and the cor-
responding family of real eigenvalues (λk)k∈N satisfies limk→∞ |λk| = ∞. Since
A0 − P0 + ‖P0‖I > 0, it follows that all the eigenvalues λ of A0 − P0 satisfy
λ > −‖P0‖. Hence, limk→∞ λk = ∞. Without loss of generality we may as-
sume that the sequence (λk)k∈N is non-decreasing. We extend the sequence (ϕk) to
a sequence indexed by Z∗ by setting ϕk = −ϕ−k for every k ∈ Z−. We introduce
the real sequence (µk)k∈Z∗ by

µk =
√
|λk| if k > 0 and µk = − µ−k if k < 0 .

We denote

W0 = span

{[ 1
isign(k)

ϕk

ϕk

]∣∣∣∣ k ∈ Z∗, µk = 0

}
.

If Ker (A0 − P0) = {0} then of course W0 is the zero subspace of X. Let N ∈ N be
such that λN > 0. We denote

WN = span

{[
1

iµk
ϕk

ϕk

]∣∣∣∣ k ∈ Z∗, |k| < N, µk 6= 0

}
,

and define YN = W0 + WN . We also introduce the space

VN = clos span

{[
1

iµk
ϕk

ϕk

]∣∣∣∣ |k| > N

}
. (7.3.8)

Lemma 7.3.4. We have X = YN ⊕ VN and YN , VN are invariant under T.

By X = YN ⊕ VN we mean that X = YN + VN and YN ∩ VN = {0}.
Proof. Let A1 : D(A0)→H be defined by

A1f =
∑

λk=0

〈f, ϕk〉ϕk +
∑

λk 6=0

|λk|〈f, ϕk〉ϕk ∀ f ∈ D(A0) .

Since the family (ϕk)k∈N is an orthonormal basis in H and each ϕk is an eigenvector
of A1, it follows that A1 is diagonalizable. Moreover, since the eigenvalues of A1 are
strictly positive, it follows that A1 > 0. According to Proposition 3.4.9, the inner
product on X defined by

〈[
f1

g1

]
,

[
f2

g2

]〉

1

= 〈A
1
2
1 f1, A

1
2
1 f2〉+ 〈g1, g2〉 ∀

[
f1

g1

]
,

[
f2

g2

]
∈ X,

is equivalent to the original one (meaning that it induces a norm equivalent to the
original norm). Let A1 be the operator on X defined by

D(A1) = H1 ×H 1
2
, A1 =

[
0 I

−A1 0

]
.
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According to Proposition 3.7.6, A1 is skew-adjoint on X (if endowed with the inner
product 〈·, ·〉1). Consequently, by applying Proposition 3.7.7 we obtain that YN =
V ⊥

N (with respect to this inner product 〈·, ·〉1). It follows that X = YN ⊕ VN .

We still have to show that VN and YN are invariant subspaces under T. Since VN

is the closed span of a set of eigenvectors of AP , its invariance under the action of
T is clear. If µk = 0, then

AP

[ 1
isign(k)

ϕk

ϕk

]
=

[
ϕk

0

]
=

1

2

([ 1
isign(k)

ϕk

ϕk

]
+

[ 1
isign(−k)

ϕ−k

ϕ−k

])
∈ W0 ,

so that W0 is invariant under T. If |k| < N and λk < 0 then

(A0 − P0)ϕk = − µ2
kϕk ,

so that

AP

[
1

iµk
ϕk

ϕk

]
=

[
ϕk

µk

i
ϕk

]
= iµk

[
1

iµk
ϕk

−ϕk

]
= iµk

[ 1
iµ−k

ϕ−k

ϕ−k

]
∈ WN .

If |k| < N and λk > 0, then

AP

[
1

iµk
ϕk

ϕk

]
= iµk

[
1

iµk
ϕk

ϕk

]
∈ WN .

Thus WN , and hence also YN = W0 + WN , are invariant for T.

Lemma 7.3.5. With the notation from the beginning of this section and (7.3.8), let
N ∈ N be such that λN > ‖a‖L∞. Let us denote by PVN

∈ L(VN , X) the restriction
of P to VN . Then

‖PVN
‖ 6 ‖a‖L∞√

λN − ‖a‖L∞
.

Proof. Take a finite linear combination of the vectors ϕk with k > N :

f =
M∑

k=N

αkϕk , (7.3.9)

so that ‖f‖2 =
∑M

k=N |αk|2. It is easy to see that

‖∇f‖2 + 〈af, f〉 = 2Re
∑

N6k,j6M

αkαj〈(−∆ + a)ϕk, ϕj〉 =
M∑

k=N

λk|αk|2 > λN ‖f‖2 .

From here we see that

‖∇f‖2 > (λN − ‖a‖L∞) ‖f‖2 .

Now take z to be a finite linear combination of the eigenvectors of AP in VN :

z ∈ span

{[
1

iµk
ϕk

ϕk

]∣∣∣∣ |k| > N

}
,
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so that in particular z ∈ VN and z =
[

f
g

]
, with f as in (7.3.9). Therefore

‖PVN
z‖X = ‖Pz‖X = ‖af‖ 6 ‖a‖L∞‖f‖

6 ‖a‖L∞√
λN − ‖a‖∞

‖∇f‖ 6 ‖a‖L∞√
λN − ‖a‖∞

‖z‖X .

Since all the vectors like our z are dense in VN , it follows that the above estimate
holds for all z ∈ VN , and this implies the estimate in the lemma.

Proof of Theorem 7.3.2. Let N ∈ N be such that λN > 0 and let AN and CN

be the parts of AP and of C in VN , where VN has been defined in (7.3.8). (Thus,
AN = (A + P )|VN

and CN = C|VN
.) We claim that for N ∈ N large enough the pair

(AN , CN) (with state space VN) is exactly observable in time τ0.

By assumption there exists kτ0 > 0 such that

τ0∫

0

∫

Γ

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > k2
τ0

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ D(A) ,

where η is a solution of the unperturbed wave equation (7.1.2)-(7.1.4), which corre-
sponds to the pair (A,C). As in Section 6.3, we denote

|||C|||τ0 = ‖Ψτ0‖L(X,L2([0,τ0];Y ) ,

where Ψτ0 is the output map for time τ0 of the unperturbed pair (A,C). According
to Proposition 6.3.3, (AN , CN) is exactly observable in time τ0 if

‖PVN
‖ 6 kτ0

τ0M |||C|||τ0
,

where M = supt∈[0,τ0] ‖Tt‖. Notice that the right-hand side above is independent of
N . Thus, according to Lemma 7.3.5, for N large enough the above condition will
be satisfied. Hence, for N large enough, (AN , CN) is exactly observable in time τ0.

On the other hand, if φ =

[
ϕ
ψ

]
∈ D(AP ) is an eigenvector of AP , associated to

the eigenvalue iµ, such that Cφ = 0 then, according to Proposition 7.3.3, ϕ ∈ H1 is
an eigenvector of A0 − P0, associated to the eigenvalue µ2, i.e., ϕ ∈ H1 satisfies

∆ϕ− aϕ + µ2ϕ = 0 . (7.3.10)

Moreover, the condition Cφ = 0 is equivalent to

∂ϕ

∂ν
= 0 on Γ . (7.3.11)

As shown in Corollary 15.2.2 from Appendix III, the only function ϕ ∈ H1 satisfying
(7.3.10) and (7.3.11) is ϕ = 0. Since, by Proposition 7.3.3, ψ = iµϕ = 0 we obtain
that φ = 0. By the finite-dimensional version of the Hautus test in Remark 1.5.2, it
follows that the pair (ÃN , C̃N), where ÃN and C̃N are the parts of AP and of C in

YN , is observable. Since ÃN and AN have no common eigenvalues and (AN , CN) is
exactly observable in time τ0, according to Theorem 6.4.2 (A,C) is exactly observable
in any time τ > τ0.
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Remark 7.3.6. The class of perturbations considered in the last proposition can
be enlarged to consider bounded perturbations of A of the form

P =

[
0 0

−a− b · ∇ −c

]
,

so that A + P corresponds to the perturbed wave equation

∂2η

∂t2
−∆η + c

∂η

∂t
+ b · ∇η + aη = 0 in Ω× (0,∞) .

The assumptions on a, b, c are that

a ∈ L∞(Ω;R), b ∈ L∞(Ω;Cn), c ∈ L∞(Ω) ,

with the L∞ norms of b and c sufficiently small, as indicated in Theorem 6.3.2.
There is no size restriction on a, as shown in Theorem 7.3.2. The size restrictions
on b and c can be removed, see the comments in Section 7.7.

7.4 The wave equation with distributed observation

In this section we show that if a portion Γ of ∂Ω is a good region for the exact
observability of the wave equation by Neumann boundary observation, then any open
neighborhood of Γ intersected with Ω is also a good region for exact observability,
this time by distributed observation of the velocity.

Let Ω ⊂ Rn be as at the beginning of the chapter and let Γ be an open subset of
∂Ω. For every ε > 0, we denote

Nε(Γ) = {x ∈ Ω | d(x, Γ) < ε} , (7.4.1)

where d(x, Γ) = inf {|x− y| | y ∈ Γ}, see Figure 7.2.

Recall from the beginning of the chapter that we denote X = H1
0(Ω)×L2(Ω) and

that A is the operator defined in (7.0.1). In this section we denote Y = L2(Ω), O is
an open subset of Ω and the observation operator C ∈ L(X, Y ) is given by

C

[
f
g

]
= gχO ∀

[
f
g

]
∈ X,

where χO is the characteristic function of O. The main result of this section is:

Theorem 7.4.1. Assume that there exists τ0 > 0 such that the estimate (7.2.9)
holds for τ = τ0. Assume that O is such that Nε(Γ) ⊂ clos O for some ε > 0. Then
for every τ > τ0 there exists kτ > 0 such that the solutions η of (7.1.2)-(7.1.4) satisfy

τ∫

0

∫

O

∣∣∣∣
∂η

∂t

∣∣∣∣
2

dxdt > k2
τ

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ D(A) . (7.4.2)

Thus, the pair (A,C) is exactly observable in any time τ > τ0.
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Figure 7.2: The set Nε(Γ), which is an open neighborhood of Γ intersected with Ω.

In order to prove the above result we need two lemmas.

Lemma 7.4.2. With the assumptions of Theorem 7.4.1, let τ > τ0 and let α > 0
be such that τ − 4α > τ0. Then there exists cτ,α > 0 such that the solutions η of
(7.1.2)-(7.1.4) satisfy

τ−α∫

α

∫

Nε/2(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + |η|2
)

dxdt

> c2
τ,α(‖∇f‖2 + ‖g‖2) ∀

[
f
g

]
∈ D(A) . (7.4.3)

Proof. Let Γ0 = ∂Nε/4(Γ) ∩ ∂Ω. Clearly we have Γ ⊂ Γ0 so that, by the
assumption in Theorem 7.4.1 and by (7.1.6) it follows that

τ−2α∫

2α

∫

Γ0

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt > k2
τ (‖∇f‖2 + ‖g‖2) ∀

[
f
g

]
∈ D(A) .

Thus, it suffices to show that there exists c > 0 such that

c

τ−2α∫

2α

∫

Γ0

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt

6
τ−α∫

α

∫

Nε/2(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + |η|2
)

dxdt ∀
[
f
g

]
∈ D(A) . (7.4.4)
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Let ψ ∈ C∞(clos Ω) be such that ψ = 1 on Nε/4(Γ), ψ = 0 on Ω \ Nε/2(Γ) and
ψ(x) > 0 for all x ∈ clos Ω. For x ∈ Ω and t > 0 we denote w(x, t) = ψ(x)η(x, t).
Then clearly

w ∈ C
(
[0, τ ];H2(Ω) ∩H1

0(Ω)
) ∩ C1

(
[0, τ ];H1

0(Ω)
)

and
∂2w

∂t2
−∆w = F , (7.4.5)

where, by (13.3.5),
F = − 2∇ψ · ∇η − η∆ψ. (7.4.6)

By applying Lemma 7.1.5 with q ∈ C1(clos Ω) and G(t) = (t − α)(τ − t − α), it
follows that

τ−α∫

α

G

∫

∂Ω

(q · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt = 2
n∑

k,l=1

Re

τ−α∫

α

G

∫

Ω

∂qk

∂xl

∂w

∂xk

∂w

∂xl

dxdt

+

τ−α∫

α

G

∫

Ω

(div q)

(∣∣∣∣
∂w

∂t

∣∣∣∣
2

− |∇w|2
)

dxdt

− 2Re

τ−α∫

α

G

∫

Ω

F (q · ∇w)dxdt− 2Re

τ−α∫

α

dG

dt

∫

Ω

∂w

∂t
(q · ∇w)dxdt. (7.4.7)

On the other hand, from (7.4.6) it follows that there exists a constant Kψ > 0 such
that

‖F (·, t)‖2 6 Kψ

∫

Nε/2(Γ)

(|∇η(·, t)|2 + |η(·, t)|2) dx ∀ t > 0 . (7.4.8)

On the other hand, for every t ∈ [0, τ ]

∫

Ω

|∇w|2dx =

∫

Nε/2(Γ)

|∇w|2dx 6
∫

Nε/2(Γ)

(|ψ|2 · |∇η|2 + |η|2 · |∇ψ|2) dx

6
(‖ψ‖2

L∞(Ω) + ‖∇ψ‖2
L∞(Ω)

) ∫

Nε/2(Γ)

(|∇η|2 + |η|2) dx. (7.4.9)

From the above inequality and from (7.4.8) it follows that, for every t > 0,

∣∣∣∣∣∣

∫

Ω

F (q · ∇w)dx

∣∣∣∣∣∣
6 ‖q‖L∞(Ω)

2
‖F‖2 +

‖q‖L∞(Ω)

2
‖∇w‖2

6 ‖q‖L∞(Ω)

2

(
Kψ + ‖ψ‖2

L∞(Ω) + ‖∇ψ‖2
L∞(Ω)

) ∫

Nε/2(Γ)

(|∇η|2 + |η|2) dx.
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The above inequality, combined to (7.4.7), (7.4.9) and to the fact that

∫

Ω

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dx =

∫

Nε/2(Γ)

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dx 6 ‖ψ‖2
L∞(Ω)

∫

Nε/2(Γ)

∣∣∣∣
∂η

∂t

∣∣∣∣
2

dx ∀ t > 0 ,

implies that there exists a constant K̃ψ,τ,α > 0 such that

τ−α∫

α

G

∫

∂Ω

(q · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt 6 K̃ψ,τ,α

τ−α∫

α

∫

Nε/2(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + |η|2
)

dxdt.

By using the fact that G(t) > α(τ − 3α) for every t ∈ [2α, τ − 2α], it follows that

α(τ − 3α)

τ−2α∫

2α

∫

∂Ω

(q · ν)

∣∣∣∣
∂w

∂ν

∣∣∣∣
2

dσdt

6 K̃ψ,τ,α

τ−α∫

α

∫

Nε/2(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + |η|2
)

dxdt. (7.4.10)

Let us first consider the case when ∂Ω is of class C2. We take q = ψh, where h is
the vector field in Lemma 7.1.6. From (7.4.10), combined to the facts that q · ν > 0
on ∂Ω, q · ν = 1 on Γ0 and ∂w

∂ν
= ∂η

∂ν
on Γ0 imply that

τ−2α∫

2α

∫

Γ0

∣∣∣∣
∂η

∂ν

∣∣∣∣
2

dσdt 6 K̃ψ,τ,α

α(τ − 3α)

τ−α∫

α

∫

Nε/2(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |∇η|2 + |η|2
)

dxdt,

so that (7.4.4) holds. As mentioned, this implies the conclusion of the lemma for
domains with a C2 boundary.

Now consider Ω to be an n-dimensional rectangle. Without loss of generality we
can assume that this rectangle is centered at zero. In this case, we take q(x) = ψ(x)x
in (7.4.10). The argument is similar to the previous case, using that q · ν > 0 on ∂Ω
and bounded from below on Γ0.

In order to prove Theorem 7.4.1, we have to get rid of the integrals of |∇η|2 and
|η|2 in the left-hand side of (7.4.3). The lemma below gives un upper bound for the
integral of |∇η|2 over Nε/2(Γ).

Lemma 7.4.3. Let τ > 0 and α ∈ [0, τ/2). Let Γ be an open subset of ∂Ω and let
ε > 0. Then there exists c > 0, depending on τ , α and ε, such that the solution η of
(7.1.2)-(7.1.4) satisfies

τ−α∫

α

∫

Nε/2(Γ)

|∇η|2dσdt 6 c2

τ∫

0

∫

Nε(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |η|2
)

dσdt ∀
[
f
g

]
∈ D(A) . (7.4.11)
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Proof. We take the inner product in L2([0, τ ]; L2(Ω)) of (7.1.2) with ξ(x, t) =
t(τ − t)ψ(x)η(x, t) where, ψ ∈ C∞(clos Ω) is a [0, 1]-valued function with ψ = 1 on
Nε/2(Γ) and ψ = 0 on Ω \ Nε(Γ). For the first term we obtain, integrating by parts
with respect to t,

τ∫

0

∫

Ω

∂2η

∂t2
ξdxdt = −

τ∫

0

t(τ − t)

∫

Ω

∣∣∣∣
∂η

∂t

∣∣∣∣
2

ψ(x)dxdt

−
τ∫

0

(τ − 2t)

∫

Ω

∂η

∂t
η ψ(x)dxdt. (7.4.12)

For the second term we have, using the fact that η(·, t) ∈ H2(Ω) ∩ H1
0(Ω) and the

formulas (3.6.5) and (13.3.2), we have

τ∫

0

∫

Ω

∆η ξdxdt = −
τ∫

0

t(τ − t)

∫

Ω

|∇η|2 ψ(x)dxdt

−
τ∫

0

t(τ − t)

∫

Ω

(∇η · ∇ψ)ηdxdt.

Because we started from (7.1.2), the above expression is equal to the one in (7.4.12).
It follows that

τ∫

0

t(τ − t)

∫

Ω

|∇η|2 ψ(x)dxdt =

τ∫

0

t(τ − t)

∫

Ω

∣∣∣∣
∂η

∂t

∣∣∣∣
2

ψ(x)dxdt

+

τ∫

0

(τ − 2t)

∫

Ω

∂η

∂t
η ψ(x)dxdt−

τ∫

0

t(τ − t)

∫

Ω

(∇η · ∇ψ)ηdxdt.

Taking real parts and using (3.6.5) we obtain that

τ∫

0

t(τ − t)

∫

Ω

|∇η|2 ψ(x)dxdt =

τ∫

0

t(τ − t)

∫

Ω

∣∣∣∣
∂η

∂t

∣∣∣∣
2

ψ(x)dxdt

+ Re

τ∫

0

(τ − 2t)

∫

Ω

∂η

∂t
η ψ(x)dxdt +

1

2

τ∫

0

t(τ − t)

∫

Ω

|η|2∆ψdxdt.

It follows that

α(τ − α)

τ−α∫

α

∫

Nε/2(Γ)

|∇η|2 dxdt 6 τ 2

4

τ∫

0

∫

Nε(Γ)

∣∣∣∣
∂η

∂t

∣∣∣∣
2

dxdt

+
τ‖ψ‖L∞(Ω)

2

τ∫

0

∫

Nε(Γ)

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |η|2
)

dxdt +
τ 2‖∆ψ‖L∞(Ω)

4

τ∫

0

∫

Nε(Γ)

|η|2dxdt.
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The above estimate clearly implies the conclusion (7.4.11).

We are now in a position to prove the main result of this section.

Proof of Theorem 7.4.1. By combining Lemmas 7.4.2 and 7.4.3 it follows that for
every τ > τ0 there exists mτ > 0 such that

τ∫

0

∫

O

(∣∣∣∣
∂η

∂t

∣∣∣∣
2

+ |η|2
)

dσdt > mτ

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ D(A) . (7.4.13)

We have seen in Remark 3.6.4 that the Dirichlet Laplacian A0 is diagonalizable
with an orthonormal basis (ϕk)k∈N of eigenvectors and the corresponding family
of positive eigenvalues (λk)k∈N which satisfies limk→∞ λk = ∞. We extend the
sequence (ϕk) to a sequence indexed by Z∗ by setting ϕk = −ϕ−k for every k ∈ Z−.
We introduce the real sequence (µk)k∈Z∗ defined by

µk =
√

λk if k > 0 and µk = − µ−k if k < 0 .

According to Proposition 3.7.7 the skew-adjoint operator A is diagonalizable, with
the orthonormal basis of eigenvectors (φk)k∈Z∗ given by

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ ,

and the corresponding eigenvalues are (iµk)k∈Z∗ . Note that

‖∇h‖2 =
∑

k∈N
λk|〈h, ϕk〉|2 ∀ h ∈ H1

0(Ω) . (7.4.14)

For ω > 0 we denote

Vω = span {φk | |µk| 6 ω}⊥ .

For
[

f
g

] ∈ D(A) ∩ Vω we have η(·, t) ∈ span {ϕk | λk 6 ω2}⊥, so that, by using
(7.1.6) and (7.4.14), we have

ω2‖η(·, t)‖2 6 ‖∇η(·, t)‖2 6 ‖∇f‖2 + ‖g‖2 ∀ t ∈ [0, τ ] .

From the above inequality and (7.4.13) we obtain that for ω large enough there
exists cτ,ω > 0 such that

τ∫

0

∫

O

∣∣∣∣
∂η

∂t

∣∣∣∣
2

dxdt > cτ,ω

(‖∇f‖2 + ‖g‖2
) ∀

[
f
g

]
∈ D(A) ∩ Vω . (7.4.15)

If we denote by Aω the part of A in Vω and by Cω the restriction of C to Vω,
inequality (7.4.15) means that the pair (Aω, Cω) is exactly observable in any time
τ > τ0, provided that ω is large enough.
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On the other hand assume that φ =

[
ϕ
ψ

]
∈ D(A) is an eigenvector of A, associated

to the eigenvalue iµ. According to Proposition 3.7.7

∆ϕ + µ2ϕ = 0 . (7.4.16)

If we assume that Cφ = 0 then ψ|O = 0 and by using the facts that ψ = iµϕ (see
Proposition 3.7.7) and µ 6= 0, we obtain that the function ϕ ∈ D(A0) satisfies

ϕ = 0 on O . (7.4.17)

As shown in Theorem 15.2.1 from Appendix III, the only function ϕ ∈ H2(Ω)∩H1
0(Ω)

satisfying (7.4.16) and (7.4.17) is ϕ = 0. Since ψ = iµϕ = 0, we obtain that φ = 0.
This contradiction shows that Cφ 6= 0 for every eigenvector φ of A. This fact and
the exact observability in any time τ > τ0 of (Aω, Cω) implies, by Proposition 6.4.4,
that (A,C) is exactly observable in any time τ > τ0.

Note that the observability condition imposed on Γ in Theorem 7.4.1 is satisfied,
in particular, if Γ is as in Theorem 7.2.4. Other sets Γ satisfying the observability
condition can be found using the references cited in Section 7.7.

Remark 7.4.4. The main result in this section can be generalized by replacing the
generator A with a perturbed generator A + P , where P is as described in Remark
7.3.6. Thus P depends on three L∞ functions a, b and c. The fact that there is
no size restriction on a can be shown as in the proof of Theorem 7.3.2, except that
now (at the end of the proof) we apply Theorem 15.2.1 instead of Corollary 15.2.2.
The functions b and c have to be small, as indicated in Theorem 6.3.2. However the
size restrictions on b and c can be removed by more sophisticated methods, see the
comments in Section 7.7.

The exact observability result of this section can be used to derive an exponential
stability result for some of the perturbed semigroups described in the last remark.
These semigroups are associated to damped wave equations.

Proposition 7.4.5. With the assumptions and the notation in Theorem 7.4.1 let
a, c ∈ L∞(Ω) be such that

a(x) > 0 , c(x) > 0 (x ∈ Ω) ,

and c(x) > δ > 0 for x ∈ O. Then the semigroup S generated by A + P , where

P =

[
0 0
−a −c

]
,

is exponentially stable. In terms of PDEs this means that the solutions η of

∂2η

∂t2
−∆η + c

∂η

∂t
+ aη = 0 in Ω× (0,∞) , (7.4.18)

η = 0 on ∂Ω× (0,∞) , (7.4.19)
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η(x, 0) = f(x),
∂η

∂t
(x, 0) = g(x) for x ∈ Ω , (7.4.20)

satisfy for some M,ω > 0
∥∥∥∥
∂η

∂t
(·, t)

∥∥∥∥
2

+ ‖∇η(·, t)‖2 6 Me−ωt
(‖g‖2 + ‖∇f‖2

) ∀ t > 0 .

Proof. Let Ã = A + [ 0 I
−a 0 ] and let C1 ∈ L(X, H) be defined by

C1

[
f
g

]
=
√

c g ∀
[
f
g

]
∈ X.

Since c is bounded from below by the positive constant δ on O, according to Remark
7.4.4 the pair (Ã, C1) is exactly observable in some time τ . Since

A + P = Ã +

[
0

−√c

]
C1 ,

we can apply Theorem 6.3.2 to get that (A,C1) is exactly observable in time τ , i.e.,
that there exists a constant kτ > 0 such that

τ∫

0

∥∥∥∥C1St

[
f
g

]∥∥∥∥
2

dt > k2
τ

∥∥∥∥
[
f
g

]∥∥∥∥
2

X

∀
[
f
g

]
∈ X. (7.4.21)

Without loss of generality, we can assume that kτ ∈ (0, 1).

On the other hand it is easy to see that, for all
[

f
g

] ∈ D(A), St

[
f
g

]
=

[
η(·,t)
η̇(·,t)

]
, with

η satisfying (7.4.18)-(7.4.20). Therefore, if we take the inner product in L2([0, τ ]; H)
of (7.4.18) with η̇, it follows that

∥∥∥∥
[
f
g

]∥∥∥∥
2

X

−
∥∥∥∥Sτ

[
f
g

]∥∥∥∥
2

X

=

τ∫

0

‖
√

c(·) η̇(·, t)‖2dt =

τ∫

0

∥∥∥∥C1St

[
f
g

]∥∥∥∥
2

dt.

From the above and (7.4.21) it follows that
∥∥∥∥Sτ

[
f
g

]∥∥∥∥
2

X

6 (1− k2
τ )

∥∥∥∥
[
f
g

]∥∥∥∥
2

X

∀
[
f
g

]
∈ D(A) ,

which implies that ‖Sτ‖L(X) < 1. According to the definition (2.1.3) of the growth
bound, it follows that S is exponentially stable.

7.5 Some consequences for the Schrödinger and plate
equations

Here we derive exact observability results for the Schrödinger and plate equations
by combining the exact observability results for the wave equation obtained in Sec-
tions 7.2 and 7.4 with the results in Sections 6.7 and 6.8. More results on the exact
observability of the Schrödinger and plate equations will be given in Section 8.5.
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Notation and preliminaries. Recall from the beginning of this chapter, that Ω
stands for a bounded open connected set in Rn, where n ∈ N, and ∂Ω is supposed of
class C2 or Ω is supposed to be a rectangular domain, H = L2(Ω) and D(A0) = H1

is the Sobolev space H2(Ω)∩H1
0(Ω). The strictly positive operator A0 : D(A0)→H

is defined by A0ϕ = −∆ϕ for all ϕ ∈ D(A0). The norm on H is denoted by ‖ · ‖.
Recall that H 1

2
= H1

0(Ω), H− 1
2

= H−1(Ω) and that X = H 1
2
× H. As before, we

define X1 = H1 ×H 1
2

and the skew-adjoint operator A : X1 → X is given by

A =

[
0 I

−A0 0

]
, i.e., A

[
f
g

]
=

[
g

−A0f

]
.

For some fixed x0 ∈ Rn, the function m, the set Γ(x0) and the number r(x0) are
defined as at the beginning of this chapter.

Throughout this section we denote by X the Hilbert space H1×H, with the scalar
product 〈[

f1

g1

]
,

[
f2

g2

]〉

X
= 〈A0f1, A0f2〉+ 〈g1, g2〉 .

We introduce the dense subspace of X defined by D(A) = H2 ×H1 and the linear
operator A : D(A)→X defined by

A =

[
0 I

−A2
0 0

]
, i.e., A

[
f
g

]
=

[
g

−A2
0f

]
. (7.5.1)

By using the strict positivity of A0 and Proposition 3.3.6 it follows that A2
0 > 0 so

that, by Proposition 3.7.6, we have that A is skew-adjoint. By Stone’s theorem it
follows that A generates a unitary group on X . We denote by X1 the space D(A)
endowed with the graph norm.

Let Γ be an open subset of ∂Ω, O an open subset of Ω, let Y = L2(Γ) and consider

C1 ∈ L(H1, Y ), C0 ∈ L(H), C ∈ L(X1, Y ) and C̃ ∈ L(X,Y ) defined by

C1f =
∂f

∂ν
|Γ ∀ f ∈ H1 , C0g = gχO ∀ g ∈ H,

C =
[
C1 0

]
, C̃ =

[
0 C0

]
,

where χO stands for the characteristic function of O.

The first result concerns the Schrödinger equation with Neumann observation.

Proposition 7.5.1. The operator C1 is an admissible observation operator for the
unitary group generated by iA0 on H1

0(Ω). Moreover, if Γ is such that the pair (A, C)
is exactly observable, then the pair (iA0, C1), with state space H1

0(Ω), is exactly
observable in any time τ > 0.

Proof. We know from Theorem 7.1.3 that C is an admissible observation operator
for the semigroup generated by A so that, by Proposition 6.7.1, it follows that C1

is an admissible observation operator for the unitary group generated by iA0.

If (A,C) is exactly observable, then it follows from Theorem 6.7.2 that the pair
(iA0, C1), with state space H 1

2
= H1

0(Ω) is exactly observable in any time τ > 0.
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Remark 7.5.2. In terms of PDEs, the result in Proposition 7.5.1 means that if Γ
is such that (7.2.9) holds for τ = τ0 then for every τ > 0 there exists kτ > 0 such
that the solution z of the Schrödinger equation

∂z

∂t
(x, t) = −i∆z(x, t) ∀ (x, t) ∈ Ω× [0,∞) ,

with
z(x, t) = 0 ∀ (x, t) ∈ ∂Ω× [0,∞) ,

and z(·, 0) = z0 ∈ H2(Ω) ∩H1
0(Ω) satisfies

τ∫

0

∫

Γ

∣∣∣∣
∂z

∂ν
(x, t)

∣∣∣∣
2

dσdt > k2
τ‖z0‖2

H1
0(Ω) ∀ z0 ∈ H2(Ω) ∩H1

0(Ω) .

Recall that a sufficient condition for Γ to satisfy the above requirement has been
given in Theorem 7.2.4.

Now we consider the Schrödinger equation with distributed observation.

Proposition 7.5.3. Let O be an open subset of Ω such that the pair (A, C̃) is exactly
observable. Then the pair (iA0, C0) is exactly observable in any time τ > 0.

Proof. It suffices to apply Theorem 6.7.5.

Remark 7.5.4. In terms of PDEs, the result in Proposition 7.5.3 means that if O
is such that (7.4.2) holds for τ = τ0 then for every τ > 0 there exists kτ > 0 such
that the solution z of the Schrödinger equation

∂z

∂t
(x, t) = −i∆z(x, t) ∀ (x, t) ∈ Ω× [0,∞) ,

with
z(x, t) = 0 ∀ (x, t) ∈ ∂Ω× [0,∞) ,

and z(·, 0) = z0 ∈ H2(Ω) ∩H1
0(Ω) satisfies

τ∫

0

∫

O

|z(x, t)|2dxdt > k2
τ‖z0‖2 ∀ z0 ∈ L2(Ω) .

We next consider the two exact observability problems for the Euler-Bernoulli
plate equation. First we tackle a boundary observability problem.

Proposition 7.5.5. Assume that Γ is such that the pair (A,C) is exactly observable
and let

C1 ∈ L(H 5
2
×H 3

2
, Y )

be defined by

C1

[
f
g

]
=

∂g

∂ν
∀

[
f
g

]
∈ D(A

5
2
0 )×D(A

3
2
0 ) .

Then C1 is an admissible observation operator for the unitary group generated by
A on H 3

2
×H 1

2
and the pair (A, C1), with state space H 3

2
×H 1

2
, is exactly observable

in any time τ > 0.
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Proof. We know from Proposition 7.5.1 that the pair (iA0, C1), with state space
H 1

2
is exactly observable in any time τ > 0. Moreover, by using Proposition 3.6.9, the

eigenvalues of the Dirichlet Laplacian satisfy the condition (6.8.8) for an appropriate
d > 0. By applying Proposition 6.8.2, it follows that the pair (A, C1) is exactly
observable in any time τ > 0.

Remark 7.5.6. In terms of PDEs the result in Proposition 7.5.5 means that for
every τ > 0 there exists kτ > 0 such that if Γ is such that (7.2.9) holds for τ = τ0

then the solution w of the Euler-Bernoulli plate equation

∂2w

∂t2
(x, t) + ∆2w(x, t) = 0 , (x, t) ∈ Ω× [0,∞) ,

with
w|∂Ω×[0,∞) = ∆w|∂Ω×[0,∞) = 0 ,

and w(·, 0) = w0 ∈ D(A2
0),

∂w
∂t

(·, 0) = w1 ∈ D(A0) satisfies

τ∫

0

∫

Γ

∣∣∣∣
∂2w

∂ν∂t

∣∣∣∣
2

dσdt > k2
τ

(
‖w0‖2

H3(Ω) + ‖w1‖2
H1

0(Ω)

)
∀

[
w0

w1

]
∈ D(A) .

Proposition 7.5.7. Let O be an open subset of Ω such that the pair (A, C̃) is exactly
observable. and C0 ∈ L(X , H) be defined by

C0

[
f
g

]
= gχO ∀

[
f
g

]
∈ X .

Then C0 is an admissible observation operator for the unitary group generated by A
and the pair (A, C0), with state space X = D(A0)×X, is exactly observable in any
time τ > 0.

Proof. We know from Proposition 7.5.3 that the pair (iA0, C0) is exactly observ-
able in any time τ > 0. Moreover, by using Proposition 3.6.9, the eigenvalues of the
Dirichlet Laplacian satisfy condition (6.8.8) for an appropriate d > 0.

By applying Proposition 6.8.2, it follows that the pair (A, C0) is exactly observable
in any time τ > 0.

Remark 7.5.8. In terms of PDEs the result in Proposition 7.5.7 means that if O
is such that (7.4.2) holds for τ = τ0 then for every τ > 0 there exists kτ > 0 such
that the solution w of the Euler-Bernoulli plate equation

∂2w

∂t2
(x, t) + ∆2w(x, t) = 0 , (x, t) ∈ (0, π)× [0,∞) ,

with
w|∂Ω×[0,∞) = ∆w|∂Ω×[0,∞) = 0 ,

and w(·, 0) = w0 ∈ D(A2
0),

∂w
∂t

(·, 0) = w1 ∈ D(A0) satisfies

τ∫

0

∫

O

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dxdt > k2
τ

(
‖w0‖2

H2(Ω) + ‖w1‖2
L2(Ω)

)
∀

[
w0

w1

]
∈ D(A) .
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Remark 7.5.9. By using Theorem 7.2.4 it follows that the conclusions in Propo-
sitions 7.5.1 and 7.5.5 hold if Γ ⊃ Γ(x0) for some x0 ∈ Rn. According to Theorem
7.4.1 we have that the conclusions in Propositions 7.5.3 and 7.5.7 hold if Γ is as
above and Nε(Γ) ⊂ O for some ε > 0.

7.6 The wave equation with boundary damping
and boundary velocity observation

In this section we give a sufficient condition for the exponential stability of the
semigroup constructed in Section 3.9 (the wave equation with boundary damping)
and we show that this implies an exact boundary observability result for the same
semigroup with boundary observation of the velocity.

Notation and preliminaries. We use the notation from Section 3.9, but with
stronger assumptions on Ω, Γ0 and Γ1. More precisely, Ω ⊂ Rn is supposed to be
bounded, connected and with C2 boundary ∂Ω. The sets Γ0 and Γ1 are defined by

Γ0 = {x ∈ ∂Ω | m(x) · ν(x) < 0} ,
Γ1 = {x ∈ ∂Ω | m(x) · ν(x) > 0} , (7.6.1)

where ν is the outer normal field to ∂Ω and m(x) = x− x0 for some x0 ∈ Rn. Thus
Γ0 and Γ1 are disjoint open subsets of ∂Ω. We assume that

Γ0 6= ∅ , Γ1 6= ∅ , Γ0 ∪ Γ1 = ∂Ω . (7.6.2)

Note that this implies
clos Γ0 = Γ0 , clos Γ1 = Γ1 ,

so that these assumptions clearly exclude simply connected domains. Intuitively, we
imagine Γ0 as the surface of a bubble inside the domain Ω, x0 is in the bubble, while
Γ1 is the outer boundary. The space H1

Γ0
(Ω) consists of those functions in H1(Ω)

whose trace vanishes on Γ0 (this space is discussed in Section 13.6). We know from
Section 13.6 that the induced norm on H1

Γ0
(Ω) (as a closed subspace of H1(Ω)) is

equivalent to the norm ‖∇f‖[L2(Ω)]n . The state space is

X = H1
Γ0

(Ω)× L2(Ω)

and it is endowed with the inner product
〈[

f
g

]
,

[
ϕ
ψ

]〉
=

∫

Ω

∇f · ∇ϕdx +

∫

Ω

gψdx ∀
[
f
g

]
,

[
ϕ
ψ

]
∈ X.

The corresponding norm is denoted by ‖·‖. Let b ∈ C1(Γ1) be a real-valued function
and let A : D(A) → X be the operator defined by

D(A) =

{[
f
g

]
∈ [H2(Ω) ∩H1

Γ0
(Ω)

]×H1
Γ0

(Ω)

∣∣∣∣
∂f

∂ν
|Γ1 = − b2g|Γ1

}
,
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A

[
f
g

]
=

[
g

∆f

]
∀

[
f
g

]
∈ D(A) .

We know from Propositions 3.9.1 and 3.9.2 that A is m-dissipative so that it gen-
erates a contraction semigroup T on X. Also recall from Section 3.9 that an
alternative way of defining D(A) is to say that D(A) consists of those couples[

f
g

] ∈ H1
Γ0

(Ω)×H1
Γ0

(Ω) such that ∆f ∈ L2(Ω) and

〈∆f, ϕ〉L2(Ω) + 〈∇f,∇ϕ〉[L2(Ω)]n = − 〈b2g, ϕ〉L2(Γ1) ∀ ϕ ∈ H1
Γ0

(Ω) . (7.6.3)

Consider the initial and boundary value problem





z̈(x, t) = ∆z(x, t) on Ω× [0,∞),

z(x, t) = 0 on Γ0 × [0,∞),
∂
∂ν

z(x, t) + b2(x) ż(x, t) = 0 on Γ1 × [0,∞),

z(x, 0) = z0(x), ż(x, 0) = w0(x) on Ω.

(7.6.4)

We have seen in Corollary 3.9.3 that for every [ z0
w0 ] ∈ D(A), the problem (7.6.4)

admits a unique strong solution z and that this solution satisfies

d

dt

(
‖∇z(·, t)‖2

[L2(Ω)]n + ‖ż(·, t)‖2
L2(Ω)

)
= − 2

∫

Γ1

b2(x)|ż(x, t)|2dσ. (7.6.5)

The main result of this section is:

Theorem 7.6.1. With the above notation, assume that infx∈Γ1 |b(x)| > 0. Then
there exist M > 1 and ω > 0 (depending only on Ω and on b) such that the strong
solutions of (7.6.4) satisfy, for every t > 0,

∥∥∥∥
[
z(·, t)
ż(·, t)

]∥∥∥∥ 6 Me−ωt

∥∥∥∥
[
z0

w0

]∥∥∥∥ ∀
[
z0

w0

]
∈ D(A) . (7.6.6)

In order to prove Theorem 7.6.1 we need some notation and two lemmas. If z is
the strong solution of (7.6.4) and ε > 0, we set

ρ(t) = Re

∫

Ω

ż(x, t) [2m(x) · ∇z(x, t) + (n− 1)z(x, t)] dx ∀ t > 0 , (7.6.7)

Vε(t) = ‖∇z(·, t)‖2
[L2(Ω)]n + ‖ż(·, t)‖2

L2(Ω) + ερ(t) ∀ t > 0 . (7.6.8)

We also introduce the positive constants r(x0) = ‖m‖L∞(Ω) and

ε0 =
1

2r(x0) + c(n− 1)
,

where c is the constant in the Poincaré inequality in Theorem 13.6.9.



The wave equation with boundary damping and observation 263

Lemma 7.6.2. With the above notation, assume that ε ∈ [0, ε0). Then

1

2
V0(t) 6 Vε(t) 6 3

2
V0(t) ∀ t > 0 .

Proof. From the Cauchy-Schwarz and other elementary inequalities,

|ρ(t)| 6 ‖ż(t)‖L2(Ω)

[
2r(x0)‖∇z(t)‖[L2(Ω)]n + (n− 1)‖z(t)‖L2(Ω)

] ∀t > 0 .

By applying the Poincaré inequality in Theorem 13.6.9, it follows that

|ρ(t)| 6 [2r(x0) + c(n− 1)] ‖ż(t)‖L2(Ω) ‖∇z(t)‖[L2(Ω)]n 6 1

2ε0

V0(t) ∀ t > 0 .

The above inequality clearly implies the conclusion of the lemma.

Lemma 7.6.3. Let f ∈ H2(Ω) ∩H1
Γ0

(Ω). Then

2Re

∫

Ω

(∆f)(m · ∇f)dx = (n− 2)

∫

Ω

|∇f |2

+ 2Re

∫

∂Ω

∂f

∂ν
(m · ∇f)dσ −

∫

∂Ω

(m · ν)|∇f |2dσ.

Proof. By using integration by parts (see Remark 13.7.3) it follows that

2Re

∫

Ω

(∆f)(m · ∇f )dx = 2Re

∫

∂Ω

∂f

∂ν
(m · ∇f)dσ − Re

∫

Ω

∇f · ∇(2m · ∇f )dx

= 2Re

∫

∂Ω

∂f

∂ν
(m · ∇f)dσ − 2

∫

Ω

|∇f |2dx−
∫

Ω

m · (∇|∇f |2) dx. (7.6.9)

On the other hand, according to (13.3.1), we have

m · (∇|∇f |2) = div
(|∇f |2m)− n|∇f |2 ,

so that by applying the Gauss formula (13.7.3) it follows that

∫

Ω

m · (∇|∇f |2) dx =

∫

∂Ω

(m · ν)|∇f |2dσ −
∫

Ω

|∇f |2dx.

The above formula and (7.6.9) clearly imply the conclusion of the lemma.

We are now in a position to prove the main result of this section.

Proof of Theorem 7.6.1. Since z is a strong solution of (7.6.4), we have

z ∈ C([0,∞),H2(Ω)) ∩ C1([0,∞),H1
Γ0

(Ω)) ∩ C2([0,∞), L2(Ω)) ,
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and from Corollary 3.9.3 it follows that

V̇0(t) = − 2

∫

Γ1

b2|ż|2dx. (7.6.10)

On the other hand, from (7.6.7) and the fact that z satisfies the first equation in
(7.6.4), it follows that

ρ̇(t) = 2Re

∫

Ω

∆z (m · ∇z)dx + (n− 1)Re

∫

Ω

∆z zdx

+ 2Re

∫

Ω

ż(m · ∇ż)dx + (n− 1)

∫

Ω

|ż|2dx ∀ t > 0 . (7.6.11)

For the first term in the right-hand side of the above formula we can use Lemma
7.6.3 to get

2Re

∫

Ω

∆z (m · ∇z)dx = (n− 2)

∫

Ω

|∇z|2dx

+ 2Re

∫

∂Ω

∂z

∂ν
(m · ∇z)dσ −

∫

∂Ω

(m · ν)|∇z|2dσ ∀ t > 0 . (7.6.12)

Using the facts that ∇z =
∂z

∂ν
ν on Γ0 and

∂z

∂ν
= −b2ż on Γ1, the second and the

third integral in the right-hand side of the above formula can be respectively written

∫

∂Ω

∂z

∂ν
(m · ∇z)dσ =

∫

Γ0

(m · ν)

∣∣∣∣
∂z

∂ν

∣∣∣∣
2

dσ −
∫

Γ1

b2ż(m · ∇z)dσ ∀ t > 0 , (7.6.13)

∫

∂Ω

(m · ν)|∇z|2dσ =

∫

Γ0

(m · ν)

∣∣∣∣
∂z

∂ν

∣∣∣∣
2

dσ +

∫

Γ1

(m · ν)|∇z|2dσ ∀ t > 0 . (7.6.14)

Using (7.6.12)-(7.6.14) and the fact that m · ν < 0 on Γ0 it follows that

2Re

∫

Ω

∆z (m · ∇z)dx 6 (n− 2)

∫

Ω

|∇z|2dx

− 2Re

∫

Γ1

b2ż(m · ∇z)dσ −
∫

Γ1

(m · ν)|∇z|2dσ ∀ t > 0 . (7.6.15)

For the second term in the right-hand side of (7.6.11) we note that

∫

Ω

∆z zdx =

∫

∂Ω

∂z

∂ν
zdσ −

∫

Ω

|∇z|2dx ∀ t > 0 .
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Since z = 0 on Γ0 and
∂z

∂ν
= −b2ż on Γ1, it follows that

Re

∫

Ω

∆z zdx = − Re

∫

Γ1

b2ż zdσ −
∫

Ω

|∇z|2dx ∀ t > 0 . (7.6.16)

For the third term in the right-hand side of (7.6.11) we have

2Re

∫

Ω

ż(m·∇ż)dx =

∫

Ω

m·∇(|ż|2)dx =

∫

Ω

[
div (|ż|2 m)− n|ż|2] dx ∀ t > 0 .

Using the Gauss formula (13.7.3) together with the fact that ż = 0 on Γ0 we obtain

2Re

∫

Ω

ż(m · ∇ż)dx =

∫

Γ1

(m · ν)|ż|2dσ − n

∫

Ω

|ż|2dx ∀ t > 0 . (7.6.17)

By combining (7.6.11) with (7.6.15)-(7.6.17) we obtain that

ρ̇(t) 6 − V0(t) +

∫

Γ1

(m · ν)
(|ż|2 − |∇z|2) dσ

− (n− 1)Re

∫

Γ1

b2ż zdσ − 2Re

∫

Γ1

b2ż(m · ∇z)dσ ∀ t > 0 .

It follows that

ρ̇(t) 6 − V0(t) +
‖m‖L∞(Γ1)

b2
0

∫

Γ1

b2|ż|2dσ −
∫

Γ1

(m · ν)|∇z|2dσ

− (n− 1)Re

∫

Γ1

b2ż zdσ − 2Re

∫

Γ1

b2ż(m · ∇z)dσ ∀ t > 0 , (7.6.18)

where b0 = infx∈Γ1 b0 > 0. Let β > 0 be such that

∫

Γ1

b2|f |2dx 6 β

∫

Ω

|∇f |2dx ∀ f ∈ H1
Γ0

(Ω) .

It is easy to see that

(n− 1)

∣∣∣∣∣∣

∫

Γ1

b2ż zdσ

∣∣∣∣∣∣
6 1

2

∫

Γ1

b2
[
(n− 1)2β|ż|2 + β−1|z|2] dx

6 1

2
(n− 1)2β

∫

Γ1

b2|ż|2dx +
1

2
V0(t) ∀ t > 0 .
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Moreover, denoting δ = infx∈Γ1

√
m · ν > 0, we have

2

∣∣∣∣∣∣

∫

Γ1

b2ż(m · ∇z)dσ

∣∣∣∣∣∣
6

∫

Γ1

|b| · |ż| · ‖bm‖L∞(Γ1) |∇z|dσ

6
‖bm‖2

L∞(Γ1)

2δ2

∫

Γ1

b2|ż|2dσ +
1

2

∫

Γ1

(m · ν)|∇z|2dσ ∀ t > 0.

Using the last two formulas with (7.6.18) it follows that for every t > 0 we have

ρ̇(t) 6 − V0(t)

2
+

1

2

[
2‖m‖L∞(Γ1)

b2
0

+ (n− 1)2β +
‖bm‖2

L∞(Γ1)

δ2

]∫

Γ1

b2|ż|2dσ. (7.6.19)

Since, according to (7.6.8), for every ε > 0 we have Vε = V0 + ερ, we can combine
(7.6.10) and (7.6.19) to obtain

V̇ε(t) 6 − ε

2
V0(t)

− 1

2

{
4− ε

[
2‖m‖L∞(Γ1)

b2
0

+ (n− 1)2β +
‖bm‖2

L∞(Γ1)

δ2

]} ∫

Γ1

b2|ż|2dσ ∀ t > 0 .

It follows that there exists ε1 > 0, depending only on b and on Ω, such that

V̇ε(t) 6 − ε

2
V0(t) ∀ ε ∈ (0, ε1) , t > 0 . (7.6.20)

Let ε2 = min
{

ε0

2
, ε1

2

}
, where ε0 is the constant in Lemma 7.6.2. It is clear that

ε2 > 0 depends only on b and on Ω. By combining Lemma 7.6.2 and (7.6.20) it
follows that

V̇ε2(t) 6 − ε2

3
Vε2(t) ∀ t > 0 ,

which implies that

Vε2(t) 6 e−
tε2
3 Vε2(0) ∀ t > 0 .

Using again Lemma 7.6.2 it follows that (7.6.6) holds with M = 3 and ω =
ε2

3
.

Corollary 7.6.4. With the above notation and wih the assumption in Theorem
7.6.1, the semigroup T is exponentially stable.

Proof. We have seen in Section 3.9 that the strong solutions of (7.6.4) satisfy
[
z(·, t)
ż(·, t)

]
= Tt

[
z0

w0

]
∀ t > 0 . (7.6.21)

Therefore, the conclusion of Theorem 7.6.1 can be rewritten as
∥∥∥∥Tt

[
z0

w0

]∥∥∥∥ 6 Me−ωt

∥∥∥∥
[
z0

w0

]∥∥∥∥ ∀
[
z0

w0

]
∈ D(A) , t > 0 .
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Using the density of D(A) in X it follows that the above estimate holds for every
[ z0
w0 ] ∈ X, so that T is an exponentially stable semigroup.

Below, as usual, X1 stands for D(A) endowed with the graph norm.

Corollary 7.6.5. With the assumptions in Theorem 7.6.1, let C ∈ L(X1, L
2(Γ1))

be defined by

C

[
f
g

]
= b

∂g

∂ν
|Γ1 ∀

[
f
g

]
∈ D(A) .

Then C is admissible for T and (A, C) is exactly observable.

Proof. Integrating (7.6.5) with respect to time, it follows that for every τ > 0

‖∇z0‖2
[L2(Ω)]n + ‖w0‖2

L2(Ω) −
(
‖∇z(·, τ)‖2

[L2(Ω)]n + ‖ż(·, τ)‖2
L2(Ω)

)

= 2

τ∫

0

∫

Γ1

b2|ż(·, t)|2dσdt = 2

τ∫

0

∥∥∥C
[

z(·,t)
ż(·,t)

]∥∥∥
2

dt. (7.6.22)

Because of (7.6.21), this implies that C is an admissible observation operator for T.

On the other hand, Theorem 7.6.1 implies that for τ > 0 large enough we have

‖∇z0‖2
[L2(Ω)]n + ‖w0‖2

L2(Ω) −
(
‖∇z(·, τ)‖2

[L2(Ω)]n + ‖ż(·, τ)‖2
L2(Ω)

)

> 1

2

(
‖∇z0‖2

[L2(Ω)]n + ‖w0‖2
L2(Ω)

)
.

Combining the above estimate to (7.6.22) it follows that

τ∫

0

∥∥∥C
[

z(·,t)
ż(·,t)

]∥∥∥
2

dt > 1

4

(
‖∇z0‖2

[L2(Ω)]n + ‖w0‖2
L2(Ω)

)
∀

[
z0

w0

]
∈ D(A) ,

which means, acording to (7.6.21), that the pair (A,C) is exactly observable.

7.7 Remarks and bibliographical notes on Chapter 7

General remarks. An important idea which we aimed to explain in Chapter 7 is
that the splitting of a system governed by PDEs into low and high frequency parts
is an important step in understanding the observability properties of the system.
The high frequency part can be tackled by various methods (we used multiplier or
perturbation techniques in our presentation) whereas low frequencies are tackled
by using the finite-dimensional Hautus test combined with unique continuation for
elliptic operators. The two parts are finally put together by using the simultaneous
observability result in Theorem 6.4.2 and its consequences.
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The multiplier method is a tool coming from the study of the wave equation in
exterior domains and in particular from scattering problems (see Morawetz [172]
and Strauss [212]). The use of multiplier methods for the exact observability of
systems governed by wave equations or Euler-Bernoulli plate equations became very
popular after the publication of the book J.L. Lions in [156]. Since then, research
in this area has flourished. The main advantage of the multiplier method is that
it is very simple, being essentially based on integration by parts. This was the
main motivation for choosing it in Chapter 7. Among the disadvantages of this
method we mention that it cannot (in general) tackle lower order terms or variable
coefficients. This difficulty can be overcome in some cases (like in Section 7.3) by
using the decomposition into low and high frequencies. A systematic method of
tackling lower order terms is provided by Carleman estimates, which can be seen as
a sophisticated version of the multiplier method, the multiplier being constructed
from an appropriate weight function. The calculations in this method can be very
complex (see, for instance, Li and Zhang [153] and the references therein).

The important work of Bardos, Lebeau and Rauch [15] (see also Burq and Gérard
[25]) brought in methods coming from micro-local analysis which gave sharp results
for the minimal time required for exact observability and the choice of the observa-
tion region. Moreover, these methods are successful in tackling lower order terms. In
their initial form, the micro-local analytic methods required a C∞ boundary. This
restriction has been relaxed in Burq [24]. A presentation of the methods introduced
in [15] requires a solid background in pseudo-differential calculus and some basis in
symplectic geometry, so that it lies outside the scope of this book.

A subject which is missing in our presentation is the approximate observability
of systems governed by the wave equation. It turns out that, for the Neumann
boundary observation, this property holds for any open subset Γ of ∂Ω. In the case
of analytical coefficients this follows from Holmgren’s uniqueness theorem (see, for
instance, John [125, Section 3.5] or Lions [156, Section 1.8]). In the case of a wave
equation with time independent L∞ coefficients in some of the lower terms, the cor-
responding results (much harder) have been obtained, with successive improvements
of the observability time, in Robbiano [190], Hörmander [102] and Tataru [215].

Another issue of interest which has not been tackled in this work is the study of
the relation between the observability of systems governed by the wave equation and
the observability of finite dimensional systems obtained by discretizing the system
with respect to the space variable. More precisely, the observability constants of the
finite dimensional systems obtained by applying finite differences or finite elements
schemes to a wave equation may blow up when the discretization step tends to zero,
as it has been remarked in Infante and Zuazua [107]. This difficulty can be tackled,
for instance, by filtering the spurious high frequencies. We refer to Zuazua [245] and
the references therein for more details on this question.

Section 7.1. The result in Theorem 7.1.3 has been called “hidden regularity prop-
erty” by J.L. Lions and his co-workers. This terminology was motivated by the fact
that (7.1.8) can be used to give a sense, by density, to the normal derivative on ∂Ω
of the solution η of (7.1.2)-(7.1.4), for initial data f ∈ H1

0(Ω), g ∈ L2(Ω). Note that,
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in this case, the trace of
∂η

∂ν
on ∂Ω makes no sense by the usual trace theorem since,

at given t > 0, the regularity of the map x 7→ η(x, t) is, in general, only H1
0(Ω). Our

proof of Theorem 7.1.3 is essentially the same as in Lasiecka, Lions and Triggiani
[143] (see also Lions [156, p. 44] and Komornik [130, p. 20]).

Section 7.2. The main result in Theorem 7.2.4 has been first proved (with a less
accurate estimate of the observability time) by Lop Fat Ho in [99]. Our proof follows
[130, Chapter 3] and it yields the same observability time as in [130]. Note that the
proof of Theorem 7.2.4 is quite elementary (only integration by parts).

As mentioned in Remark 7.2.5, the condition that Γ ⊃ Γ(x0) in Theorem 7.2.4
is not necessary for the exact observability of the wave equation with Neumann
boundary observation. More general sufficient conditions have been given by ver-
sions of the multiplier method like the rotated multipliers from Osses [179] or the
piecewise multipliers from Liu [160]. The most general known sufficient condition for
exact observability in time τ has been given in [15]. This condition means, roughly
speaking, that any light ray traveling in Ω at unit speed and reflected according to
geometric optics laws when it hits ∂Ω in a point not belonging to Γ, will eventually
hit Γ in time 6 τ (see [15] or [169] for more details on this condition). This condition
is “almost” necessary in a sense made precise in [15] and we shall refer to it as the
geometric optics condition of Bardos, Lebeau and Rauch.

Note that the minimum time for exact observability in Theorem 7.2.4 is, in general,
far from being sharp (see [130, Remark 3.6] for the description of a situation in which
2r(x0) is the optimal lower bound for the exact observability time).

Section 7.3. By using an approach based on Carleman estimates (for hyperbolic
operators) as in Fursikov and Imanuvilov [69] or on microlocal analysis as in [15], it
is possible to tackle directly the perturbed wave equation with Neumann boundary
observation. Our aim in establishing Theorem 7.3.2 was to show that by a perturba-
tion method the problem is reduced to the constant coefficients case from Theorem
7.2.4 without increasing the observability time. Note that V. Komornik in [128] has
proved, by a multiplier based approach, the result in Theorem 7.3.2 in the particular
case of Γ satisfying the assumptions in Theorem 7.2.4.

Section 7.4. The study of locally distributed observation for the wave equation
seems to have been initiated by J. Lagnese in [136], who considered particular ge-
ometries (like one dimensional or spherical). For a general n-dimensional bounded
domain, E. Zuazua has shown in Chapter VII of [156] that the wave equation with
distributed control in an ε-neighborhood of an appropriate part of the boundary is
exactly observable. Our Theorem 7.4.1 improves the estimates on the observability
time from [156]. Our proof of Theorem 7.4.1 combines methods from [156], Liu
[160] and the decomposition of the system into low and high frequency parts. We
mention that alternative ways of obtaining Theorem 7.4.1 are micro-local analysis
or Carleman estimates. Our proof of Proposition 7.4.5 follows essentially Haraux
[93]. For more general results which yield exponential stability from observability
estimates we refer to Tucsnak and Weiss [223] and to Ammari and Tucsnak [7].
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Section 7.5. The first result on the exact boundary observability in arbitrarily
small time for the Euler-Bernoulli plate equation has been obtained, by using mul-
tipliers and a compactness-uniqueness argument, by E. Zuazua in Appendix 1 of
[156], who assumed that the observed part of the boundary satisfies the assump-
tions in Theorem 7.2.4. A different method for exact observability in arbitrarily
small time has been applied for the Euler-Bernoulli plate equation with clamped or
hinged boundary conditions in Komornik [130]. The micro-local approach to the
Schrödinger and Euler-Bernoulli equations is due to Lebeau [150], who showed that
we have exact boundary observability in arbitrarily small time for these equations
provided that the observed part of the boundary satisfies the geometric optics condi-
tion of Bardos, Lebeau and Rauch (see the comments on Section 7.2). The approach
based on microlocal analysis, without explicit reference to the wave equation, has
been further developed in Burq and Zworski [27].

The fact that, with appropriate boundary conditions, an exact boundary observ-
ability result for the wave equation implies, with no need of repeating multipliers
or micro-local analysis arguments, observability inequalities for the Schrödinger and
plate equations has been remarked in Miller [170]. We were able to give very short
proofs for Propositions 7.5.1 and 7.5.3 thanks to the use of the abstract results from
Theorems 6.7.2 and 6.7.5. Note that the geometric optics condition is not necessary
for the exact observability of the the Schrödinger and plate equations, as it has
been first remarked in Krabs, Leugering and Seidman [134] and then in Haraux [92].
Detailed results in this direction are given in Section 8.5.

If we consider the Euler-Bernoulli plate equations which correspond to clamped or
free parts of the boundary, then the corresponding fourth order differential operator
is no longer the square of the Dirichlet Laplacian, so that the exact observability
cannot be reduced to a problem for the wave equation. We refer to Lasiecka and
Triggiani [148] and [147] for some results concerning this case.

Section 7.6. The study of the exponential stability of this damped wave equation
has been initiated in Quinn and Russell [185]. Other early papers devoted to the
same subject are Chen [30], [31], [32] [33] and Lagnese [137]. Our presentation
follows closely Komornik and Zuazua [132]. An interesting feature of the method in
[132] is that it allows, with b2 = m · ν and for n 6 3, to avoid the second condition
in (7.6.2) (which excludes simply connected domains). The fact that the second
condition in (7.6.2) is not necessary for n > 3 (still with b2 = m · ν) has been shown
in Bey, Lohéac and Moussaoui [19]. The fact that condition (7.6.1) can be relaxed
to

Γ1 ⊃ {x ∈ ∂Ω | m(x) · ν(x) > 0} ,
has been shown in Lasiecka and Triggiani [149]. Finally let us mention that the
exponential decay property has been established in Bardos, Lebeau, Rauch [15]
assuming that ∂Ω is of class C∞, that the second condition in (7.6.2) holds and that
Γ1 satisfies the geometric optics condition.



Chapter 8

Non-harmonic Fourier series and
exact observability

In this chapter we show how classical results on non-harmonic Fourier series
imply exact observability for some systems governed by PDEs. The method of non-
harmonic Fourier series for exact observability of PDEs is essentially limited to one
space dimension or to rectangular domains in Rn, since it uses that the eigenfunctions
of the operator can be expressed (or approximated) by complex exponentials. We
shall see that, in some of the above mentioned cases, this method yields sharp
estimates on the observability time and on the observation region.

Notation. In this chapter we denote by |z| both the absolute value of a complex
number z and the Euclidean norm of a vector z ∈ Rn (where n ∈ N). The inner
product of z, w ∈ Cn is denoted by z ·w. In this chapter we found it more convenient
to use a definition for the Fourier transformation that differs by a constant factor
from that in Section 12.4. More precisely, for n ∈ N and f ∈ L1(Rn), the Fourier

transform of f , denoted by f̂ or Ff , is defined by

f̂(ξ) =

∫

Rn

exp (−ix · ξ)f(x)dx ∀ ξ ∈ Rn .

8.1 A theorem of Ingham

In this section we prove Ingham’s theorem (shown below), widely used in the
literature in order to establish the exact observability of systems governed by PDEs.
We also derive a consequence for systems with skew-adjoint generators.

Theorem 8.1.1. Let I ⊂ Z and let (λm)m∈I a real sequence satisfying

inf
m,l∈I
m6=l

|λm − λl| = γ > 0 . (8.1.1)
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and let J ⊂ R be a bounded interval. Then, for every sequence (am) ∈ l2(I,C) the
series

∑
m∈I ameiλmt converges in L2(J) to a function f and there exists a constant

c1 > 0, depending only on γ and on the length of J , such that

∫

J

|f(t)|2dt 6 c1

∑
m∈I

|am|2 . (8.1.2)

Moreover, if the length of J is larger then 2π
γ

then there exists c2 > 0, depending
only on γ and on the length of J , such that

c2

∑
m∈I

|am|2 6
∫

J

|f(t)|2dt. (8.1.3)

The main ingredient of the Proof of Theorem 8.1.1 is the following result.

Lemma 8.1.2. Let (µm)m∈I be a sequence satisfying

inf
m,l∈I
m6=l

|µm − µl| = γ0 > 1 . (8.1.4)

Let k : R→ R be the function defined by

k(t) =

{
cos

(
t
2

)
if |t| < π

0 if |t| > π.

Then the inequality

4

(
1− 1

γ2
0

) ∑
m∈I

|am|2

6
+∞∫

−∞

k(t)

∣∣∣∣∣
∑
m∈I

ameiµmt

∣∣∣∣∣

2

dt 6 4

(
1 +

1

γ2
0

) ∑
m∈I

|am|2 , (8.1.5)

holds for every sequence (am)m∈I with a finite number of non-vanishing terms.

Proof. Clearly we have that k ∈ L1(R) and

+∞∫

−∞

k(t)|f(t)|2dt =
∑

m,l∈I
amalk̂(µm − µl) . (8.1.6)

It is easy to check that the Fourier transform of k is given by

k̂(ξ) =
4 cos(πξ)

1− 4ξ2
∀ ξ ∈ R ,
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so that for every m ∈ I we have

∑

l∈I
l 6=m

k̂(µm − µl) 6
∑

l∈I
l 6=m

4

4γ2
0(m− l)2 − 1

6 8

γ2
0

∞∑
r=1

1

4r2 − 1

=
4

γ2
0

∞∑
r=1

(
1

2r − 1
− 1

2r + 1

)
=

4

γ2
0

=
k̂(0)

γ2
0

.

The above inequality and the fact that |amal| 6 |am|2+|an|2
2

for every m, l ∈ I imply
that

∣∣∣∣∣∣∣∣

∑

m,l∈I
m6=l

amalk̂(µm − µl)

∣∣∣∣∣∣∣∣

6 1

2

(∑
m∈I

|am|2
∑

l 6=m

|k̂(µm − µl)|+
∑

l∈I
|al|2

∑

m6=l

|k̂(µm − µl)|
)

=
∑
m∈I

|am|2
∑

l 6=m

|k̂(µm − µl)| 6 k̂(0)

γ2
0

∑
m∈I

|am|2 .

By combining the above estimate and (8.1.6), we obtain the conclusion (8.1.5).

We are now in a position to prove the main result in this section.

Proof of Theorem 8.1.1. Suppose that the sequence (am)m∈I has a finite number of
non-vanishing terms. Let α > 1

γ
. Then the sequence (µm)m∈I defined by µm = αλm

for every m ∈ I satisfies (8.1.4) with γ0 = αγ. By using (8.1.5) combined to the
fact that

k(t) >
√

2

2
∀ t ∈

[
−π

2
,
π

2

]
,

it follows that

√
2

2

π
2∫

−π
2

∣∣∣∣∣
∑
m∈I

ameiµmt

∣∣∣∣∣

2

dt 6 4

(
1 +

1

γ2

) ∑
m∈I

|am|2 .

The above estimate, combined to the fact that

π
2∫

−π
2

∣∣∣∣∣
∑
m∈I

ameiµmt

∣∣∣∣∣

2

dt =
1

α

απ
2∫

−απ
2

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

dt,

yields that

απ
2∫

−απ
2

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

dt 6 4α
√

2

(
1 +

1

α2γ2

) ∑
m∈I

|am|2 .
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By using a simple change of variables (a translation) it follows that

∫

J

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

dt 6 4α
√

2

(
1 +

1

α2γ2

) ∑
m∈I

|am|2 ,

for every interval of length απ. Since every bounded interval J ⊂ R can be covered
by a finite number of intervals of length απ it follows that there exists a positive
constant c1, depending only on γ and on the length of J , such that

∫

J

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

dt 6 c1

∑
m∈I

|am|2 .

This implies that for every bounded interval J and every l2 sequence (am)m∈I , the
series

∑
m∈I ameiλmt converges in L2(J) to a function f and there exists a constant

c1, depending only on γ and on the length of J , such that f satisfies (8.1.2).

We still have to prove (8.1.3). By using (8.1.5) we obtain that for every sequence
(am)m∈I with a finite number of non-vanishing terms and for every α > 1

γ
we have

απ∫

−απ

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

= α

π∫

−π

∣∣∣∣∣
∑
m∈I

ameiµmt

∣∣∣∣∣

2

dt

> α

+∞∫

−∞

k(t)

∣∣∣∣∣
∑
m∈I

ameiµmt

∣∣∣∣∣

2

dt > 4α

(
1− 1

α2γ2

) ∑
m∈I

|am|2 .

By using a simple change of variables (again a translation) we obtain that

∫

J

∣∣∣∣∣
∑
m∈I

ameiλmt

∣∣∣∣∣

2

> 4α

(
1− 1

α2γ2

) ∑
m∈I

|am|2 , (8.1.7)

for every interval J ⊂ R of length 2απ (which can be any real number strictly
larger then 2π

γ
). We have already seen that, for every l2 sequence (am) and every

bounded interval J ⊂ R, the series
∑

m∈I ameiλmt converges to f in L2(J). This fact,
combined to (8.1.7) implies that (8.1.3) holds for every interval J of finite length
|J | > 2π

γ
, with

c2 =
2(γ2|J |2 − 4π2)

πγ2|J | .

One of the consequences of Ingham’s theorem is the following result on systems
with a skew-adjoint generator and scalar output.

Proposition 8.1.3. Let A : D(A) → X be a skew-adjoint operator generating the
unitary group T. Assume that A is diagonalizable with an orthonormal basis (φm)m∈I
in X formed of eigenvectors and denote by iλm ∈ iR the eigenvalue corresponding
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to φm. Assume that the eigenvalues of A are simple and that there exists a bounded
set J ⊂ iR such that

inf
λ,µ∈σ(A)\J

λ 6=µ

|λ− µ| = γ > 0 . (8.1.8)

Moreover, let C ∈ L(X1,C) be an observation operator for the semigroup generated
by A such that

inf
m∈I

|Cφm| > 0 and sup
m∈I

|Cφm| < ∞ . (8.1.9)

Then C is an admissible observation operator for T and the pair (A,C) is exactly
observable in any time τ > 2π

γ
.

Proof. Note first that for every z ∈ X1 we have

CTtz =
∑
m∈I

〈z, φm〉Cφmeiλmt ∀ t > 0 . (8.1.10)

On the other hand, the fact that the eigenvalues of A are simple, combined to (8.1.8),
implies that

inf
λ,µ∈σ(A)

λ 6=µ

|λ− µ| > 0 .

The above property, combined to (8.1.10) and to the fact that supm∈I |Cφm| < ∞,
implies, by using Theorem 8.1.1, that for every τ > 0 there exists a constant Kτ > 0
such that

τ∫

0

|CTtz|2dt 6 K2
τ ‖z‖2 ∀ z ∈ X1 .

We have thus shown that C is an admissible observation operator for T. Denote

V = span {φk | λk ∈ J}⊥ .

For every z ∈ X1 ∩ V we have

CTtz =
∑
m∈I
λm 6∈J

〈z, φm〉Cφmeiλmt ∀ t > 0 .

From the above formula and (8.1.8) it follows, by using Theorem 8.1.1, that for
every τ > 2π

γ
there exists kτ > 0 such that

τ∫

0

|CTtz|2dt > k2
τ‖z‖2 ∀ z ∈ X1 ∩ V . (8.1.11)

If we denote by AV the part of A in V and by CV the restriction of C to D(AV ), the
last formula says that the pair (AV , CV ) is exactly observable in any time τ > 2π

γ
.

Since Cφ 6= 0 for every eigenvector φ of A, we obtain (by applying Proposition 6.4.4)
that the pair (A,C) is exactly observable in any time τ > 2π

γ
.
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8.2 Variable coefficients PDEs in one space dimension with
boundary observation

Notation and preliminaries. Throughout this section, J denotes the interval
(0, 1) and a, b : J → R are two functions such that a ∈ C2(J), b ∈ L∞(J) and a
is bounded from below (i.e., there exists m > 0 such that a(x) > m > 0 for all
x ∈ J). We denote by H the space L2(J) and D(A0) = H1 is the Sobolev space
H2(J) ∩ H1

0(J). The operator A0 : D(A0)→H is defined by

D(A0) = H2(J)∩H1
0(J) , A0f = − d

dx

(
a
df

dx

)
+bf ∀ f ∈ D(A0) . (8.2.1)

Recall from Proposition 3.5.2 that A0 is self-adjoint, diagonalizable and that its
simple eigenvalues can be ordered to form a strictly increasing sequence (λk)k>1.
We have also seen in Proposition 3.5.2 that it exists an orthonormal basis (ϕk)k>1

of H formed by eigenvectors of A0 and that if b is non-negative then A0 is strictly
positive and H 1

2
= H1

0(J). In the case of a non negative b we define X = H 1
2
×H,

which is a Hilbert space with the inner product
〈[

f1

g1

]
,

[
f2

g2

]〉

X

= 〈A
1
2
0 f1, A

1
2
0 f2〉+ 〈g1, g2〉 ,

we set X1 = H1 ×H 1
2

and we define the linear operator A : X1→X by

A =

[
0 I

−A0 0

]
, i.e., A

[
f
g

]
=

[
g

−A0f

]
. (8.2.2)

Recall from Proposition 3.7.6 that A is skew-adjoint on X so that it generates a
unitary group T on X. Define C1 ∈ L(H1,C) and C ∈ L(X1,C) by

C1z =
dz

dx
(0) , C =

[
C1 0

] ∀ z ∈ H1 . (8.2.3)

In this section we give some observability results for systems governed by the string
or by the Schrödinger equation with variable coefficients. The basic tools for proving
our results will be Ingham’s theorem (with its consequences from Proposition 8.1.3)
and the results on Sturm-Liouville operators from Section 3.5.

The following property of the eigenvalues and eigenvectors of A0 plays an impor-
tant role in the remaining part of this section.

Lemma 8.2.1. Assume that b is non-negative. Then

sup
n>1

1√
λn

∣∣∣∣
dϕn

dx
(0)

∣∣∣∣ < ∞ , (8.2.4)

inf
n>1

1√
λn

∣∣∣∣
dϕn

dx
(0)

∣∣∣∣ > 0 . (8.2.5)
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Proof. We first note that, since the eigenvalues of A0 are real and the coefficients
a and b are real valued functions, we have that the functions (ϕn)n>1 are real valued.
Moreover, the fact that b is non-negative implies that A0 > 0 so that λn > 0 for all
n ∈ N, hence the expression in the left-hand side of (8.2.5) is well-defined. At this
point it is convenient to use the change of variables introduced in Section 3.5. More
precisely, we set

l =

1∫

0

dx√
a(x)

, (8.2.6)

and we consider again the one-to-one function g from J onto [0, l] defined by

g(x) =

x∫

0

dξ√
a(ξ)

dξ ∀ x ∈ J , (8.2.7)

and its inverse h which maps [0, l] onto J . We know from Lemma 3.5.4 that the
function ψn defined by

ψn(s) = [a(h(s))]
1
4 ϕn(h(s)) ∀ s ∈ [0, l] . (8.2.8)

is in H2(0, l) ∩H1
0(0, l) and it satisfies

−d2ψn

ds2
(s) = (λn − r(s))ψn(s) ∀ s ∈ [0, l] , (8.2.9)

where the function r ∈ L∞(0, l) has been defined in (3.5.4). Moreover, it is easy to
check, by using (8.2.7) and (8.2.8), that

l∫

0

ψ2
n(s)ds = 1 ∀ n ∈ N . (8.2.10)

Taking next the inner product in L2[0, l] of both sides of the equation (8.2.9) by ψn

and using (8.2.10) we obtain that

sup
n∈N

1√
λn

∥∥∥∥
dψn

ds

∥∥∥∥
L2[0,l]

< ∞ . (8.2.11)

Now we take the inner product in L2[0, l] of both sides of the equation (8.2.9) by

(s− l)
dψn

ds
. For the left-hand side we get

l∫

0

(s− l)
d2ψn

ds2
(s)

dψn

ds
ds =

1

2

l∫

0

(s− l)
d

ds

∣∣∣∣
dψn

ds
(s)

∣∣∣∣
2

ds

=
l

2

∣∣∣∣
dψn

ds
(0)

∣∣∣∣
2

ds− 1

2

l∫

0

∣∣∣∣
dψn

ds
(s)

∣∣∣∣
2

ds. (8.2.12)
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For the right-hand side we get

l∫

0

(s− l) [λnψn(s)− r(s)ψn(s)]
dψn

ds
ds

=
λn

2

l∫

0

(s− l)
d

ds
(ψ2

n(s))ds−
l∫

0

(s− l)r(s)
dψn

ds
(s)ψn(s)ds

= − λn

2

l∫

0

ψ2
n(s)ds−

l∫

0

(s− l)r(s)
dψn

ds
(s)ψn(s)ds.

By combining the above relation and (8.2.12) it follows that

l

λn

∣∣∣∣
dψn

ds
(0)

∣∣∣∣
2

=

l∫

0

ψ2
n(s)ds +

1

λn

l∫

0

∣∣∣∣
dψn

ds
(s)

∣∣∣∣
2

+
2

λn

l∫

0

(s− l)r(s)
dψn

ds
(s)ψn(s)ds.

The above equality, together with (8.2.10), (8.2.11) and the fact that limn→∞ λn =
∞, imply (8.2.4).

The same ingredients yield that

lim inf
λn→∞

l

λn

∣∣∣∣
dψn

ds
(0)

∣∣∣∣
2

> 1 .

Using next the fact (easy to check) that dψn

ds
(0) 6= 0 for every n ∈ N it follows that

inf
n∈N

1

λn

∣∣∣∣
dψn

ds
(0)

∣∣∣∣
2

> 0 . (8.2.13)

On the other hand, from (8.2.7) and (8.2.8) it follows that

dψn

ds
(0) = [a(0)]

3
4
dϕn

dx
(0) .

The above relation and (8.2.13) imply the conclusion (8.2.5).

Proposition 8.2.2. Assume that b is non-negative. Then the operator C defined in
(8.2.3) is admissible for T. Moreover, the pair (A,C) is exactly observable in any
time τ > 2l, where l has been defined in (8.2.6).

Proof. The proof is essentially based on Proposition 8.1.3 and on the above
estimates on the spectral elements of A0. More precisely, denote µk =

√
λk, with

k ∈ N and consider the family (φk)k∈Z∗ defined by

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ ,
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where, for all k ∈ N, we define ϕ−k = −ϕk and µ−k = −µk. According to Proposition
3.7.7, the eigenvalues of A are (iµk)k∈Z∗ and they correspond to the orthonormal
basis of eigenvectors (φk)k∈Z∗ . This fact, combined to Proposition 3.5.5, implies that

assumption (8.1.8) in Proposition 8.1.3 holds with γ =
π

l
.

On the other hand, Lemma 8.2.1 implies that assumption (8.1.9) in Proposition
8.1.3 is also satisfied. Moreover, it is easy to check that Cφk 6= 0 for all k ∈ Z∗, so
that we can apply Proposition 8.1.3 to get the desired conclusion.

Remark 8.2.3. In terms of PDEs, the above proposition can be restated as follows:
for every τ > 2l there exists kτ > 0 such that the solution w of





∂2w

∂t2
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
− b(x)w(x, t), x ∈ J, t > 0,

w(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x), x ∈ J.

satisfies

τ∫

0

∣∣∣∣
∂w

∂x
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖f‖2

H1
0(J) + ‖g‖2

L2(J)

)
∀

[
f
g

]
∈ D(A) .

Moreover, according to Remark 6.1.3, the above estimate is equivalent to

τ∫

0

∣∣∣∣
∂2w

∂x∂t
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖f‖2

H2(J) + ‖g‖2
H1

0(J)

)
∀

[
f
g

]
∈ D(A2) .

Corollary 8.2.4. The observation operator C1 is admissible for the group generated
by iA0 in H 1

2
. Moreover, the pair (iA0, C1) is exactly observable (with state space

H 1
2
) in any time τ > 0.

Proof. It is easy to check, by a simple change of variables, that it suffices to
consider the case of a non-negative b. In this case the result follows by simply
combining Proposition 8.2.2 and Theorem 6.7.2.

Remark 8.2.5. In terms of PDEs, the above proposition can be restated as follows:
for every τ > there exists kτ > 0 such that the solution w of





i
∂w

∂t
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
− b(x)w(x, t), x ∈ J, t > 0,

w(0, t) = 0, w(1, t) = 0, t ∈ [0,∞),

w(x, 0) = f(x), x ∈ J.
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satisfies
τ∫

0

∣∣∣∣
∂w

∂x
(0, t)

∣∣∣∣
2

dt > k2
τ‖f‖2

H1
0(J) ∀ f ∈ H1 .

8.3 Domains associated to a sequence

In this section we introduce the concept of domain associated to a sequence and we
give some conditions, either necessary or sufficient, for an open bounded set D ⊂ Rn

to be a domain associated to the sequence Λ = (λm). These results will be used
in Section 8.4 in order to obtain new estimates on non-harmonic Fourier series in
several space dimensions.

Let n ∈ N and I ⊂ Z. We say that a sequence Λ = (λm)m∈I in Rn is regular if

inf
m,l∈I
m6=l

|λm − λl| = γ > 0 . (8.3.1)

In the remaining part of this section we denote by Λ a regular sequence in Rn, D ⊂
Rn is a bounded open set and L2

Λ(D) is the closure in L2(D) of span {eiλm·x |m ∈ I}.
Definition 8.3.1. We call an open subset D ⊂ Rn a domain associated to the
regular sequence Λ if there exist constants δ1(D), δ2(D) > 0 such that, for every
sequence of complex numbers (am)m∈I with a finite number of non-vanishing terms,
we have

δ2(D)
∑
m∈I

|am|2 6
∫

D

∣∣∣∣∣
∑
m∈I

ameiλm·x
∣∣∣∣∣

2

6 δ1(D)
∑
m∈I

|am|2dx. (8.3.2)

With the above definition Theorem 8.1.1 can be rephrased as follows: if Λ is a
real sequence satisfying (8.1.1), then every interval of length strictly larger than 2π

γ

is a domain associated to Λ.

Remark 8.3.2. By using Proposition 2.5.3 we see that the open bounded set
D ⊂ Rn is a domain associated to the regular sequence Λ if and only if the family(
eiλk·x)

k∈I is a Riesz basis in L2
Λ(D).

In order to give conditions ensuring that a domain is associated to a regular
sequence Λ we need some notation and a technical lemma. For every α > 0 we
denote by Dα, with α > 0, the hypercube Dα = [−α, α]n.

Lemma 8.3.3. Let n ∈ N, r > 0, let χr the characteristic function on the interval
[−r, r] and let hr = 1

4r2 χr ∗ χr. Moreover let Kr ∈ L1(Rn) be defined by Kr(x) =∏n
m=1 hr(xm) and let K̂r be the Fourier transform of Kr. Then

Kr(0) =

(
1

2r

)n

, (8.3.3)
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Kr(x) = 0 if x 6∈ D2r , (8.3.4)

K̂r(0) = 1 , (8.3.5)

K̂r(ξ) =
1

r2n

n∏
m=1

sin2(rξm)

ξ2
m

∀ ξ ∈ Rn \ {0} . (8.3.6)

Proof. By using the definition of hr and some basic properties of the convolution
it follows that hr(0) = 1

2r
and hr(x) = 0 if |x| > 2r. These facts and the definition

of Kr clearly imply (8.3.3) and (8.3.4).

On the other hand the Fourier transform of hr is clearly given by

ĥr(0) = 1 , and ĥr(ξ) =
sin2(rξ)

r2ξ2
∀ ξ 6= 0 .

These facts and the formula

K̂r(ξ) =
n∏

m=1

ĥr(ξm) ,

clearly imply (8.3.5) and (8.3.6).

Remark 8.3.4. From (8.3.4) it easily follows that

Kr(x) = 0 if |x| > 2r
√

n. (8.3.7)

Proposition 8.3.5. Let (µm)m∈I be a sequence of vectors in Rn satisfying

inf
m,l∈I
m6=l

|µm − µl| >
√

n. (8.3.8)

Then there exists β > 0 such that the ball centered at the origin and of radius β is
a domain associated to (µm).

Proof. Let (am)m∈I be an l2 sequence having a finite number of non-vanishing
terms and set

f(x) =
∑
m∈I

ameiµm·x .

Let (Kr)r>0 be the functions introduced in Lemma 8.3.3. For every r > 0 we have

∫

Rn

Kr(x)|f(x)|2dx =
∑
m∈I

|am|2 +
∑

m,l∈I
m6=l

amalK̂r(µl − µm) . (8.3.9)
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The last term in the right-hand side of the above relation satisfies

∣∣∣∣∣∣∣∣

∑

m,l∈I
m6=l

amalK̂r(µm − µl)

∣∣∣∣∣∣∣∣

6 1

2

(∑
m∈I

|am|2
∑

l 6=m

|K̂r(µm − µl)|+
∑

l∈I
|al|2

∑

m6=l

|K̂r(µm − µl)|
)

=
∑
m∈I

|am|2
∑

l 6=m

|K̂r(µm − µl)| . (8.3.10)

From (8.3.8) it follows that for every p ∈ Z+ the number of terms of the sequence
(µm) in Dp+1 \Dp is bounded by c1p

n−1, where c1 is a universal constant and that
µk − µl 6∈ D1 if k 6= l. From these facts and the estimate (following from (8.3.6))

K̂r(ξ) 6 1

r2np2n
∀ ξ ∈ Dp+1 \Dp ,

it follows that for every fixed m ∈ I we have

∑

l 6=m

|K̂r(µm − µl)| =
∞∑

p=1

∑

µm−µl∈Dp+1\Dp

|K̂r(µm − µl)|

6 c1

∞∑
p=1

pn−1

r2np2n
=

c1

r2n

∞∑
p=1

1

pn+1
.

It follows that
lim
r→∞

∑

l 6=m

|K̂r(µm − µl)| = 0 ,

so that, by using (8.3.10), it follows that for r0 large enough we have
∣∣∣∣∣∣∣∣

∑

m,l∈I
m6=l

amalK̂r0(µm − µl)

∣∣∣∣∣∣∣∣
6 1

2

∑
m∈I

|am|2 . (8.3.11)

Using (8.3.9) and (8.3.11) we obtain that

1

2

∑
m∈I

|am|2 6
∫

Rn

Kr0(x)|f(x)|2dx.

The above estimate, combined to (8.3.3), (8.3.4) and to the the fact, easy to check,
that Kr(x) is maximum for x = 0, implies that

∫

D2r0

|f(x)|2dx > 1

2n+1rn
0

∑
m∈I

|am|2 . (8.3.12)
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Moreover, it is easy to check that Kr0(x) >
(

1
r0

)n

for x ∈ Dr0 , so that (8.3.9) and

(8.3.11) yield that ∫

Dr0

|f(x)|2dx 6 3rn
0

2

∑
m∈I

|am|2 .

By a change of variables we see that the last inequality still holds if we replace Dr0

by any domain obtained from Dr0 by a translation. Since D2r0 can be covered by
three such hypercubes, it follows that∫

D2r0

|f(x)|2dx 6 9rn
0

2

∑
m∈I

|am|2 .

The above estimate and (8.3.12) imply that D2r0 is a domain associated to the

sequence (µm). It follows that if β > n
√

2r0

2
then the ball centered at the origin and

of radius β is a domain associated to the sequence (µm).

Corollary 8.3.6. Let Λ = (λm)m∈I be a sequence satisfying (8.3.1). Then there
exists an α > 0 such that every ball in Rn of radius α

γ
is a domain associated to Λ.

Proof. Let (µm)m∈I be the sequence defined by

µm =

√
n

γ
λm ∀ m ∈ I .

The sequence (µm) satisfies (8.3.8) so that, by Proposition 8.3.5, there exist constants
β, δ1, δ2 > 0 such that for every (am)m∈I with a finite number of non-vanishing
terms we have

δ2

∑
m∈I

|am|2 6
∫

|x|<β

∣∣∣∣∣
∑
m∈I

ameiµm·x
∣∣∣∣∣

2

dx 6 δ1

∑
m∈I

|am|2 .

Since ∫

|x|<β

∣∣∣∣∣
∑
m∈I

ameiµm·x
∣∣∣∣∣

2

dx =

(
γ√
n

)n ∫

|x|< β
√

n
γ

∣∣∣∣∣
∑
m∈I

ameiλm·x
∣∣∣∣∣

2

dx,

it follows that every ball in Rn of radius β
√

n
γ

is a domain associated to Λ.

Proposition 8.3.7. Given an open bounded set D, a regular sequence Λ in Rn

and a sequence (al) ∈ l2(I,C), the series
∑

m∈I ameiλm·x converges in L2(D). Let
FΛ : l2 → L2(D) be the linear map associating to a sequence (am)m∈I the function
f defined by

f(x) =
∑
m∈I

ameiλm·x ∀ x ∈ Rn . (8.3.13)

Then FΛ ∈ L(l2, L2(D)), ‖FΛ‖L(l2,L2(D)) depends only on γ and on D, and the adjoint
of FΛ is given by

F ∗
Λ(ϕ) = (ϕ̂(λm))m∈I ∀ ϕ ∈ L2

Λ(D) , (8.3.14)

the Fourier transform ϕ̂ being computed after the extension of ϕ by zero outside D.
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Proof. By compactness, clos D can be covered by a finite number of balls of
radius α, where α is the constant from Corollary 8.3.6. It follows that there exists
a constant δ2, depending only on γ and on D, such that

∫

D

∣∣∣∣∣
∑
m∈I

ameiλm·x
∣∣∣∣∣

2

dx 6 δ2

∑
m∈I

|am|2 ,

for every sequence (am)m∈I having a finite number of non-vanishing terms. From
the above relation it follows that the series

∑
m∈I ameiλm·x converges in L2(D) to

some function f and that

∫

D

|f(x)|2dx 6 δ2

∑
m∈I

|am|2 ,

so that FΛ is well defined. Moreover, FΛ is bounded and its norm depends only on
γ and on D.

Let ϕ ∈ L2(D) and also denote by ϕ its extension to Rn obtained by setting ϕ ≡ 0
outside D. Then

〈FΛa, ϕ〉L2(D) =
∑
m∈I

am

∫

D

eiλm·xϕ(x)dx

=
∑
m∈I

am

∫

D

e−iλm·xϕ(x)dx =
∑
m∈I

amϕ̂(λm) ,

which implies (8.3.14).

Proposition 8.3.8. The open set D is a domain associated to Λ if and only if for
every l2 sequence (bk)k∈I there exists a function G ∈ L2(Rn) such that supp G ⊂ D

and Ĝ(λm) = bm for every m ∈ I.

Proof. Assume that D is a domain associated to Λ and let (φk)k∈I be a Riesz
basis in L2

Λ(D) which is biorthogonal to (eiλk·x)k∈I (see Definition 2.5.1 and the com-
ments following it). According to Proposition 2.5.3 the series

∑
k∈I bkφk converges

in L2
Λ(D). Denote

G =
∑

k∈I
bkφk ,

and extend G by zero outside D. Then G ∈ L2(Rn) ∩ L1(Rn) and for every k ∈ I
we have

Ĝ(λm) =
∑

k∈I
bk

∫

Rn

φk(x)e−iλm·xdx.

By using the fact that (φk)k∈I is biorthogonal to (eiλk·x)k∈I we get Ĝ(λm) = bm for
every m ∈ I so that we have shown one of the claimed implications.
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Conversely, assume that for every sequence (bk)k∈I there exists a function G ∈
L2(Rn) such that supp G ⊂ D and Ĝ(λm) = bm for every m ∈ I. This means that
the map F ∗

Λ ∈ L(L2
Λ(D), l2), which is the adjoint of the operator FΛ from Proposition

8.3.7 is onto. This implies, according to Proposition 12.1.3 and to Proposition 2.8.1
that FΛ is bounded from below, i.e., that (8.3.2) holds for some δ1 > 0.

Proposition 8.3.9. Assume that (Gm)m∈I is a sequence in L2(Rn) such that

• supp Gm ⊂ D for every m ∈ I.

• There exists M > 0 such that
∥∥∥Ĝm

∥∥∥
L∞

6 M for every m ∈ I.

• For every l, m ∈ I we have Ĝl(λm) = δlm (the Kronecker symbol).

Then any open set D′ such that clos D ⊂ D′ is a domain associated to Λ.

Proof. First we choose ε ∈ (0, γ/2) small enough in order to have clos D +
B(0, 2ε) ⊂ D′ (here B(0, r) denotes the open ball of radius r with center 0). Let
(Kr)r>0 be the functions introduced in Lemma 8.3.3. For m ∈ I we define ρm(x) =
e−iλm·xKε(x) so that supp ρm ⊂ B(0, 2ε) for every m ∈ I.

Let (bm)m∈I be a sequence containing only a finite number of non-vanishing terms
and define

G =
∑
m∈I

bmGm ∗ ρm .

We clearly have that supp G ⊂ D′ and

Ĝ(ξ) =
∑
m∈I

bmĜm(ξ)K̂ε(ξ − λm) ∀ ξ ∈ Rn , (8.3.15)

so that
Ĝ(λl) = bl ∀ l ∈ I . (8.3.16)

On the other hand, by using Parseval’s theorem and (8.3.15),

∫

D′

|G(x)|2dx 6 M2

(2π)n

∫

Rn

(∑
m∈I

|bm|K̂ε(ξ − λm)

)2

dξ . (8.3.17)

By using again Parseval’s theorem and the fact that Kε is even, we obtain that

∫

Rn

∣∣∣∣∣
∑
m∈I

bmK̂ε(ξ − λm)

∣∣∣∣∣

2

dξ = (2π)n

∫

Rn

∣∣∣∣∣
∑
m∈I

Kε(x)|bm|e−iλm·x
∣∣∣∣∣

2

dx

= (2π)n

∫

Rn

K2
ε (x)

∣∣∣∣∣
∑
m∈I

|bm|e−iλm·x
∣∣∣∣∣

2

dx

6 (2π)n‖Kε‖2
L∞

∫

B(0,2ε)

∣∣∣∣∣
∑
m∈I

|bm|eiλm·x
∣∣∣∣∣

2

dx.
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The above relation, combined to (8.3.17) and to Proposition 8.3.7, yields that there

exists a constant M̃ , independent of the finite sequence (bk), such that

∫

D′

|G(x)|2dx 6 M̃2
∑
m∈I

|bm|2 . (8.3.18)

Thus, there exists M̃ > 0 such that for every finite sequence (bm)m∈I there exists
a function G ∈ L2(D′) satisfying (8.3.16) and (8.3.18). An easy approximation
argument yields that for every (bk) ∈ l2(I) there exists a function G ∈ L2(D′)
satisfying (8.3.16). The conclusion follows now from Proposition 8.3.8.

8.4 The results of Kahane and Beurling

In this section we give some extensions of Theorem 8.1.1 (Ingham’s theorem)
which have been obtained by J.-P Kahane and by A. Beurling. The results obtained
in this section will be used in Section 8.5 to derive exact observability results for the
Schrödinger and for the Euler-Bernoulli equations in a rectangular domain. First
we need some more results on domains associated to a regular sequence.

Proposition 8.4.1. Let D be a domain associated to the sequence Λ = (λm)m∈I,
let µ ∈ Rn be such that

inf
m∈I

|µ− λm| = d > 0 .

Let D′ ⊂ Rn be an open bounded set such that D ⊂ D′. Then the function x 7→ eiµ·x

does not belong to L2
Λ(D′) and the distance in L2(D′) from this function to L2

Λ(D′)
is larger than a constant depending only on Λ, D′ and d.

Proof. Let I ⊂ Z, let (am)m∈I be an l2 sequence and let f ∈ L2
loc(R

n) be the
function defined by

f(x) =
∑
m∈I

ameiλm·x . (8.4.1)

Consider the function q ∈ L2
loc(R

n) defined by

q(x) = eµ(x)− f(x) , (8.4.2)

where

eµ(x) = eiµ·x ∀ x ∈ Rn . (8.4.3)

Let α > 0 be such that D + Bα ⊂ D′, where Bα stands for the ball in Rn centered
at the origin and of radius α. We denote by Vα the Lebesgue measure (the volume)
of Bα and we set

r(x) = q(x)− 1

Vα

∫

Bα

e−iµ·yq(x + y)dy . (8.4.4)
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A simple calculation shows that

r(x) =
∑
m∈I

bmeiλm·x , (8.4.5)

where

bm = am


 1

Vα

∫

Bα

ei(λm−µ)·xdx− 1


 ∀ m ∈ I .

It is easy to check that there exists c1 = c1(α, d) > 0 such that

∣∣∣∣∣∣
1

Vα

∫

Bα

ei(λm−µ)·xdx− 1

∣∣∣∣∣∣
> c1 ∀ m ∈ I ,

so that, by using (8.4.5) combined to the fact that D is a sequence associated to Λ
we get that there exists c2 = c2(Λ, D,D′, d) > 0 such that

∫

D

|r(x)|2dx > c2

∑
m∈I

|am|2 . (8.4.6)

On the other hand, from (8.4.4) it follows, by applying the Cauchy-Schwarz inequal-
ity, that

∫

D

|r(x)|2dx 6 2

∫

D

|q(x)|2dx +
2

V 2
α

∫

D

∣∣∣∣∣∣

∫

Bα

e−iµ·yq(x + y)dy

∣∣∣∣∣∣

2

dx

6 2

∫

D

|q(x)|2dx +
2

Vα

∫

D

∫

Bα

|q(x + y)|2dydx

= 2

∫

D

|q(x)|2dx +
2

Vα

∫

Bα

∫

D

|q(x + y)|2dxdy

= 2

∫

D

|q(x)|2dx +
2

Vα

∫

Bα

∫

D′

|q(x)|2dxdy = 4

∫

D′

|q(x)|2dx.

The above inequality, combined with (8.4.6) implies that

∫

D′

|q(x)|2dx > c2

4

∑
m∈I

|am|2 . (8.4.7)

On the other hand, according to Proposition 8.3.7, there exists c3 = c3(D
′, Λ, d)

such that
∑
m∈I

|am|2 > c3

∫

D′

∣∣∣∣∣
∑
m∈I

ameiλm·x
∣∣∣∣∣

2

dx.
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By combining the above estimate with (8.4.1)-(8.4.3) and with (8.4.7) we obtain
that

‖eµ − f‖2
L2(D′) > c4‖f‖2

L2(D′) , (8.4.8)

where c4 = c2c3
4

depends only on Λ, d, D and D′. For the remaining part of this
proof we distinguish between two cases:

Case 1. Assume that ‖f‖L2(D′) > Vol(D′)
2

, where Vol(D′) stands for the volume of
D′. This assumption and (8.4.8) imply that

‖eµ − f‖L2(D′) > Vol(D′)
√

c4

2
.

Case 2. Assume that ‖f‖L2(D′)dx 6 Vol(D′)
2

. Then

‖eµ − f‖L2(D′) > ‖eµ‖L2(D′) − ‖f‖L2(D′) > Vol(D′)
2

.

Consequently, if we denote c5 = min
(

Vol(D′)
√

c4
2

, Vol(D′)
2

)
, we have that c5 depends

only on D, D′, Λ and d and

∫

D′

∣∣∣∣∣e
iµ·x −

∑
m∈I

ameiλm·x
∣∣∣∣∣

2

L2(D′)

dx > c2
5 > 0 ∀ (am) ∈ l2(I,C) .

Corollary 8.4.2. With the assumptions of Proposition 8.4.1, there exists a function
Hµ ∈ L2(D′) such that

Ĥµ(µ) = 1 , Ĥµ(λm) = 0 ∀ m ∈ I , ‖Hµ‖L2(D′) 6 M ,

with ‖Hµ‖L2(D′) depending only on Λ, D′ and d.

Proof. Let PΛ denote the orthogonal projector from L2(D′) onto L2
Λ(D′) and let

eµ be the L2(D′) function x 7→ eiµ·x. Then ‖eµ − PΛeµ‖L2(D′) is the distance from
eµ to L2

Λ(D′) so that, by Proposition 8.4.1, we have ‖eµ − PΛeµ‖ > β > 0, with β
depending only on Λ, D′ and d. Denote Gµ = eµ−PΛeµ. A simple calculation shows

that Ĝµ(µ) = β2. This implies that the function Hµ =
1

β2
Gµ satisfies Ĥµ(µ) = 1.

Moreover, the fact that Hµ ⊥ L2
Λ(D′) implies that

Ĥµ(λm) = 0 ∀ m ∈ I .

Moreover

‖Hµ‖L2(D′) =
1

β
,

so that ‖Hµ‖L2(D′) depends only on Λ, D′ and d.
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Theorem 8.4.3. Let Λ1, Λ2 be two regular sequences in Rn, with n ∈ N. Assume
that D1 ⊂ Rn (respectively D2 ⊂ Rn) is a domain associated to Λ1 (respectively
to Λ2) and that the sequence Λ = Λ1 ∪ Λ2 is regular. Then any open set D ⊂ Rn

containing the closure of D1 + D2 is a domain associated to Λ.

Proof. We first denote the sequence Λ1 ∪ Λ2 by (λk)k∈I and we set

inf
m,l∈I
m6=l

|λm − λl| = d > 0 .

Let D′, D′′ be domains containing the closure of D1+D2 such that the closure of D′′

is contained in D′. According to Proposition 8.3.9, the claimed result is established
if we prove that for every µ ∈ Λ there exists Gµ ∈ L2(Rn) such that supp Gµ ⊂ D′′,

the sequence
∥∥∥Ĝµ

∥∥∥
L∞(Rn)

is bounded by a constant depending only on d, D and D′′,

Ĝµ(µ) = 1 and Ĝµ(λ) = 0 for every λ ∈ Λ \ {µ}.
Without loss of generality, we can assume that µ is a term of the sequence Λ1.

Since D1 is a domain associated to the sequence Λ1, we can apply Proposition 8.3.8
to get the existence of a function Gµ,1 ∈ L2(D1), depending only on Λ1 and on D1

such that Ĝµ,1(µ) = 1, and Ĝµ,1(λ) = 0 for every λ ∈ Λ1 \ {µ}. Moreover, after
extending Gµ,1 by zero outside D1 an by using the Cauchy-Schwarz inequality, we

get that ‖Ĝµ,1‖L∞(Rn) is bounded by a constant depending only on d and D1.

On the other hand, according to Corollary 8.4.2, there exists a function Gµ,2 ∈
L2(D′′) such that

Ĝµ,2(µ) = 1 , Ĝµ,2(λ) = 0 ∀ λ ∈ Λ2 , ‖Gµ,2‖L2(D′′) 6 M ,

where M is a constant depending only on Λ2, D′′ and d. The last inequality implies,
by applying the Cauchy-Schwarz inequality that

‖Ĝµ,2‖L∞(Rn) 6 M̃ ,

where M is a constant depending only on Λ2, D′′ and d. We have thus constructed
a function Gµ = Gµ,1 ∗ Gµ,2 satisfying the required conditions, which ends up our
proof.

One of the applications of Proposition 8.4.3 is the following generalization of
Ingham’s Theorem 8.1.1, due to A. Beurling.

Proposition 8.4.4. Let I ∈ {Z,N} and let (λm)m∈I be a regular increasing sequence
of real numbers. Assume that there exist p ∈ N and γ > 0 such that

|λm+p − λm| > pγ ∀ m ∈ I . (8.4.9)

Then every interval of length strictly larger than 2π
γ

is a domain associated to the
sequence Λ.
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Proof. For l ∈ {0, . . . , p− 1} we denote by Λl = (λl
m)m∈I the sequence defined by

λl
m = λmp+l ∀ m ∈ I .

We clearly have

λl
m+1 − λl

m > pγ ∀ ∈ I, l ∈ {0, . . . , p− 1} .

By applying Theorem 8.1.1 it follows that, for every l ∈ {0, . . . , p− 1}, any interval
of length strictly larger than 2π

pγ
is a domain associated to the sequence Λl. By

applying iteratively Proposition 8.4.3 it follows that any interval of length strictly
larger than 2π

γ
is a domain associated to the sequence Λ.

Theorem 8.4.5. Let Λ be a regular sequence in Rn. For d > 0 denote by ω(d)
the upper limit when |b| → ∞ of the number of terms of Λ contained in the ball
of center b and of radius d. If ω(d) = o(d) when d → ∞ then every ball in Rn of
strictly positive radius is a domain associated to Λ.

Proof. For an arbitrary d > 0 we consider all the hypercubes in Rn with edges of
length d and with summits having all the coordinates multiples of d. This family of
hypercubes can be divided into 2n subfamilies such that the distance between two
hypercubes from the same family is larger than d. On the other hand, all but a
finite number of these hypercubes contain at most ω(nd) points. Consequently, for
every d > 0, the sequence Λ can be seen as the union of a finite sequence and of
ω̃(d) = 2nω(nd) sequences Λj such that

inf
λ,µ∈Λj

λ 6=µ

|λ− µ| > d.

From Corollary 8.3.6 it follows that there exists α > 0 such that, for every j ∈
{1, . . . ω̃(d)}, any ball of radius > α

d
is a domain associated to the sequence Λj.

By applying Theorem 8.4.3 it follows that any ball of radius > αω̃(d)
d

is a domain

associated to Λ. Since αω̃(d)
d

= o(d) when d →∞ it follows that any ball of strictly
positive radius is a domain associated to Λ.

8.5 The Schrödinger and plate equations in a rectangular
domain with distributed observation

We have seen in Section 7.5 that if Ω is a bounded domain with ∂Ω of class C2

or if Ω is a rectangular domain, then the Schrödinger and the plate equations in Ω
with distributed observation define an exactly observable system provided that the
observation region satisfies a geometric condition. In this section we show that if Ω
is a rectangular domain then the above mentioned systems are exactly observable
for any observation region.
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Notation. Let a, b > 0 and denote Ω = [0, a]× [0, b]. We use some of the notation
in Section 7.5. More precisely set H = L2(Ω) and D(A0) = H1 is the Sobolev
space H2(Ω) ∩H1

0(Ω). The strictly positive operator A0 : D(A0)→H is defined by
A0ϕ = −∆ϕ for all ϕ ∈ D(A0) and we denote H2 = D(A2

0). The inner product on
H is denoted by 〈·, ·〉 and the corresponding norm by ‖ · ‖. O is a non-empty open
subset of Ω, and we introduce the observation operator C0 ∈ L(H) by

C0g = gχO ∀ g ∈ H, (8.5.1)

where χO is the characteristic function of O.

We denote by X the Hilbert space H1 ×H, with the scalar product
〈[

f1

g1

]
,

[
f2

g2

]〉

X
= 〈A0f1, A0f2〉+ 〈g1, g2〉 .

We define a dense subspace of X by D(A) = H2 × H1 and the linear operator
A : D(A)→X is defined by

A =

[
0 I

−A2
0 0

]
, i.e., A

[
f
g

]
=

[
g

−A2
0f

]
, (8.5.2)

which generates a unitary group on X . We denote by X1 the space D(A) endowed
with the graph norm and we introduce the observation operator C ∈ L(X1, H) by

C =
[
0 C0

]
.

The main result of this section is the following.

Theorem 8.5.1. With the above notation, the pairs (iA0, C0) and (A, C) are exactly
observable in any time τ > 0.

Remark 8.5.2. For the Schrödinger equation, the result in Theorem 8.5.1 means
that for every τ > 0 there exists kτ > 0 such that the solution z of

∂z

∂t
(x, t) = i∆z(x, t) ∀ (x, t) ∈ Ω× [0,∞) ,

with
z(x, t) = 0 ∀ (x, t) ∈ ∂Ω× [0,∞) ,

and z(·, 0) = z0 ∈ H2(Ω) ∩H1
0(Ω) satisfies

τ∫

0

∫

O

|z(x, t)|2dxdt > k2
τ‖z0‖2 ∀ z0 ∈ L2(Ω) .

For the plate equation, the result in Theorem 8.5.1 means that for every τ > 0
there exists kτ > 0 such that the solution w of the Euler-Bernoulli plate equation

∂2w

∂t2
(x, t) + ∆2w(x, t) = 0 , (x, t) ∈ Ω× [0,∞) ,
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with
w|∂Ω×[0,∞) = ∆w|∂Ω×[0,∞) = 0 ,

and w(·, 0) = w0 ∈ D(A2
0),

∂w
∂t

(·, 0) = w1 ∈ D(A0) satisfies

τ∫

0

∫

O

∣∣∣∣
∂w

∂t

∣∣∣∣
2

dxdt > k2
τ

(
‖w0‖2

H2(Ω) + ‖w1‖2
L2(Ω)

)
∀

[
w0

w1

]
∈ D(A) .

The main ingredient of the proof of Theorem 8.5.1 is the following proposition.

Proposition 8.5.3. Let r, s > 0 and let Λ ∈ l2(Z2,R3) be defined by

λmn =




m
√

r
n
√

s
rm2 + sn2


 ∀ m,n ∈ Z . (8.5.3)

Then any ball of strictly positive radius in R3 is a domain associated to Λ.

In order to prove Proposition 8.5.3 we need some notation and a lemma. For
R > 0 and [ k

l ] ∈ Z2 \ [ 0
0 ] with |k| < R and |l| < R, we denote

SR,k,l =

{[
m
n

]
∈ Z2 | |2rkm + 2sln| < 3R2

}
,

and we introduce the subsequence ΛR,k,l = (λmn)[m
n ]∈SR,k,l

of Λ.

Lemma 8.5.4. With the above notation, any ball in R3 of strictly positive radius is
a domain associated to ΛR,k,l.

Proof. Without loss of generality we can assume that k 6= 0. Then the condition
[ m

n ] ∈ SR,k,l implies that there exists a constant c > 0 (depending on r, s, R, l and
k) such that

rm2 + sn2 = cn2 + O(n) ∀
[
m
n

]
∈ SR,k,l . (8.5.4)

The above formula implies that the number of terms of ΛR,k,l contained in a ball of

center b =
[

b1
b2
b3

]
∈ R3 and of radius d > 0 is bounded by the number of terms of the

sequence (rm2 + sn2)[m
n ]∈SR,k,l

in (b3− d, b3 +d). Relation (8.5.4) implies that, after

possibly eliminating a finite number of terms, the sequence ΛR,k,l can be rewritten
as a strictly increasing sequence (αn)n>1 satisfying

αn+p − αn > c(2np + p2) + O(n) .

By choosing p large enough it follows

αn+p − αn > np.
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Consequently, the number of terms of ΛR,k,l contained in a ball of center b and

of radius d is smaller then c
(√

|b3|+ d−
√
|b3| − d

)
+ 1, which tends to 1 when

b3 →∞. The conclusion follows now by applying Theorem 8.4.5.

Proof of Proposition 8.5.3. Let β > 0. It is easy to see that the assertion saying
that any ball of strictly positive radius is a domain associated to Λ is equivalent to
the assertion saying that any ball of strictly positive radius is a domain associated
to βΛ. Therefore it suffices to tackle the case in which r, s from (8.5.3) satisfy
r, s ∈ (0, 1].

Let ε > 0, R > max(1, 2α/ε), where α is the constant in Corollary 8.3.6, and let
IR be the union of all the strips SR,k,l with k2 + l2 6= 0, |k| 6 R and |l| 6 R (there
at most (2R + 1)2 such strips). Denote Λ1 = (λmn)[m

n ]∈IR
. Then

Λ1 =
⋃

k,l∈[−R,R]
k2+l2 6=0

ΛR,k,l ,

so that, by combining Theorem 8.4.3 and Lemma 8.5.4 it follows that any ball in
R3 of strictly positive radius is a domain associated to Λ1.

Let JR = Z2 \ IR and let Λ2 = (λmn)[m
n ]∈JR

, so that Λ = Λ1 ∪ Λ2. If we admit

that
inf

λ,µ∈Λ2
λ 6=µ

|λ− µ| > R, (8.5.5)

then, by Corollary 8.3.6, we have that any ball of radius ε/2 is a domain associated
to Λ2 so that, by applying Theorem 8.4.3, we obtain that any ball of radius ε is a
domain associated to Λ.

We still have to show (8.5.5). Let [ m
n ] ,

[
m′
n′

] ∈ JR with [ m
n ] 6= [

m′
n′

]
. If |m−m′| >

R or |n− n′| > R then (8.5.5) clearly holds. If |m−m′| < R and |n− n′| < R then
there exist k, l ∈ [−R,R] ∩ Z with k2 + l2 6= 0 such that

m′ = m + k n′ = n + l .

Then, by using the facts that [ m
n ] 6∈ IR, r, s ∈ (0, 1] and R > 1, it follows that

∣∣∣rm2 + sn2 − rm′2 − sn′2
∣∣∣ = |2rmk + 2snl + rm2 + sn2|

> |2rmk + 2snl| − |rk2 + sl2| > 3R2 − rR2 − sR2 > R2 > R,

which implies (8.5.5).

Proof of Theorem 8.5.1. We have seen in Example 3.6.5 that the eigenvalues of
A0 are

µmn = rm2 + sn2 ∀ m,n ∈ N ,

where r = π2

a2 and s = π2

b2
and that a corresponding orthonormal basis formed of

eigenvectors of A0 is given by

ϕmn(x, y) =
2√
ab

sin (
√

r mx) sin (
√

s ny) ∀ m,n ∈ N .
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The above facts imply that the semigroup T generated by iA0 satisfies

Ttz =
∑

m,n∈N
zmne

i(rm2+sn2)tϕmn ∀ z ∈ D(A0) ,

where we have denoted

zmn = 〈z, ϕmn〉 ∀ m,n ∈ N .

Let τ > 0. From the definition (8.5.1) of C0 it follows that

τ∫

0

‖CTtz‖2dt =

τ∫

0

∫

O

∣∣∣∣∣∣
∑

m,n∈N
zmne

i(rm2+sn2)tϕmn(x, y)

∣∣∣∣∣∣

2

dxdydt

=
4

ab

τ∫

0

∫

O

∣∣∣∣∣∣
∑

m,n∈N
zmnei(rm2+sn2)t sin (

√
r mx) sin (

√
s ny)

∣∣∣∣∣∣

2

dxdydt (8.5.6)

We now extend (zmn)m,n∈N to a sequence denoted (zmn)m,n∈Z∗ by setting

z−m,n = − zmn , zm,−n = − zmn , z−m,−n = zmn ∀ m,n ∈ N .

With the above relation notation, formula (8.5.6) can be easily be put in the form

τ∫

0

‖CTtz‖2dt =
1

iab

τ∫

0

∫

O

∣∣∣∣∣∣
∑

m,n∈Z∗
zmne

i(rm2+sn2)tei(
√

r mx+
√

s ny)

∣∣∣∣∣∣

2

dxdydt

=
1

iab

τ∫

0

∫

O

∣∣∣∣∣∣
∑

m,n∈Z∗
zmne

iλmn·
[ x

y
t

]∣∣∣∣∣∣

2

dxdydt,

where (λmn)m,n∈Z is the sequence of vectors defined in (8.5.3). By applying Propo-
sition 8.5.3 it follows that there exists a constant c > 0 (depending only on O and
on τ) such that

τ∫

0

‖CTtz‖2dt > c2
∑

m,n∈Z
|zmn|2 ,

so that the pair (iA0, C0) is exactly observable in any time τ > 0.

On the other hand, by using the fact that (rm2+sn2)2 > rs m2n2 for all m,n ∈ N,

it follows that
∑

m,n∈N
µ−2

mn < ∞. This fact and the exact observability in any time of

(iA0, C0) imply, by using Proposition 6.8.2, that the pair (A, C) is exactly observable
in any time τ > 0.
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8.6 Remarks and bibliographical notes on Chapter 8

General remarks. The fact that a bounded interval J is a domain associated to
the real sequence (λn)n∈N (in the sense of Definition 8.3.1) is equivalent to the fact
that, for any sequence (cn)n∈N, the moment problem

∫

J

f(t)e−iλntdt = cn ∀ n ∈ N , (8.6.1)

admits at least one solution f ∈ L2(J). We refer to [240, p. 151] for the proof of this
equivalence. Therefore the inequalities of Ingham and of Beurling from Theorem
8.1.1 and Proposition 8.4.4 can be interpreted as giving conditions for the sequence
(λn) guaranteeing the solvability of the moment problem (8.6.1). Consequently,
the exact observability of the systems considered in this chapter can be reduced
to moment problems of the form (8.6.1). This equivalence has been used in the
pioneering papers of Fattorini and Russell [63], [62] and of Russell [199], [197] for
systems governed by hyperbolic or by parabolic PDEs in one space dimension. The
method of moments has then been developed and systematically applied to systems
governed by partial differential equations in the book of Avdonin and Ivanov [9].
The direct use of Ingham type inequalities in exact observability problems has been
initiated by Haraux in [92], [94]. The book of Komornik and Loreti [131] gives the
state of the art on this method.

An interesting subject which is not tackled in this book consists in giving precise
estimates of the constants involved in Ingham-Beurling type inequalities in function
of the distribution of the frequencies and of the length of the interval. We refer
to Seidman [206], Seidman, Avdonin and Ivanov [207], Miller [170] and Tenenbaum
and Tucsnak [218] for results in this direction.

Section 8.1. Our proof of Ingham’s theorem is essentially the same as one of the
original proofs in Ingham [108]. Note that [108] contains two other proofs (based on
different choices of the kernel k) which are also very interesting.

Section 8.2. The results here are essentially contained in [197]. The multiplier
method used in the proof of Lemma 8.2.1 is inspired from Lagnese [136].

Sections 8.3 and 8.4. The presentation follows closely Kahane [126]. The proofs
of Propositions 8.4.1 and 8.4.4 are borrowed from [131]. Note that, based on ideas of
the original proof in Beurling [18], the recent paper Tenenbaum and Tucsnak [219]
provides more information on the constants involved in Proposition 8.4.4.

Section 8.5. The presentation follows closely Jaffard [123]. The main result has
been generalized to several space dimensions in Komornik [129]. The corresponding
boundary observability problem is more delicate. We refer to Ramdani, Takahashi,
Tenenbaum and Tucsnak [186] and to [219] for results in this direction. Note that
the exact observability for the Schrödinger equation with an arbitrary observation
region fails if the considered domain is a disk in R2 (see Chen, Fulling, Narcowich and
Sun [34]). For more complicated examples of exact observability for the Schrödinger
equation without the geometric optics condition we refer to Burq and Zworski [27].
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Chapter 9

Observability for parabolic
equations

9.1 Preliminary results

In this section and the following one, we shall use the notation from Section
3.4: H is a Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖.
The operator A0 : D(A0)→H is assumed to be strictly positive. The space D(A0)
endowed with the norm ‖z‖1 = ‖A0z‖ is denoted by H1 and H 1

2
is the completion

of D(A0) with respect to the norm

‖w‖ 1
2

=
√
〈A0w, w〉 ,

so that H 1
2

coincides with D(A
1
2
0 ) with the norm ‖w‖ 1

2
= ‖A

1
2
0 w‖. We have seen in

Proposition 3.8.5 that −A0 generates an exponentially stable semigroup S on H.

We assume that A−1
0 is compact so that, according to Proposition 3.2.12, there

exists an orthonormal basis (ϕk)k∈N in H consisting of eigenvectors of A0. We
denote by (λk)k∈N the corresponding sequence of strictly positive eigenvalues of A0.
We know from Proposition 3.2.12 that limk→∞ λk = ∞.

Let Y be a Hilbert space and assume that C0 ∈ L(H 1
2
, Y ). Recall from Proposition

5.1.3 that C0 is an admissible observation operator for S. In this section we give some
preliminary results concerning the observability properties of the pair (−A0, C0).

Proposition 9.1.1. Assume that C0 ∈ L(H 1
2
, Y ) is compact. Then the pair

(−A0, C0) is not exactly observable.

Proof. We denote by Ψ the extended output map of (−A0, C), see (4.3.6). Since S
is exponentially stable, according to Remark 4.3.5, we have Ψ ∈ L(H,L2([0,∞); Y )).
We compute

‖Ψϕn‖2 =

∞∫

0

‖e−λntC0ϕn‖2dt =
1

2λn

‖C0ϕn‖2 .

297
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Define C̃0 = C0A
− 1

2
0 , so that C̃0 ∈ L(H, Y ) is compact. Then our earlier computation

shows that

‖Ψϕn‖ =
1√
2λn

∥∥∥C̃0(
√

λnϕn)
∥∥∥ =

1√
2
‖C̃0ϕn‖ .

The sequence (ϕn) is weakly convergent to zero in H. Since C̃0 is compact, it

follows that C̃0ϕn → 0 in Y , see Proposition 12.2.5 in Appendix I. We have shown
that Ψϕn → 0, which implies our claim.

Remark 9.1.2. Since the embedding H 1
2
⊂ H is compact, the above result holds,

in particular, for every C0 ∈ L(H, Y ).

Example 9.1.3. Let Ω ⊂ Rn be an open bounded set with C2 boundary and put
H = H1

0(Ω). Let −A0 be the Dirichlet Laplacian on Ω, as defined in Section 3.6,
but restricted such that it is a densely defined strictly positive operator on H. Then
using Theorem 3.6.2 we can show that H 1

2
= H2(Ω) ∩ H1

0(Ω). Let Y = L2(∂Ω)

and let C0 ∈ L(H 1
2
, Y ) be the Neumann trace operator: C0f = ∂f

∂ν
. According to

Corollary 13.6.8, C0 is compact. Thus, according to the last proposition, (−A0, C0)
is not exactly observable. In terms of PDEs this means that if z is the solution of
the heat equation

∂z

∂t
(x, t) = ∆z(x, t) , x ∈ Ω, t > 0

z(x, t) = 0 , x ∈ ∂Ω, t > 0

z(x, 0) = z0(x) , x ∈ Ω ,

where z0 ∈ H2(Ω) ∩H1
0(Ω), then, denoting by ‖ · ‖ the norm on H1

0(Ω),

inf
‖z0‖=1

τ∫

0

∫

∂Ω

∣∣∣∣
∂z

∂ν

∣∣∣∣
2

dσdt = 0 ∀ τ > 0 .

The last proposition may explain why exact observability rarely holds for semi-
groups generated by negative operators. For this reason, we shall concentrate on
final state observability, as defined in Section 6.1.

We give a quite technical sufficient condition for final state observability. This
condition uses the concept of a biorthogonal sequence, as defined Section 2.5.

Lemma 9.1.4. Let τ > 0 and assume that there exists a family (Gn)n∈N which is
biorthogonal, in L2([0, τ ]; Y ), to the family

(
e−λktC0ϕk

)
k∈N. Moreover, assume that

∑

n∈N
e−2τλn‖Gn‖2

L2([0,τ ],Y ) = M2 < ∞ . (9.1.1)

Then the pair (−A0, C0) is final-state observable in time τ .

Proof. For z0 ∈ H and t ∈ [0, τ ] we set H(t) =
∑

n∈N
e−2λnτ 〈z0, ϕn〉Gn(t). Then, by

using the Cauchy-Schwarz inequality in L2([0, τ ], Y ), it follows that



From ẅ = −A0w to ż = −A0z 299

τ∫

0

‖H(t)‖2
Y dt 6

∑

k,n∈N
〈z0, ϕn〉〈z0, ϕk〉e−2τ(λn+λk)‖Gn‖L2([0,τ ],Y )‖Gk‖L2([0,τ ],Y )

=

∣∣∣∣∣
∑

n∈N
〈z0, ϕn〉‖Gn‖L2([0,τ ],Y )e

−2τλn

∣∣∣∣∣

2

.

Using the Cauchy-Schwarz inequality in l2 and (9.1.1), this becomes

τ∫

0

‖H(t)‖2
Y dt 6

(∑

n∈N
e−2τλn |〈z0, ϕn〉|2

)(∑

n∈N
e−2τλn‖Gn‖2

L2([0,τ ],Y )

)

= M2

(∑

n∈N
e−2τλn |〈z0, ϕn〉|2

)
. (9.1.2)

On the other hand, due to the assumed biorthogonality,

τ∫

0

〈C0Stz0, H(t)〉Y dt =
∑

k,n∈N
〈z0, ϕk〉〈z0, ϕn〉e−2λnτ

τ∫

0

〈e−λktC0ϕk, Gn(t)〉Y dt

=
∑

n∈N
|〈z0, ϕn〉|2e−2λnτ .

Using the above formula together with (9.1.2) and the Cauchy-Schwarz inequality,
it follows that

‖Sτz0‖2 =
∑

n∈N
|〈z0, ϕn〉|2e−2λnτ =

τ∫

0

〈C0Stz0, H(t)〉Y dt

6 M ‖C0Stz0‖L2([0,τ ],Y )

√∑

n∈N
|〈z0, ϕn〉|2e−2λnτ = M ‖C0Stz0‖L2([0,τ ],Y )‖Sτz0‖ ,

which implies the conclusion of the lemma.

9.2 From ẅ = −A0w to ż = −A0z

We continue to use the notation introduced in the previous section.

Our aim is to show that if a system is described by the second order equation
ẅ = −A0w and by y = C0ẇ (y being the output signal) and if this system is exactly
observable, then the system described by the first order equation ż = −A0z, with
y = C0z is final-state observable. Such results imply the final-state observability
of systems governed by the heat or related parabolic equations, in arbitrarily small
time, by using results available for systems governed by the wave equation.
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We shall also use some notation from Section 6.7. More precisely, we set X =
H 1

2
×H, which is a Hilbert space with the scalar product

〈[
w1

v1

]
,

[
w2

v2

]〉

X

= 〈A
1
2
0 w1, A

1
2
0 w2〉+ 〈v1, v2〉 ,

we define a dense subspace of X by D(A) = H1 × H 1
2

and we consider the skew-

adjoint operator A : D(A)→X defined by

A =

[
0 I

−A0 0

]
. (9.2.1)

We denote by T the unitary group generated by A on X and let C ∈ L(H1×H 1
2
, Y )

be defined by
C =

[
0 C0

]
. (9.2.2)

For k ∈ N we set µk =
√

λk, ϕ−k = − ϕk and µ−k = −µk. With the above
assumptions and notation we know from Proposition 3.7.7 that A is diagonalizable,
with the eigenvalues (iµk)k∈Z∗ corresponding to the orthonormal basis of eigenvectors

φk =
1√
2

[
1

iµk
ϕk

ϕk

]
∀ k ∈ Z∗ . (9.2.3)

In order to show that the exact observability of (A,C) implies the final-state
observability of (−A0, C0), we give a necessary condition for the exact observability
of (A,C), which will be combined with the sufficient condition for the final-state
observability of the pair (−A0, C0) given in Lemma 9.1.4.

Lemma 9.2.1. Assume that the pair (A,C) is exactly observable in time τ0. Then
there exists a bounded sequence (Fn)n∈Z∗ in L2([0, τ0]; Y ) such that (Fn)n∈Z∗ is
biorthogonal, in L2([0, τ0]; Y ), to the sequence (eiµktC0ϕk)k∈Z∗.

Proof. Let Ψτ0 ∈ L(X,L2([0,∞); Y )) be the output operator associated to (A,C),
which has been introduced in (4.3.1). By definition, the exact observability in time
τ0 of (A,C) means that there exists m > 0 such that ‖Ψτ0z0‖ > m‖z0‖ for every
z0 ∈ X. It is easy to check that

(Ψτ0z0)(t) =
∑

n∈Z∗
〈z0, φn〉eiµntCφn ∀ z0 ∈ D(A) ∀ t ∈ [0, τ0] .

The above formula and the exact observability of (A,C) implies that the sequence
(eiµktCφk)k∈Z∗ satisfies the left inequality in (2.5.5). The right inequality in (2.5.5)
holds due to the admissibility of C. According to Proposition 2.5.3, (eiµktCφk)k∈Z∗
is a Riesz basis in its closed linear span in L2([0, τ0]; Y ). By Definition 2.5.1 the fam-
ily (eiµktCφk)k∈Z∗ admits a bounded biorthogonal family (F̃n)n∈Z∗ in L2([0, τ0]; Y ).
Finally, by using (9.2.3) and (9.2.2) it follows that the sequence (Fn)n∈Z∗ defined by
Fn = 1√

2
F̃n has the required properties.
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Theorem 9.2.2. Assume that the pair (A, C) is exactly observable. Moreover, as-
sume that the sequence of eigenvalues (λk)k∈N of A0 satisfies

∑
m>1

e−βλm < ∞ ∀ β > 0 . (9.2.4)

Then the pair (−A0, C0) is final-state observable in any time τ > 0.

In order to prove the above theorem we need a technical result asserting the
existence of an appropriate entire function with fast decay on the real line. This
will be a multiple of the Fourier transform of the C∞ function defined by

σν(t) =

{
e
− ν

1−t2 if |t| < 1,
0 if |t| > 1,

(9.2.5)

where ν is a positive constant. By elementary considerations, for every η ∈ (0, 1)
we have 1∫

−1

σν(t)dt > 2ηe
− ν

1−η2 .

Selecting η =
1√

ν + 1
implies the left inequality in

2e−ν−1

√
ν + 1

6
1∫

−1

σν(t)dt 6 2e−ν , (9.2.6)

while the right inequality can be obtained by elementary considerations.

The following result furnishes the required fast decay property.

Lemma 9.2.3. Let β > 0, δ > 0, and set ν = (π + δ)2/β. The function σν being de-

fined as in (9.2.5), put Cν =
(∫ 1

−1
σν(t)dt

)−1

and denote by Hβ,δ the entire function

defined by

Hβ,δ(z) = Cν

1∫

−1

σν(t)e
−iβtz dt. (9.2.7)

Then we have
Hβ,δ(0) = 1 , (9.2.8)

Hβ,δ(ix) > eβ|x|/(2
√

ν+1)

11
√

ν + 1
(x ∈ R) (9.2.9)

|Hβ,δ(z)| 6 eβ|y| (z = x + iy, x, y ∈ R) , (9.2.10)

|Hβ,δ(x)| 6 C
√

ν + 1 e3ν/4−(π+δ/2)
√
|x| (x ∈ R) , (9.2.11)

for some constant C > 0 depending only on δ.
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Proof. Conditions (9.2.8) and (9.2.10) follow from the definition of Cν .

To show (9.2.9), we may assume x > 0. We first note that, from (9.2.6), we have

1

2
eν 6 Cν 6 3

2

√
ν + 1 eν . (9.2.12)

Then, since σν(t) > e−ν−1 for 1
2
η 6 t 6 η with η := 1/

√
ν + 1, we have (as required)

Hβ,δ(ix) > 1

2
Cνηe−ν−1+βxη/2 > 1

11
ηeβηx/2 .

Thus, it only remains to establish condition (9.2.11). Since Hβ,δ is even, we
consider only the case x > 0. Since all the derivatives of σν vanish for x = −1 and
x = 1, after several integrations by parts we get

|Hβ,δ(x)| 6 Cν‖σ(j)
ν ‖L∞(R)

(βx)j
(x > 0, j ∈ N). (9.2.13)

For t ∈ (−1, 1) we set % = 1− t and z = t + %eiϑ, with ϑ ∈ (−π, π]. We have

Re
2

1− z2
= Re

1

1− z
+ Re

1

1 + z
=

1

2%
+

1− %(sin ϑ/2)2

2− 2%(2− %)(sin ϑ/2)2
.

Since the last term is an increasing function of (sin ϑ/2)2, we obtain

Re
2

1− z2
> 1

2%
+

1

2
(|z − t| = %) .

Therefore
|σν(z)| 6 e−ν/4%−ν/4 (|z − t| = %). (9.2.14)

Applying Cauchy’s integral formula, we obtain that

|σ(j)
ν (t)| 6 e−ν/4 sup

%>0

j!e−ν/4%

%j
(j ∈ N, t ∈ [−1, 1]) ,

which, in view of the elementary inequality j! > jje−j (j > 1), yields

|σ(j)
ν (t)| 6 e−ν/4

(
2jj!

)2

νj
(j ∈ N, t ∈ [−1, 1]) . (9.2.15)

From this, (9.2.12), (9.2.13) and the fact that Hβ,δ is even, we get that

|Hβ,δ(x)| 6 3
2

√
ν + 1 e3ν/4

(
2jj!

)2

(βνx)j
(x > 0, j ∈ N) .

Selecting j = 0 when 0 6 x 6 1 and j =
⌊

1
2

√
βνx

⌋
otherwise, we readily check

that (9.2.11) holds as required (recall that bxc stands for the integer part of the real
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number x). Indeed, we deduce from the above that there exist positive constants
C0, C1, C2 and C (depending only on δ) such that for every x > 1 we have,

|Hβ,δ(x)|√
ν + 1 e3ν/4

6 C0

(
2jj!

)2

(2j)2j
6 C1e

−2jj

6 C2e
−(π+δ)

√
x
√

x 6 Ce−(π+δ/2)
√

x .

This concludes the proof.

We are now in a position to prove the main result in this section.

Proof of Theorem 9.2.2. Let (Fn)n∈Z∗ be the sequence constructed in Lemma

9.2.1. For m ∈ N we consider the function Υ̃m defined by

Υ̃m(z) =

τ0∫

0

e−itzFm(t)dt ∀ z ∈ C .

It can be seen easily that Υ̃m is of exponential type at most τ0. More precisely, for
every m ∈ Z∗,

‖Υ̃m(z)‖Y 6 M
√

τ0e
τ0|z| ∀ z ∈ C , (9.2.16)

where M = sup
n∈Z∗

‖Fn‖L2([0,τ0],Y ). Moreover, by using the fact that the families

(Fn)n∈Z∗ and (eiµktC0ϕk)k∈Z∗ are biorthogonal in L2([0, τ0], Y ), we have that

〈
C0ϕk, Υ̃m(µk)

〉
Y

=

τ0∫

0

〈
C0ϕk, e

−iµktFm(t)
〉

Y
dt

=

τ0∫

0

〈
eiµktC0ϕk, Fm(t)

〉
Y

dt = δkm ∀ k, m ∈ N , (9.2.17)

〈
C0ϕk, Υ̃m(−µk)

〉
Y

=

τ0∫

0

〈
C0ϕk, e

iµktFm(t)
〉

Y
dt =

τ0∫

0

〈
e−iµktC0ϕk, Fm(t)

〉
Y

dt

=

τ0∫

0

〈
eiµ−ktC0ϕ−k, Fm(t)

〉
Y

dt = 0 ∀ k, m ∈ N . (9.2.18)

For each m ∈ N the function z 7→ Υ̃m(z) + Υ̃m(−z) is even. Therefore there exists
a family of entire functions (Υm)m∈N such that, for every m ∈ N,

Υm(−iz2) = Υ̃m(z) + Υ̃m(−z) ∀ z ∈ C .

The above relation, combined with (9.2.16), (9.2.17) and (9.2.18) implies that

‖Υm(z)‖Y 6 2M
√

τ0e
τ0
√
|z| ∀ z ∈ C , (9.2.19)
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〈C0ϕk, Υm(−iλk)〉Y = δkm ∀ k, m ∈ N . (9.2.20)

For δ > max(0, 2(τ0 − π)) and β ∈ (0, τ
2
) we consider the function Hβ,δ introduced

in Lemma 9.2.3 and we define the family of functions (Qm)m∈N by

Qm(z) =
Hβ(z/2)

Hβ(iλm/2)
Υm(z) ∀ m ∈ N . (9.2.21)

Relations (9.2.20) and (9.2.21) imply that

〈C0ϕk, Qm(−iλk)〉Y = δkm ∀ k, m ∈ N . (9.2.22)

On the other hand, by using (9.2.9), (9.2.10) and (9.2.19) it follows that the
function Qm is, for each m ∈ N, exponential of type τ

2
and by combining (9.2.11)

and (9.2.19) it follows that

Qm ∈ L1(R; Y ) ∩ L2(R; Y ) ∀ m ∈ N .

Moreover, by using (9.2.4), (9.2.9), (9.2.10) and (9.2.11), it is easy to check that
∑

m∈N
‖Qm‖2

L2(R;Y ) < ∞ . (9.2.23)

By the Paley-Wiener theorem on entire functions (Theorem 12.4.3 from Appendix
I), Qm is, for each m ∈ N, the Fourier transform of a function gm ∈ L2(R) with
supp gm ⊂ [− τ

2
, τ

2

]
, i.e.,

Qm(z) =

τ
2∫

− τ
2

gm(t)e−itz dt (z ∈ C) .

Now we consider the family of functions (Gm)m∈N defined by

Gm(t) = e
λmτ

2 gm

(
t− τ

2

)
(t ∈ R) . (9.2.24)

Then
τ∫

0

〈
e−λktC0ϕk, Gm(t)

〉
Y

dt =

τ
2∫

− τ
2

〈
e−λk(s+ τ

2
)C0ϕk, Gm(s +

τ

2
)
〉

Y
ds

= e(λm−λk) τ
2

τ
2∫

− τ
2

〈
e−λksC0ϕk, gm(s)

〉
Y

ds

= e(λm−λk) τ
2

〈
C0ϕk,

τ
2∫

− τ
2

e−λksgm(s)ds

〉

Y

= e(λm−λk) τ
2 〈C0ϕk, Qm(−iλk)〉Y .

The above formula and (9.2.22) imply that the family (Gm)m∈N is biorthogonal, in
L2([0, τ ], Y ), to the family

(
e−λktC0ϕk

)
k∈N. Moreover, by combining (9.2.23) and

(9.2.24) it follows that the condition (9.1.1) holds. By applying Lemma 9.1.4 we get
the conclusion of the theorem.
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Example 9.2.4. Let H = L2[0, π] and let A0 be the positive operator from Example
3.4.12, where we have seen that H 1

2
= H1

R(0, π). Let C0 be the observation operator
defined by

C0f = f(0) ∀ f ∈ H 1
2
.

Since H1(0, π) is continuously embedded in C[0, π], C0 is well-defined and it is in
L(H 1

2
,C). Let X = H1

R(0, π)× L2[0, π] and let A : D(A) → X be defined by

D(A) =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
×H1

R(0, π) , A =

[
0 I

−A0 0

]
.

We have seen in Proposition 6.2.5 that the pair (A,C), with C =
[
0 C0

]
, is exactly

observable. According to Theorem 9.2.2 it follows that the pair (−A0, C0) (with
state space H) is final state observable in any time τ > 0.

9.3 Final state observability with geometric conditions

In this section we apply the results from the previous section and from Chapter
7 to several systems governed by parabolic PDEs. We use the notation H, A0, H1,
H1, X, X1, A from the previous section, but H and A0 will be chosen in several
manners in order to tackle the variety of examples considered. We denote by Ω an
open bounded set in Rn which either has a C2 boundary or it is rectangular.

First we consider a heat equation with locally distributed observation.

Proposition 9.3.1. Let H = L2(Ω) and let −A0 be the Dirichlet Laplacian on Ω,
introduced in Section 3.6. Let O ⊂ Ω be an open set satisfying the assumptions in
Theorem 7.4.1, let Y = L2(O) and let C0 ∈ L(H,Y ) be defined by

C0f = f |O .

Then the pair (−A0, C0) is final state observable in any time τ > 0.

Proof. We know from Theorem 7.4.1 that (A,C) with C =
[
0 C0

]
is exactly

observable. Moreover, from Proposition 3.6.9 it follows that the eigenvalues (λk) of
A0 satisfy (9.2.4). Therefore, the conclusion follows by applying Theorem 9.2.2.

Remark 9.3.2. In terms of PDEs the above proposition says that if z is the solution
of the heat equation

∂z

∂t
(x, t) = ∆z(x, t) , x ∈ Ω, t > 0 (9.3.1)

z(x, t) = 0 , x ∈ ∂Ω, t > 0 (9.3.2)

z(·, 0) = z0(x) , x ∈ Ω , (9.3.3)

where z0 ∈ H2(Ω) ∩H1
0(Ω), then

inf
‖z(τ)‖L2(Ω)=1

τ∫

0

∫

O

|z(x, t)|2dxdt > 0 ∀ τ > 0 .
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Our next example concerns the heat equation with boundary observation.

Proposition 9.3.3. Let H = H1
0(Ω) and let −A0 be the Dirichlet Laplacian on Ω,

but restricted such that it is a densely defined strictly positive operator on H. Let
Γ ⊂ ∂Ω be an open set satisfying the assumptions in Theorem 7.2.4, let Y = L2(Γ)
and let C1 ∈ L(H 1

2
, Y ) be defined by

C1f =
∂f

∂ν
|Γ .

Then the pair (−A0, C1) is final-state observable in any time τ > 0.

Proof. We consider the operator A defined in (9.2.1), so that it is a densely defined
skew-adjoint operator on H 1

2
×H. Consider the initial and boundary value problem

∂2η

∂t2
−∆η = 0 in Ω× (0,∞) ,

η = 0 on ∂Ω× (0,∞) ,

η(x, 0) = f(x),
∂η

∂t
(x, 0) = g(x) for x ∈ Ω ,

where
[

f
g

] ∈ D(A2). According to Theorem 7.2.4 and Remark 7.2.6, for τ > 0 large
enough, there exists a constant kτ > 0 such that

τ∫

0

∫

Γ

∣∣∣∣
∂η̇

∂ν

∣∣∣∣
2

dσdt > k2
τ

(‖∆f‖2 + ‖∇g‖2
) ∀ [

f
g

] ∈ D(A2) ,

where ‖ · ‖ stands for the norm in L2(Ω). The above estimate means that the pair
(A,C), with C =

[
0 C1

]
, state space H 1

2
× H and output space Y = L2(Γ), is

exactly observable. The conclusion follows now by applying Theorem 9.2.2.

Remark 9.3.4. In terms of PDEs the above proposition says that if z is the solution
of the heat equation (9.3.1)-(9.3.3), with z0 ∈ H2(Ω) ∩H1

0(Ω), then

inf
‖z(τ)‖H1

0(Ω)
=1

τ∫

0

∫

Γ

∣∣∣∣
∂z

∂ν
(x, t)

∣∣∣∣
2

dσdt > 0 ∀ τ > 0 .

Remark 9.3.5. Recall from the comments on Section 7.2 in Section 7.7 that the
assumptions in Theorems 7.4.1 and 7.2.4 can be replaced by the weaker geometric
optics condition of Bardos, Lebeau and Rauch. Therefore the conclusions in propo-
sitions 9.3.1 and 9.3.3 still hold if the assumptions on O and Γ are replaced by the
geometric optics condition.

The example in the proposition below concerns a one-dimensional heat equation
with variable coefficients and boundary observation.
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Proposition 9.3.6. Denote J = (0, 1) and let a, b : J → R be two functions such
that a ∈ C2(J), b ∈ H1(J) and a is bounded from below (i.e., there exists m > 0
such that a(x) > m > 0 for all x ∈ J). We denote by H the space H1

0(J) and we
consider the Sturm-Liouville operator A0 : D(A0) → H which has been introduced
in Section 8.2, but restricted such that it is a densely defined self-adjoint operator
on H. Let Y = C and C1 ∈ L(H 1

2
, Y ) be defined by

C1z =
dz

dx
(0) ∀ z ∈ H 1

2
.

Then the pair (−A0, C1) is final state observable in any time τ > 0.

Proof. In this proof A defined in (9.2.1) is restricted such that it is a densely
defined strictly positive operator on H 1

2
×H.

Consider the initial and boundary value problem:




∂2w

∂t2
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
− b(x)w(x, t), x ∈ J, t > 0,

w(0, t) = 0, w(π, t) = 0, t ∈ [0,∞),

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x), x ∈ J,

where
[

f
g

] ∈ D(A2). According to Remark 8.2.3, for τ > 0 large enough there exists
kτ > 0 such that

τ∫

0

∣∣∣∣
∂ẇ

∂x
(0, t)

∣∣∣∣
2

dt > k2
τ

(
‖f‖2

H2(Ω) + ‖g‖2
H1(Ω)

)
∀ [

f
g

] ∈ D(A2) . (9.3.4)

The above estimate means that the pair (A, C), with C =
[
0 C1

]
, state space

H 1
2
×H and output space Y = C, is exactly observable. Since, by Proposition 3.5.5,

the eigenvalues (λk) of A0 satisfy (9.2.4), the conclusion follows now by applying
Theorem 9.2.2.

Remark 9.3.7. In terms of PDEs the above proposition says that if z is the solution
of the variable coefficients heat equation





∂z

∂t
(x, t) =

∂

∂x

(
a(x)

∂z

∂x
(x, t)

)
− b(x)z(x, t), x ∈ J, t > 0,

z(0, t) = 0, w(1, t) = 0, t ∈ [0,∞),

z(x, 0) = f(x), x ∈ J.

,

with f ∈ H2(J) ∩H1
0(J), then

inf
‖z(τ)‖H1

0(J)
=1

τ∫

0

∣∣∣∣
∂z

∂x
(0, t)

∣∣∣∣
2

dt > 0 ∀ τ > 0 .
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We consider a system corresponding to the linearized Cahn-Hilliard equation.

Proposition 9.3.8. Let H = L2(Ω) and let −A0 be the Dirichlet Laplacian on Ω,
introduced in Section 3.6. Let O ⊂ Ω be an open set, let Y = H and let C0 ∈ L(H)
be defined by

C0f = fχO ,

where χO is the characteristic function of O. Assume that one of the following
conditions holds:

1. O satisfies the assumptions in Theorem 7.4.1.

2. Ω is a rectangle in R2.

Then the pair (−A2
0, C0) is final-state observable in any time τ > 0.

Proof. Consider the space X and the operator A introduced in Section 7.5, i.e.
X = H1 ×H, D(A) = H2 ×H1 and A : D(A)→X defined by

A =

[
0 I

−A2
0 0

]
.

Let C ∈ L(X1, Y ) be defined by C =
[
0 C0

]
. Then the pair (A, C) is exactly

observable in any time τ > 0. Indeed, this has been shown in Proposition 7.5.7 if O
satisfies the assumptions in Theorem 7.4.1 and in Theorem 8.5.1 if Ω is a rectangle
in R2. We can now conclude by applying Theorem 9.2.2.

Remark 9.3.9. In terms of PDEs the above proposition says that if z is the solution
of the linearized Cahn-Hilliard equation

∂z

∂t
(x, t) + ∆2z(x, t) = 0 , x ∈ Ω, t > 0

z(x, t) = ∆(x, t) = 0 , x ∈ ∂Ω, t > 0

z(·, 0) = z0(x) , x ∈ Ω ,

where z0 ∈ H2(Ω) ∩H1
0(Ω), then

inf
‖z(τ)‖L2(Ω)=1

τ∫

0

∫

O

|z(x, t)|2dxdt > 0 ∀ τ > 0 .

9.4 A global Carleman estimate for the heat operator

The aim of this section is to provide a proof of a quite technical result, called the
global Carleman estimate for the heat equation. This estimate will be the main tool
in the proof of the final-state observability for arbitrary observation regions, which
will be proved in the next section.

Throughout this section Ω ⊂ Rn is an open bounded and connected set with
boundary ∂Ω of class C4 or Ω is a rectangular domain, and T > 0. The main result
of this section is the following global Carleman estimate for the heat operator ∂

∂t
−∆.
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Theorem 9.4.1. Let O be an open non-empty subset of Ω. Then there exist a
positive function α ∈ C4(clos Ω) and the constants C0 > 0, s0 > 0, depending only
on Ω, O and T such that for all

ϕ ∈ C
(
[0, T ];H2(Ω) ∩H1

0(Ω)
) ∩ C1

(
[0, T ]; L2(Ω)

)
(9.4.1)

and all s > s0 we have:

T∫

0

∫

Ω

e
−2sα(x)
t(T−t)

[
s

t(T − t)
|∇ϕ|2 +

s3

t3(T − t)3
|ϕ|2

]
dxdt

6 C0




T∫

0

∫

Ω

e
−2sα(x)
t(T−t)

∣∣∣∣
∂ϕ

∂t
−∆ϕ

∣∣∣∣
2

dxdt + s3

T∫

0

∫

O

e−
2sα

t(T−t)

t3(T − t)3
|ϕ|2dxdt


 . (9.4.2)

Remark 9.4.2. The condition that ∂Ω is of class C4 can be weakened to ∂Ω of
class C2, see the comments in Section 9.6.

The function α in the above theorem is constructed by using the theorem below.

Theorem 9.4.3. Let O be an open subset of Ω and assume that ∂Ω is of class Cm,
with m > 2. Then there exists a function η0 ∈ Cm(clos Ω) such that

• η0(x) > 0 for all x ∈ Ω.

• η0(x) = 0 for all x ∈ ∂Ω.

• |∇η0(x)| > 0 for all x ∈ clos (Ω \ O).

If Ω is a rectangular domain then there exists a function η0 ∈ C∞(clos Ω) satisfying
the three above conditions.

The proof of the above lemma is obvious in the case of a rectangular domain. For
an arbitray Ω with boundary of class Cm, with m > 2, the proof is more complicated,
and it is given in Chapter 14.

We introduce now some notation. We set η(x) = η0(x) + K0 and we define the
function

α(x) = eλK1 − eλη(x) ∀ x ∈ clos Ω , (9.4.3)

where
K0 = 4 max

x∈clos Ω
η0(x) , K1 = 6 max

x∈clos Ω
η0(x) , (9.4.4)

and λ is a constant which will be specified later. Moreover, for every x ∈ clos Ω and
every t ∈ (0, T ) we set

β(x, t) =
α(x)

t(T − t)
, ρ(x, t) = eβ(x,t) . (9.4.5)

Several useful properties of the function β are summarized in the following lemma.
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Lemma 9.4.4. Assume that K0 and K1 are given by (9.4.4). Then

∣∣∣∣
∂β

∂t
(x, t)

∣∣∣∣ 6 Te2λη(x)

t2(T − t)2
∀ (x, t) ∈ Ω× (0, T ) , (9.4.6)

∣∣∣∣
∂2β

∂t2
(x, t)

∣∣∣∣ 6 2T 2λ2e2λη(x)

t3(T − t)3
∀ (x, t) ∈ Ω× (0, T ) . (9.4.7)

Moreover, there exists C1 > 0 (depending on Ω and on O) such that, for every
x ∈ clos Ω, λ > 1 and every t ∈ (0, T ) we have

|∇β(x, t)| 6 C1
λeλη(x)

t(T − t)
∀ (x, t) ∈ Ω× (0, T ) , (9.4.8)

|∆β(x, t)| 6 C1
λ2eλη(x)

t(T − t)
∀ (x, t) ∈ Ω× (0, T ) , (9.4.9)

∣∣∣∣∇
(

∂β

∂t
(x, t)

)
· ∇β(x, t)

∣∣∣∣ 6 C1Tλ2e3λη(x)

t3(T − t)3
∀ (x, t) ∈ Ω× (0, T ) , (9.4.10)

∣∣∣∣
∂β

∂t
(x, t)(∆β)(x, t)

∣∣∣∣ 6 C1Tλ2e3λη(x)

t3(T − t)3
∀ (x, t) ∈ Ω× (0, T ) . (9.4.11)

Proof. We first remark that, according to (9.4.4) and to the fact that K1 >
max

x∈clos Ω
η, we have

2K1 = 3K0 6 3η(x) ∀ x ∈ clos Ω . (9.4.12)

The estimate (9.4.6) follows from

∂β

∂t
=

2t− T

t2(T − t)2

(
eλK1 − eλη

)
, (9.4.13)

and from the fact that 2η(x) > K1 for every x ∈ Ω (this follows from (9.4.12)).

In order to prove (9.4.7) we note that

∣∣∣∣
∂2β

∂t2
(x, t)

∣∣∣∣ =
2 |T 2 − 3Tt + 3t2|

t3(T − t)3

(
eλK1 − eλη(x)

)
,

which, combined to (9.4.4) and (9.4.12) implies (9.4.7).

Inequality (9.4.8) follows from

∇β = − λeλη

t(T − t)
∇η . (9.4.14)

From (9.4.14) it follows that

∆β = − λeλη

t(T − t)
∆η − λ2eλη

t(T − t)
|∇η|2 , (9.4.15)
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which yields (9.4.9). Moreover, by using (9.4.13) or (9.4.14) we obtain that

∣∣∣∣∇
(

∂β

∂t

)
· ∇β

∣∣∣∣ =
|T − 2t|λ2e2λη

t3(T − t)3
|∇η|2 ,

which implies (9.4.10).

Finally, inequality (9.4.11) is an obvious consequence of (9.4.6) and (9.4.9).

We define the functions

fs = ρ−s

(
∂ϕ

∂t
−∆ϕ

)
, (9.4.16)

and
ψ = ρ−sϕ, (9.4.17)

with s > 0 and ρ defined in (9.4.5).

The main ingredient of the proof of Theorem 9.4.1 is the following lemma.

Lemma 9.4.5. With the above notation, there exist the constants s0, λ0 > 0, K > 0,
depending only on Ω, O and T such that the inequality

T∫

0

∫

Ω

(
t(T − t)

s

(∣∣∣∣
∂ψ

∂t

∣∣∣∣
2

+ |∆ψ|2
)

+
s

t(T − t)
|∇ψ|2 +

s3

t3(T − t)3
|ψ|2

)
dxdt

6 K

T∫

0


‖fs‖2

L2(Ω) +

∫

O

s3

t3(T − t)3
|ψ|2dx


 dt. (9.4.18)

holds for every ϕ satisfying (9.4.1) and for every s > s0 and λ > λ0.

Proof. The proof is divided into four steps.

First step. It can be easily checked that

∂

∂t
(esβ) = s

∂β

∂t
esβ , (9.4.19)

∇(esβ) = sesβ∇β, ∆(esβ) = sesβ∆β + s2esβ|∇β|2 . (9.4.20)

Notice that

lim
t→0+

ψ(x, t) = lim
t→T−

ψ(x, t)

= lim
t→0+

∂ψ

∂t
(x, t) = lim

t→T−
∂ψ

∂t
(x, t) = 0 ∀ x ∈ Ω . (9.4.21)

By (9.4.19), (9.4.20) and the fact, following from (9.4.16) and (9.4.17), that

ρ−s

[
∂

∂t
(ρsψ)−∆(ρsψ)

]
= fs ,
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we obtain that
M1ψ + M2ψ = gs (9.4.22)

where we have denoted

M1ψ =
∂ψ

∂t
− 2s∇β · ∇ψ, (9.4.23)

M2ψ = s
∂β

∂t
ψ −∆ψ − s2|∇β|2ψ, (9.4.24)

and
gs = fs + s(∆β)ψ. (9.4.25)

These relations imply (using the notation ‖ · ‖ and 〈·, ·〉 for the norm and the inner
product in L2(Ω)) that

T∫

0

(‖M1ψ‖2 + ‖M2ψ‖2 + 2〈M1ψ, M2ψ〉
)

dt =

T∫

0

‖gs‖2dt. (9.4.26)

Second step. We estimate the crossed term 2〈M1ψ, M2ψ〉L2(Ω×(0,T )) in (9.4.26).
Relations (9.4.23) and (9.4.24) imply that

2〈M1ψ,M2ψ〉L2(Ω×(0,T )) = I1 + I2 + I3 , (9.4.27)

where

I1 = 2

T∫

0

∫

Ω

(
s
∂β

∂t
ψ −∆ψ − s2|∇β|2ψ

)
∂ψ

∂t
dxdt, (9.4.28)

I2 = 4s

T∫

0

∫

Ω

(∇β · ∇ψ) ∆ψdxdt, (9.4.29)

and

I3 = 4s

T∫

0

∫

Ω

(
s2|∇β|2ψ − s

∂β

∂t
ψ

)
(∇β · ∇ψ) dxdt. (9.4.30)

Integrating by parts with respect to x in (9.4.28) and using the fact that ψ = 0 on
∂Ω× (0, T ), we obtain that

I1 =

T∫

0

∫

Ω

[
∂

∂t

(|∇ψ|2)−
(

s2|∇β|2 − s
∂β

∂t

)
∂

∂t

(|ψ|2)
]

dxdt.

By integrating the above relation by parts with respect to t and by using (9.4.21)
we get

I1 =

T∫

0

∫

Ω

{
2s2

[
∇

(
∂β

∂t

)]
· ∇β − s

∂2β

∂t2

}
|ψ|2dxdt. (9.4.31)
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Integrating by parts in (9.4.29) we obtain that

I2 = 4s

T∫

0

∫

∂Ω

(∇β · ∇ψ)
∂ψ

∂ν
dσdt− 4s

T∫

0

∫

Ω

∇ (∇β · ∇ψ) · ∇ψdxdt. (9.4.32)

Since β and ψ are, for each t ∈ (0, T ), constant with respect to x ∈ ∂Ω, the first
term in the right hand side of the above relation can be written as

4s

T∫

0

∫

∂Ω

(∇β · ∇ψ)
∂ψ

∂ν
dσdt = 4s

T∫

0

∫

∂Ω

∂β

∂ν

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2

dσdt. (9.4.33)

The last term in the right-hand side of (9.4.32) can be written as

4s

T∫

0

∫

Ω

∇ (∇β · ∇ψ) · ∇ψdxdt = 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt

+4s
n∑

i,j=1

T∫

0

∫

Ω

∂β

∂xi

∂2ψ

∂xj∂xi

∂ψ

∂xj

dxdt.

By integrating by parts with respect to x in the last term on the right-hand side,
the above relation becomes

4s

T∫

0

∫

Ω

∇ (∇β · ∇ψ) · ∇ψdxdt = 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt

+2s

T∫

0

∫

∂Ω

∂β

∂ν

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2

dσdt− 2s

T∫

0

∫

Ω

(∆β)|∇ψ|2dxdt.

The above relation, combined to (9.4.32) and (9.4.33), gives

I2 = 2s

T∫

0

∫

∂Ω

∂β

∂ν

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2

dσdt− 4s

T∫

0

∫

Ω

n∑
i,j=1

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt

+ 2s

T∫

0

∫

Ω

(∆β)|∇ψ|2dxdt. (9.4.34)

In order to transform I3 (which was defined in (9.4.30)) we notice that by integrating
by parts we get

4s3

T∫

0

∫

Ω

|∇β|2ψ (∇β · ∇ψ) dxdt = − 2s3

T∫

0

∫

Ω

|∇β|2|ψ|2∆βdxdt

− 4s3

n∑
i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂β

∂xi

∂β

∂xj

|ψ|2dxdt,
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4s2

T∫

0

∫

Ω

∂β

∂t
ψ (∇β · ∇ψ) dxdt = − 2s2

T∫

0

∫

Ω

∇
(

∂β

∂t

)
· (|ψ|2∇β)dxdt

−2s2

T∫

0

∫

Ω

∂β

∂t
(∆β)|ψ|2dxdt.

The two formulas above and (9.4.30) imply that

I3 = − 2s3

T∫

0

∫

Ω

|∇β|2|ψ|2∆βdxdt− 4s3

n∑
i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂β

∂xi

∂β

∂xj

|ψ|2dxdt

+ 2s2

T∫

0

∫

Ω

∇
(

∂β

∂t

)
· (|ψ|2∇β)dxdt + 2s2

T∫

0

∫

Ω

∂β

∂t
(∆β)|ψ|2dxdt. (9.4.35)

Relations (9.4.27), (9.4.31), (9.4.34) and (9.4.35) imply that

2〈M1ψ,M2ψ〉L2(Ω×(0,T )) = J1 + J2 + J3 − 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt

+ 2

T∫

0

∫

Ω

(
s(∆β)|∇ψ|2 − s3(∆β)|∇β|2|ψ|2) dxdt, (9.4.36)

where

J1 = − 4s3

n∑
i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂β

∂xi

∂β

∂xj

|ψ|2dxdt, (9.4.37)

J2 = 2s

T∫

0

∫

∂Ω

∂β

∂ν

∣∣∣∣
∂ψ

∂ν

∣∣∣∣
2

dσdt, (9.4.38)

J3 = 2s2

T∫

0

∫

Ω

{
2

[
∇

(
∂β

∂t

)]
· ∇β +

∂β

∂t
∆β

}
|ψ|2dxdt− s

T∫

0

∫

Ω

∂2β

∂t2
|ψ|2dxdt.

(9.4.39)
By setting

c0 = 2 min
x∈clos (Ω\O)

n∑
i,j=1

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2

, (9.4.40)

and using the fact that

t3(T −t)3

n∑
i,j=1

∂2β

∂xi∂xj

∂β

∂xi

∂β

∂xj

= −λ3e3λη

n∑
i,j

∂2η

∂xi∂xj

∂η

∂xi

∂η

∂xj

−λ4e3λη

n∑
i,j=1

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2
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together with (9.4.37), we obtain that

J1 = 4s3λ3




n∑
i,j=1

T∫

0

∫

Ω

(
∂2η

∂xi∂xj

∂η

∂xi

∂η

∂xj

+
λc0

2

)
e3λη|ψ|2

t3(T − t)3
dxdt

−
T∫

0

λc0

2

∫

Ω

e3λη|ψ|2
t3(T − t)3

dxdt


 + 4s3λ4

n∑
i,j=1

T∫

0

∫

Ω

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2

e3λη|ψ|2
t3(T − t)3

dxdt.

The above relation implies, if we assume that λ satisfies

λ > 4

c0

max
x∈clos Ω

n∑
i,j=1

∣∣∣∣
∂2η

∂xi∂xj

∂η

∂xi

∂η

∂xj

∣∣∣∣ , (9.4.41)

that

J1 > c0s
3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

+ 4s3λ4

T∫

0

∫

Ω

[
n∑

i,j=1

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2

− c0

2

]
e3λη|ψ|2

t3(T − t)3
dxdt. (9.4.42)

By using (9.4.40) it follows that, for every t ∈ (0, T ), we have

∫

Ω

[
n∑

i,j=1

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2

− c0

2

]
e3λη|ψ|2dx >

∫

Ω\O

[
n∑

i,j=1

∣∣∣∣
∂η

∂xi

∂η

∂xj

∣∣∣∣
2

− c0

2

]
e3λη|ψ|2dx

− c0

2

∫

O

e3λη|ψ|2dx > − c0

2

∫

O

e3λη|ψ|2dx.

The above inequality and (9.4.42) yield that

J1 > c0s
3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt− 2c0s
3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt. (9.4.43)

On the other hand, the facts that η = 0 on ∂Ω and η > 0 in Ω imply that

∂α

∂ν
(x) = − λ

∂η

∂ν
(x)eλη > 0 ∀ x ∈ ∂Ω ,

so that, by using (9.4.38), it follows that

J2 > 0 . (9.4.44)
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The definition (9.4.39) of J3, together with (9.4.10)-(9.4.7) implies that there exists
a constant C2 > 0 (depending only on Ω, O and T ) such that for every λ, s > 1 we
have

|J3| 6 C2s
2λ2

T∫

0

∫

Ω

e3λη(x)

t3(T − t)3
|ψ|2dxdt. (9.4.45)

Relation (9.4.36), combined to (9.4.41), (9.4.43), (9.4.44) and (9.4.45), implies that
there exists a constant C3 > 0, depending only on Ω, O and T , such that

2〈M1ψ,M2ψ〉L2(Ω×(0,T )) > C3s
3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

− 2c0s
3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt− 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt

+ 2

T∫

0

∫

Ω

(
s(∆β)|∇ψ|2 − s3(∆β)|∇β|2|ψ|2) dxdt, (9.4.46)

provided that

s > 1 , λ > max

{
1,

4

c0

max
x∈clos Ω

n∑
i,j=1

∣∣∣∣
∂2η

∂xi∂xj

∂η

∂xi

∂η

∂xj

∣∣∣∣ ,
2C2

c0

}
. (9.4.47)

(Recall that c0 has been defined in (9.4.40).) From the estimate (9.4.46), combined
with (9.4.26), it follows that

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖M2ψ‖2
L2(Ω)

)
dt + C3s

3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

6
T∫

0

‖gs‖2dt + 2c0s
3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt

+ 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

− 2J4 , (9.4.48)

where

J4 =

T∫

0

∫

Ω

(
s(∆β)|∇ψ|2 − s3(∆β)|∇β|2|ψ|2) dxdt. (9.4.49)

On the other hand (9.4.25) implies that

T∫

0

‖gs‖2dt 6 2

T∫

0

‖fs‖2dt + 2s2

T∫

0

‖(∆β)ψ‖2dt.
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By using (9.4.9) it follows that

T∫

0

‖gs‖2dt 6 2

T∫

0

‖fs‖2dt + 2C2
1s

2λ4

T∫

0

∫

Ω

e2λη|ψ|2
t2(T − t)2

dxdt.

If we take, in the above inequality,

s > max

{
1,

4C2
1T

2

C3

}
(9.4.50)

and we use the elementary fact that

1

t2(T − t)2
6 T 2

t3(T − t)3
∀ t ∈ (0, T ) ,

we obtain

T∫

0

‖gs‖2dt 6 2

T∫

0

‖fs‖2dt +
C3s

3λ4

2

T∫

0

∫

Ω

e3λη|ψ|2
t3(T − t)3

dxdt.

The above estimate and (9.4.48) yield that

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖M2ψ‖2
L2(Ω)

)
dt +

C3s
3λ4

2

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

6 2

T∫

0

‖fs‖2dt + 2c0s
3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt

+ 4s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

− 2J4 , (9.4.51)

provided that s and λ satisfy (9.4.47) and (9.4.50).

Third step. We estimate J4, defined in (9.4.49). First we notice that

J4 =

T∫

0

∫

Ω

{
s(∆β)|∇ψ|2 − s(∆β)ψ

(
s2|∇β|2ψ)}

dxdt.

The above relation, combined with (9.4.22)-(9.4.25), implies that

J4 =

T∫

0

∫

Ω

s(∆β)|∇ψ|2dxdt− s

T∫

0

∫

Ω

(∆β)ψ

(
s
∂β

∂t
ψ −M2ψ −∆ψ

)
dxdt

=

T∫

0

∫

Ω

s(∆β)|∇ψ|2dxdt− s

T∫

0

∫

Ω

(∆β)ψ

(
s
∂β

∂t
ψ + M1ψ − gs −∆ψ

)
dxdt
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=

T∫

0

∫

Ω

s(∆β)|∇ψ|2dxdt

+ s

T∫

0

∫

Ω

(∆β)ψ

(
fs −M1ψ − s

∂β

∂t
ψ + ∆ψ + s(∆β)ψ

)
dxdt.

By using the fact that div (ψ∇ψ) = |∇ψ|2 + ψ∆ψ in the above formula, we obtain

J4 = s

T∫

0

∫

Ω

(∆β) div (ψ∇ψ)dxdt

+ s

T∫

0

∫

Ω

(∆β)ψ

(
fs −M1ψ − s

∂β

∂t
ψ + s(∆β)ψ

)
dxdt.

A double integration by parts with respect to x in the first term of the right-hand
side of the above relation implies that

J4 =
s

2

T∫

0

∫

Ω

(∆2β)|ψ|2dxdt− s2

T∫

0

∫

Ω

(∆β)
∂β

∂t
|ψ|2dxdt

+ s

T∫

0

∫

Ω

(∆β)ψ (fs −M1ψ + s(∆β)ψ) dxdt. (9.4.52)

On the other hand, by using the elementary inequalities

ab 6 a2

4
+ 2b2 ∀ a, b ∈ R ,

|a + b|2 6 2(a2 + b2) ∀ a, b ∈ R ,

we have
∣∣∣∣∣∣
s

T∫

0

∫

Ω

(∆β)ψ (fs −M1ψ + s(∆β)ψ) dxdt

∣∣∣∣∣∣

6
T∫

0

∫

Ω

|fs −M1ψ| · |s(∆β)ψ | dxdt + s2

T∫

0

∫

Ω

(∆β)2|ψ|2dxdt

6 1

4

T∫

0

∫

Ω

|fs −M1ψ|2 dxdt + 3s2

T∫

0

∫

Ω

(∆β)2|ψ|2dxdt

6 1

2

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖fs‖2
L2(Ω)

)
dt + 3s2

T∫

0

∫

Ω

(∆β)2|ψ|2dxdt.
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From the above estimate and (9.4.52) it follows that

|J4| 6 s

2

T∫

0

∫

Ω

(∆2β)|ψ|2dxdt− s2

T∫

0

∫

Ω

(∆β)
∂β

∂t
|ψ|2dxdt

+
1

2

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖fs‖2
L2(Ω)

)
dt + 3s2

T∫

0

∫

Ω

(∆β)2|ψ|2dxdt. (9.4.53)

On the other hand, by using (9.4.5) it is easy to check that that there exists a
constant C(Ω,O) > 0 such that

|∆2β| =
1

t(T − t)

∣∣∆2(eλη)
∣∣ 6 C(Ω,O)

t(T − t)
λ4e3λη .

The above formula, combined with (9.4.11), (9.4.53) and with the fact that

1

t(T − t)
6 T 4

t3(T − t)3
∀ t ∈ (0, t) , (9.4.54)

yields the existence of a constant C4 > 0 (depending only on Ω, O and T ) such that,
for every s, λ > 1 we have

|J4| 6 1

2

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖fs‖2
L2(Ω)

)
dt + C4s

2λ4

T∫

0

∫

Ω

e3λη

t3(T − t)3
|ψ|2dxdt.

Fourth step. From the above formula and (9.4.51) we obtain that there exists
C5 > 0 (depending only on Ω, O and T ) such that, for every s and λ satisfying
(9.4.47) and (9.4.50), with s > 8C4

C3
, we have

T∫

0

(
‖M1ψ‖2

L2(Ω) + ‖M2ψ‖2
L2(Ω)

)
dt + C5s

3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

6 5

T∫

0

‖fs‖2
L2(Ω)dt + 4c0s

3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt

+ 8s
n∑

i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

. (9.4.55)

Now we transform the above estimate into an inequality involving the terms con-
taining ∆ψ, ∇ψ and ∂ψ

∂t
, which occur on the left-hand side of (9.4.18). We begin
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with the term containing ∆ψ by noticing that

1

s

T∫

0

∫

Ω

t(T − t)e−λη|∆ψ|2dxdt

=
1

s

T∫

0

∫

Ω

t(T − t)e−λη

(
M2ψ − s2|∇β|2ψ − s

∂β

∂t
ψ

)2

dxdt

6 3

s

T∫

0

∫

Ω

t(T − t)e−λη|M2ψ|2dxdt + 3s3

T∫

0

∫

Ω

t(T − t)e−λη|∇β|4|ψ|2dxdt

+ 3s

T∫

0

∫

Ω

t(T − t)e−λη

∣∣∣∣
∂β

∂t

∣∣∣∣
2

|ψ|2dxdt.

The above estimate, combined with (9.4.8) and (9.4.6), yields that

1

s

T∫

0

∫

Ω

t(T − t)e−λη|∆ψ|2dxdt 6 3T 2

s

T∫

0

‖M2ψ‖2dt

+ C(Ω,O, T )s3λ4

T∫

0

∫

Ω

e3λη

t3(T − t)3
|ψ|2dxdt. (9.4.56)

Now we give an upper bound for the term containing ∇ψ on the left-hand side of
(9.4.18). Integrating by parts, we obtain

2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
|∇ψ|2dxdt = 2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
(∇ψ) · (∇ψ)dxdt

= 2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
(−∆ψ)ψdxdt− 2sλ3

T∫

0

∫

Ω

eλη

t(T − t)
(∇η · ∇ψ)ψdxdt

= 2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
(−∆ψ)ψdxdt− sλ3

T∫

0

∫

Ω

eλη

t(T − t)
(∇η · ∇|ψ|2)dxdt

= 2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
(−∆ψ)ψdxdt + sλ3

T∫

0

∫

Ω

eλη

t(T − t)
(∆η)|ψ|2dxdt

+ sλ4

T∫

0

∫

Ω

eλη

t(T − t)
|∇η|2|ψ|2dxdt.
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The above estimate combined with (9.4.54) and with other elementary inequalities
yields that, for every s > 1,

2sλ2

T∫

0

∫

Ω

eλη

t(T − t)
|∇ψ|2dxdt

= − 2

T∫

0

∫

Ω

(√
t(T − t)√

s
e−

λη
2 ∆ψ

)(
s

3
2 λ2e3λη

2

t
3
2 (T − t)

3
2

ψ

)
dxdt

+ sλ3

T∫

0

∫

Ω

eλη

t(T − t)
(∆η)|ψ|2dxdt + sλ4

T∫

0

∫

Ω

eλη

t(T − t)
|∇η|2|ψ|2dxdt

6 1

s

T∫

0

∫

Ω

t(T − t)e−λη|∆ψ|2dxdt + C(Ω,O)s3λ4

T∫

0

∫

Ω

e3λη

t3(T − t)3
|ψ|2dxdt.

From the above and (9.4.56) it follows that if s > 3T 2, then

2sλ2

T∫

0

∫

Ω

t−1(T − t)−1eλη|∇ψ|2dxdt 6
T∫

0

‖M2ψ‖2dt

+ s3λ4

T∫

0

∫

Ω

e3λη

t3(T − t)3
|ψ|2dxdt. (9.4.57)

Now we move to the term containing ∂ψ
∂t

. By using (9.4.23), (9.4.8) and some
elemementary inequalities, it follows that

1

s

T∫

0

∫

Ω

t(T − t)

∣∣∣∣
∂ψ

∂t

∣∣∣∣
2

dxdt =
1

s

T∫

0

∫

Ω

t(T − t) |M1ψ + 2s∇β · ∇ψ|2 dxdt

6 2

s

T∫

0

t(T − t)‖M1ψ‖2dt + 4s

T∫

0

∫

Ω

t(T − t)|∇β|2|∇ψ|2

6 2T 2

s

T∫

0

‖M1ψ‖2 + 4sλ2C1

T∫

0

∫

Ω

e2λη

t(T − t)
|∇ψ|2dxdt.

From the above it follows that if

s > 3T 2 , (9.4.58)

then

1

s

T∫

0

∫

Ω

t(T − t)

∣∣∣∣
∂ψ

∂t

∣∣∣∣
2

dxdt 6
T∫

0

‖M1ψ‖2dt + 4sλ2C1

T∫

0

∫

Ω

e2λη

t(T − t)
|∇ψ|2dxdt.
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Let us now fix λ satisfying (9.4.47). By combining (9.4.55), (9.4.56), (9.4.57) and
the last inequality, it follows that there exists C6 > 0 (depending only on Ω, O and
T ) such that the inequality

1

s

T∫

0

∫

Ω

t(T − t)e−λη|∆ψ|2dxdt +
1

s

T∫

0

∫

Ω

t(T − t)

∣∣∣∣
∂ψ

∂t

∣∣∣∣
2

dxdt

+ sλ2

T∫

0

∫

Ω

eλη

t(T − t)
|∇ψ|2dxdt + s3λ4

T∫

0

∫

Ω

e3λη(x)|ψ|2
t3(T − t)3

dxdt

6 C6




T∫

0

‖fs‖2dt + s3λ4

T∫

0

∫

O

e3λη(x)|ψ|2
t3(T − t)3

dxdt

+s

n∑
i,j=1

T∫

0

∫

Ω

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

dxdt


 , (9.4.59)

holds for every s satisfying (9.4.50), (9.4.58) together with s > 8C4

C3
. In order to

eliminate the last term on the right-hand side of (9.4.59), we note that

n∑
i,j=1

∂2β

∂xi∂xj

∂ψ

∂xi

∂ψ

∂xj

= − eληt−1(T − t)−1

(
λ2 ∂η

∂xi

∂η

∂xj

+ λ
∂2η

∂xi∂xj

)
∂ψ

∂xi

∂ψ

∂xj

= − λ2eλη

t(T − t)
(∇η · ∇ψ)2 − λeλη

t(T − t)

(
∂2η

∂xi∂xj

)
∂ψ

∂xi

∂ψ

∂xj

6 C(Ω,O)
λeλη

t(T − t)
|∇ψ|2 .

From the above estimate and (9.4.59) we get the desired conclusion.

We are now in a position to prove the main result in this section.

Proof of Theorem 9.4.1. We fix λ satisfying (9.4.47) and we consider an arbitrary
s satisfying (9.4.50), (9.4.58) together with s > 8C4

C3
.

By using (9.4.17) and the fact that ρ = eβ, it follows that ψ = e−sβϕ, so that

∇ψ = e−sβ(∇ϕ− sϕ∇β) .

From the above formula and the elementary inequality

|a− sb|2 > a2

2
− s2b2 ∀ a, b ∈ R ,
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it follows that

s

T∫

0

1

t(T − t)
|∇ψ|2dxdt = s

T∫

0

e−2sβ

t(T − t)
|∇ϕ− sϕ∇β|2dxdt

> s

2

T∫

0

∫

Ω

e−2sβ

t(T − t)
|∇ϕ|2 − s3

T∫

0

e−2sβ

t(T − t)
|∇β|2|ϕ|2dxdt

> s

2

T∫

0

e−2sβ

t(T − t)
|∇ϕ|2dxdt−K1s

3

T∫

0

∫

Ω

e−2sβ

t3(T − t)3
|ϕ|2dxdt,

where K1 > 0 depends only on Ω and O. The last formula implies that for every
ε ∈ (0, 1

2K1
) we have

εs

T∫

0

1

t(T − t)
|∇ψ|2dxdt + s3

T∫

0

∫

Ω

1

t3(T − t)3
|ψ|2dxdt

= εs

T∫

0

1

t(T − t)
|∇ψ|2dxdt + s3

T∫

0

∫

Ω

e−2sβ

t3(T − t)3
|ϕ|2dxdt

> εs

2

T∫

0

e−2sβ

t(T − t)
|∇ϕ|2dxdt +

s3

2

T∫

0

∫

Ω

e−2sβ

t3(T − t)3
|ϕ|2dxdt.

The above estimate, combined to (9.4.18), yields the conclusion.

9.5 Final state observability without geometric conditions

In this section Ω ⊂ Rn is an open set with boundary of class C2, X = L2(Ω), b ∈
L∞(Ω;Rn), c ∈ L∞(Ω,R) and A is the operator of domain D(A) = H2(Ω)∩H1

0(Ω),
defined by

Af = ∆f + b · ∇f + cf ∀ f ∈ D(A) ,

where · stands for the inner product in Rn. We know from Example 5.4.4 that A
generates a semigroup T on X that corresponds to the convection-diffusion equation
on Ω, with homogeneous Dirichlet boundary conditions.

Let O be a non-empty open subset of Ω and let C0 ∈ L(X) be defined by

C0f = fχO ,

where χO is the characteristic function of O. The norm on X is denoted by ‖ · ‖.
In this section we show that the geometric assumptions on the observation region

which have been used in the previous section are not necessary for the final-state
observability of a convection-diffusion equation with distributed observation.
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Theorem 9.5.1. The pair (A,C0) is final-state observable in any time τ > 0. In
terms of PDEs, this means that for every τ > 0 there exists a constant kτ > 0 such
that, for every z0 ∈ H2(Ω) ∩H1

0(Ω) the solution of

∂z

∂t
(x, t) = ∆z(x, t) + b(x) · ∇z(x, t) + c(x)z(x, t) , x ∈ Ω , t > 0 , (9.5.1)

z(x, t) = 0, x ∈ ∂Ω , t > 0 , (9.5.2)

z(x, 0) = z0(x) , x ∈ Ω (9.5.3)

satisfies τ∫

0

∫

O

|z(x, t)|2dxdt > k2
τ

∫

Ω

|z(x, τ)|2dxdt. (9.5.4)

Proof. Let α be the function constructed in Section 9.4. According to Theorem
9.4.1 it follows there exists s0, C0 > 0, depending only on Ω, O and τ such that, for
all s > s0, we have

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t)

[
st−1(τ − t)−1|∇z|2 +

s3

t3(T − t)3
|z|2

]
dxdt

6 C0


s3

∫

O×(0,τ)

e
−2sα(x)
t(τ−t)

|z|2
t3(τ − t)3

dxdt

+

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t)

(|cz|2 + |b · ∇z|2) dxdt


 (9.5.5)

On the other hand, it is easy to see that

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t) |cz|2dxdt 6 τ 6 ‖c‖2

L∞(Ω

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t) t−3(τ − t)−3|z|2dxdt, (9.5.6)

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t) |b ·∇z|2dxdt 6 τ 2‖b‖2

L∞(Ω)

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t) t−1(τ − t)−1|∇z|2dxdt (9.5.7)

Relations (9.5.5)-(9.5.7) imply that there exists s1, C1 > 0, depending only on Ω,
O, τ , ‖b‖∞ and ‖c‖∞ such that, for all s > s1, we have

τ∫

0

∫

Ω

e
−2sα(x)
t(τ−t)

|∇z|2
t(τ − t)

dxdt 6 C1s
2

τ∫

0

∫

O

e
−2sα(x)
t(τ−t)

|z|2
t3(τ − t)3

dxdt. (9.5.8)

It is easy to check that there exist two constants C2, C3 > 0, depending only on
Ω, O, τ , such that

e
−2sα(x)
t(τ−t)

t3(τ − t)3
> C2 ∀ (x, t) ∈ Ω×

(
τ

4
,
3τ

4

)
,
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e
−2sα(x)
t(τ−t)

t3(τ − t)3
6 C3 ∀ (x, t) ∈ Ω× (0, τ) .

The above two relations and (9.5.8) imply that there exists C4 > 0,depending only
on Ω, O, τ , ‖b‖∞ and ‖c‖∞ , such that

3τ
4∫

τ
4

∫

Ω

|∇z|2dxdt 6 C4

τ∫

0

∫

O

|z|2 dxdt. (9.5.9)

On the other hand, if M and ω are as in (2.1.4) then, for every t ∈ (
τ
4
, 3τ

4

)
, we have

‖z(τ)‖ 6 Meω(τ−t)‖Ttz0‖ 6 Me
3ωτ
4 ‖z(t)‖ .

This fact, combined to (9.5.9) and to the Poincaré inequality, clearly implies the
conclusion (9.5.4).

9.6 Remarks and bibliographical notes on Chapter 9

General Remarks. The observability and the controllability of linear parabolic
PDEs in one space dimension has been extensively studied about thirty years ago in a
series of papers beginning with Fattorini and Russell [62]. The corresponding results
in several space dimensions have been obtained much later, as described below. More
recently, several researchers became interested in finding precise estimates of the final
state observability constants when the observation time tends to zero. We did not
tackle this challenging issue in this book, but we refer to Zuazua [244], Miller [169]
and to Tenenbaum and Tucsnak [218] for results on this topic.

Section 9.2. The fact that the exact observability of a system governed by the wave
equation implies the final state observability of a corresponding system governed by
the heat equation has been proved by Russell in [197] and [198] (see also Seidman
[205]). The abstract version given in this book is closer to the approach in Avdonin
and Ivanov [9]. Lemma 9.2.3 is a key technical result which, in the form shown in
this book, has been proved in [218]. For earlier versions of this result we refer to
Bombieri, Friedlander and Iwaniec [21] and to Jaffard and Micu [124]. A different
proof for a generalization of Theorem 9.2.2 has been given recently in Miller [171],
using the “control transmutation method”. This generalization of Theorem 9.2.2
eliminates the assumption that A0 is diagonalizable.

Section 9.3. The result in Proposition 9.3.6 have been obtained in Fattorini and
Russell [62] and [63] by tackling directly the one-dimensional parabolic equation.
The observability for the system (9.3.4) has been used by Fernandez-Cara and
Zuazua [67] to show that the result in Proposition 9.3.6 holds when a is less smooth,
namely a function with bounded variation. By a different method, this result has
been generalized recently in Alessandrini and Escauriaza [3] to the case a ∈ L∞.
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Section 9.4. The type of estimates derived in this section have been introduced by
T. Carleman in [29] in order to prove unique continuation results for linear elliptic
PDEs in two space dimensions. Their use for global estimates for the heat equation
is due to Fursikov and Imanuvilov in [69]. Our approach follows Fernández-Cara
and Zuazua [66]. For a proof of Theorem 9.4.1 under the assumption that ∂Ω is
only of class C2 we refer to Fernández-Cara and Guerrero [64].

Section 9.5. The result in Theorem 9.5.1 has been obtained independently by
Lebeau and Robbiano in [151] and by Fursikov and Imanuvilov in [69]. These works
were the departure point of a series of papers devoted to the observability and
controllability of other parabolic equations, linear or nonlinear, and in particular for
the Navier-Stokes system (see, for instance, Barbu [14], Fabre [60], Fernández-Cara,
Guerrero, Imanuvilov and Puel [65]).



Chapter 10

Boundary control systems

Notation. We continue to use the notation listed at the beginning of Chapter 2.
As in earlier chapters, if T is a strongly continuous semigroup on the Hilbert space
X, with generator A, then the spaces X1 and X−1 are as in Section 2.10 and the
extension of A to X is still denoted by A.

10.1 What is a boundary control system?

In this section we introduce boundary control systems, in particular well-posed
boundary control systems. Usually, boundary control systems are defined as systems
having inputs and outputs. However, the novelty resides only in the equations linking
the input to the state. For this reason, here we introduce a restricted version of the
concept of boundary control system, which do not have outputs.

In Chapter 4 we have discussed infinite-dimensional control systems for which the
evolution of the state z is described by the differential equation ż(t) = Az(t)+Bu(t),
where u is the input signal. Systems described by linear partial differential equations
with non-homogeneous boundary conditions often appear in the following, quite
different looking form:

ż(t) = Lz(t) , Gz(t) = u(t) . (10.1.1)

Often (but not necessarily) L is a differential operator and G is a boundary trace
operator. It is not obvious what is meant by solutions of the above equations, and
it is clear that some assumptions are needed in order to be able to translate these
equations into the familiar form ż(t) = Az(t) + Bu(t). In the sequel, we assume
that U,Z and X are complex Hibert spaces such that

Z ⊂ X ,

with continuous embedding. We shall call U the input space, Z the solution space
and X the state space.

327
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Definition 10.1.1. A boundary control system on U,Z and X is a pair of operators
(L,G), where

L ∈ L(Z,X) , G ∈ L(Z, U) ,

if there exists a β ∈ C such that the following properties hold:
(i) G is onto,
(ii) Ker G is dense in X,
(iii) βI − L restricted to Ker G is onto,
(iv) Ker (βI − L) ∩Ker G = {0}.

We think of the two operators in this definition as determining a system via the
equations (10.1.1). Broadly, our aim is to translate these equations into the familar
form ż(t) = Az(t) + Bu(t). The boundary control system will be called well-posed
if A generates a semigroup on X and B is admissible for this semigroup.

With the assumptions of the last definition, we introduce the Hilbert space X1

and the operator A by

X1 = Ker G , A = L|X1 . (10.1.2)

Obviously, X1 is a closed subspace of Z and A ∈ L(X1, X). Condition (iii) means
that βI −A is onto. Condition (iv) means that Ker (βI −A) = {0}. Thus, (iii) and
(iv) together are equivalent to the fact that β ∈ ρ(A), so that

(βI − A)−1 ∈ L(X) .

In fact, (βI − A)−1 ∈ L(X, X1), so that the norm on X1 is equivalent to the norm

‖z‖1 = ‖(βI − A)z‖ ,

which has been discussed in detail in Section 2.10. As usual, we define the space
X−1 as the completion of X with respect to the norm ‖z‖−1 = ‖(βI−A)−1z‖. Then
A has an extension, also denoted by A, such that A ∈ L(X, X−1), as explained in
Section 2.10. Note that, so far, A has not been assumed to be a generator.

Proposition 10.1.2. Let (L,G) be a boundary control system on U,Z and X. Let A
and X−1 be as introduced earlier. Then there exists a unique operator B ∈ L(U,X−1)
such that

L = A + BG , (10.1.3)

where A is regarded as an operator from X to X−1. For every β ∈ ρ(A) we have
that (βI − A)−1B ∈ L(U,Z) and

G(βI − A)−1B = I , (10.1.4)

so that in particular, B is bounded from below.
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Proof. Since G is onto, it has at least one bounded right inverse H ∈ L(U,Z).
We put

B = (L− A)H. (10.1.5)

From G(I −HG) = 0 we see that the range of I −HG is in Ker G = X1, so that
(L − A)(I −HG) = 0. Thus we get that BG = (L − A)HG = L − A, as required
in (10.1.3). It is easy to see that B is unique. To prove (10.1.4), first we rewrite
(10.1.5) in the form

(βI − A)H − (βI − L)H = B.

If we apply (βI − A)−1 to both sides, we get

H − (βI − A)−1(βI − L)H = (βI − A)−1B,

which shows that indeed (βI − A)−1B ∈ L(U,Z). Therefore, we can apply G to
both sides above and then the second term on the left-hand side disappears, due to
X1 = Ker G. Since GH = I, we obtain (10.1.4).

When L, G, A and B are as in the above proposition, we say that A is the generator
of the boundary control system (L,G) and B is the control operator of (L, G).

Remark 10.1.3. It follows from (10.1.4) that B is strictly unbounded with respect
to X, meaning that X ∩BU = {0}. Another consequence of (10.1.4) is that

Z = X1 + (βI − A)−1BU .

Indeed, for each z ∈ Z, denoting v = Gz, we have z = z1 + (βI − A)−1Bv, where
z1 ∈ X1 (because Gz1 = 0). The converse inclusion is trivial. Thus, Z coincides
with the space defined in (4.2.9). Moreover, by the closed graph theorem, the norm
of Z is equivalent to the norm defined after (4.2.9).

Remark 10.1.4. As a consequence of Proposition 10.1.2, the equations (10.1.1) can
be rewritten equivalently as

ż(t) = Az(t) + Bu(t) , with ż(t) ∈ X. (10.1.6)

This equivalence is meant in the algebraic sense, without making at this stage any as-
sumptions about the existence or uniqueness of solutions for these equations (for ex-
ample, we have not assumed that A generates a semigroup). Indeed, the transforma-
tion from (10.1.1) to (10.1.6) is obvious from (10.1.3). Conversely, if (10.1.6) holds,
then applying G(βI −A)−1 to both sides we obtain with (10.1.4) that Gz(t) = u(t).
Now from (10.1.3) it follows that ż(t) = Lz(t).

When transforming (10.1.1) into (10.1.6), the control operator B is determined in
principle from (10.1.5). However, this way of determining B is not satisfactory for
most examples, because it is awkward to work with the extended operator A and
with the right inverse H. Thus, we need more practical ways to determine B. The
following two remarks offer two ways to find B from L and G.
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Remark 10.1.5. The following fact is an easy consequence of Proposition 10.1.2
(we use the notation of the proposition): For every v ∈ U and every β ∈ ρ(A), the
vector z = (βI − A)−1Bv is the unique solution of the “abstract elliptic problem”

Lz = βz , Gz = v .

For many L and G, this problem has a well known solution, and it is easier to
describe z ∈ X than to describe Bv ∈ X−1, since X is usually a more “natural”
space than X−1 (see the other sections of this chapter).

Remark 10.1.6. Often we need to express B∗ in terms of L and G. Instead of
finding the control operator B and then computing its adjoint, it is usually more
convenient to use the following formula, which follows from (10.1.3):

〈Lz, ψ〉 = 〈z, A∗ψ〉+ 〈Gz, B∗ψ〉 ∀ z ∈ Z , ψ ∈ D(A∗) . (10.1.7)

Sometimes the expression 〈Lz, ψ〉 − 〈z, A∗ψ〉 can be written in a simple form using
integration by parts, thus revealing the expression for B∗, see for example Proposi-
tions 10.2.1, 10.3.3, 10.4.1, 10.5.1 and 10.9.1 later in this chapter.

Definition 10.1.7. With the notation of Proposition 10.1.2, the boundary control
system (L,G) is called well-posed if A is the generator of a strongly continuous
semigroup T on X and B is an admissible control operator for T.

Proposition 10.1.8. Let (L,G) be a boundary control system on U,Z and X, with
A,B as in Proposition 10.1.2. We assume that A is the generator of a strongly
continuous semigroup T on X.

Then for every T > 0, z(0) ∈ Z and u ∈ H2((0, T ); U) which satisfy the com-
patibility condition Gz(0) = u(0), the equations (10.1.1) have a unique solution z
and

z ∈ C([0, T ]; Z) ∩ C1([0, T ]; X) . (10.1.8)

If (L,G) is well-posed, then the same conclusion holds for every T > 0, z(0) ∈ Z
and u ∈ H1((0, T ); U) that satisfies Gz(0) = u(0).

Proof. The identity Gz(0) = u(0) is equivalent to Az(0)+Bu(0) ∈ X (this follows
from (10.1.4)). According to Remark 10.1.3, the space Z from the definition of a
boundary control system coincides with Z defined in (4.2.9). According to Remark
10.1.4, the equations (10.1.1) are equivalent to (10.1.6).

Now consider the case when (L,G) is well-posed (i.e., B is admissible for T). We
know from Proposition 4.2.10 that (10.1.6) has the unique solution z defined by
(4.2.7), where the operators Φt are defined by (4.2.1). Still by Proposition 4.2.10, z
satisfies (10.1.8). If (L,G) is not assumed to be well-posed, then we follow by the
same reasoning, but with Proposition 4.2.11 instead of Proposition 4.2.10.
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Example 10.1.9. We want to formulate the equations

∂z(x, t)

∂t
= − ∂z(x, t)

∂x
, z(0, t) = u(t) ,

as a boundary control system. Here, x, t > 0. Take X = L2[0,∞), Z = H1(0,∞)
and define the operators L ∈ L(Z,X) and G ∈ L(Z,C) by

Lz = − dz

dx
, Gz = z(0) .

Notice that X1 = Ker G = H1
0(0,∞) and A = L|X1 is the generator of the unilateral

right shift semigroup on X, last encountered in Example 4.2.7. Now it is clear that
all the conditions in Definition 10.1.1 are satisfied. To identify B, we follow the
approach in Remark 10.1.6. First we notice that A∗ψ = ψ′ for all ψ ∈ D(A∗) =
H1(0,∞). Integrating by parts, we see that

〈Lz, ψ〉 − 〈z, A∗ψ〉 = z(0)ψ(0) ∀ z, ψ ∈ H1(0,∞) .

Comparing this with (10.1.7), it follows that

B∗ψ = ψ(0) , i.e., B = δ0 ,

with δ0 as defined in Example 4.2.7. Thus, our system is equivalent to the one from
Example 4.2.7. In particular, this boundary control system is well-posed.

Alternatively, we could solve the “abstract elliptic problem” from Remark 10.1.5
with β = 1 and v = 1:

−z′(x) = z(x) , z(0) = 1 ,

which gives z(x) = e−x. According to Remark 10.1.5, Bv = (βI − A)z. Using inte-
gration by parts, we can obtain from here that B = δ0 (we omit the computation).
Overall, for this system, the approach in Remark 10.1.6 is more efficient.

The next proposition shows that certain perturbations of well-posed boundary
control systems are again well-posed boundary control systems.

Proposition 10.1.10. Let (L,G) be a well-posed boundary control system on U,Z
and X, with generator A and control operator B1. Let B ∈ L(Y, X) and let C ∈
L(X1, Y ) be an admissible observation operator for the semigroup T generated by A.
Let Ce be an extension of C such that Ce ∈ L(Z, Y ). Assume that there exist α ∈ R
and M > 0 such that Cα ⊂ ρ(A) and

‖Ce(sI − A)−1B1‖L(U,Y ) 6 M ∀ s ∈ Cα .

Then (L + BCe, G) is a well-posed boundary control system on U,Z and X. Its
generator is A+BC and its control operator is JB1, where J is the extension of the
identity operator introduced in Proposition 5.5.2.
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Proof. According to Theorem 5.4.2, A+BC is the generator of a strongly contin-
uous semigroup Tcl on X. Let us show that (L + BCe, G) is a well-posed boundary
control system. Conditions (i) and (ii) in Definition 10.1.1 are obviously satisfied,
since U, Z and G have not changed. The restriction of L + BCe to Ker G = D(A)
is A + BC, so that conditions (iii) and (iv) in Definition 10.1.1 are also satisfied.
Clearly the generator (L+BCe, G) is A+BC. Let us determine the control operator
of this boundary control system. For every z ∈ Z we have, using (10.1.3),

(L + BCe)z = Az + B1Gz + BCez ,

where A is regarded as an operator from X to X−1. Applying J to both sides (so
that the left-hand side and the term BCez remain unchanged) we obtain

(L + BCe)z = JAz + JB1Gz + BCez .

Now using the formula (5.5.2) we obtain

(L + BCe)z = (A + BC)z + JB1Gz,

where A + BC is regarded as an operator from X to Xcl
−1 (the space Xcl

−1 is the
analogue of X−1 for the operator A + BC, as in Proposition 5.5.2). Comparing the
above formula with (10.1.3) (with L + BCe in place of L and A + BC in place of
A), we see that the control operator of (L + BCe, G) is JB1.

It remains to show that (L + BCe, G) is well-posed. The operators Ce and B1

satisfy the assumptions in part (3) of Proposition 5.5.2. Therefore, according to
this proposition, JB1 is an admissible control operator for Tcl. This means that our
boundary control system is well-posed.

We shall see an application of the last proposition in Section 10.8.

10.2 Two simple examples in one space dimension

Notation. Throughout this section we denote

H1
R(0, π) =

{
φ ∈ H1(0, π) | φ(π) = 0

}
,

H = L2[0, π] , U = C ,

H1 =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}

and the operator A0 : H1 → H is defined by

A0f = − d2f

dx2
∀ f ∈ H1 .

We know from Example 3.4.12 that A0 > 0 and that the Hilbert spaces H 1
2

obtained
from H and A0 according to the definition in Section 3.4 is

H 1
2

= H1
R(0, π) .

Moreover, we set U = C and we define the operator N : C→ H1
R(0, π) by

(Nv)(x) = v(x− π) ∀ x ∈ [0, π] . (10.2.1)
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10.2.1 A one-dimensional heat equation with
Neumann boundary control

In this subsection we study a boundary control system modeling the heat propa-
gation in a rod occupying the interval [0, π]. We want to control the temperature in
the rod by means of a heat flux u(t) acting at its left end. Normalizing the physical
constants, the temperature z satisfies the initial and boundary value problem





∂z

∂t
(x, t) =

∂2z

∂x2
(x, t), 0 < x < π, t > 0 ,

∂z

∂x
(0, t) = u(t) , z(π, t) = 0 , t > 0,

z(x, 0) = z0(x) , 0 < x < π.

(10.2.1)

Let A = −A0. Since A < 0, it is the generator of an exponentially stable semigroup
T on X and Tt > 0 (see Proposition 3.8.5).

To formulate (10.2.1) as a boundary control system, we take the solution space
Z = H2(0, π) ∩ H1

R(0, π) and the state space X = H. The operators L ∈ L(Z,X)
and G ∈ L(Z, U) are defined by

Lf =
d2f

dx2
, Gf =

df

dx
(0) ∀ f ∈ Z .

Proposition 10.2.1. The pair (L,G) is a well-posed boundary control system on
U,Z and X. The control operator and its adjoint are given by

Bv = A0Nv ∀ v ∈ U , (10.2.2)

B∗ψ = − ψ(0) ∀ ψ ∈ D(A∗) . (10.2.3)

Proof. We have Ker G = D(A) and A = L|D(A) is the generator of a semigroup on
X. Consequently, all the conditions in Definition 10.1.1 are satisfied, which means
that the pair (L,G) is indeed a boundary control system on U,Z and X.

In order to write a formula for B we use Remark 10.1.5. More precisely, for every
v ∈ C, the abstract elliptic problem

Lf = 0 , Gf = v ,

is equivalent to

d2f

dx2
= 0 in [0, π] ,

df

dx
(0) = v , f(π) = 0 .

It is easy to verify that the unique solution of the above boundary value problem
is f = Nv. Using Remark 10.1.5 with β = 0, we obtain that −A−1Bv = Nv.
Applying A0 = −A to both sides, we obtain (10.2.2).
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In order to check (10.2.3), we take f ∈ Z and ψ ∈ D(A∗) = D(A). Then, using
integrations by parts, we obtain

〈Lf, ψ〉 − 〈f, A∗ψ〉 = 〈Lf, ψ〉 −
〈

f,
d2ψ

dx2

〉
= − df

dx
(0)ψ(0) .

The above formula together with (10.1.7) imply (10.2.3).

Since B∗ ∈ L(H 1
2
, U), it follows from Proposition 5.1.3 that B∗ is an admissible

observation operator for the semigroup generated by A∗ = A. From Theorem 4.4.3
it follows that B is an admissible control operator for the semigroup generated by
A, so that we have indeed a well-posed boundary control system.

Remark 10.2.2. Using Remark 4.2.6, the above result can be stated as follows:
For every z0 ∈ L2[0, π] and every u ∈ L2

loc[0,∞) there exists a unique function
z ∈ C([0,∞); L2[0, π]) that satisfies for every t > 0 and every ψ ∈ D(A0)

π∫

0

z(x, t)ψ(x)dx−
π∫

0

z0(x)ψ(x)dx =

t∫

0




π∫

0

z(x, σ)
d2ψ

dx2
dx− u(σ)ψ(0)


 dσ.

In the PDE literature such formulas are used to define weak solutions for PDEs
with boundary control. Using this terminology, Proposition 10.2.1 is an existence
and uniqueness result for weak solutions of (10.2.1).

We show in Example 11.2.5 that this system is null-controllable in any time τ > 0.

10.2.2 A string equation with Neumann boundary control

We consider the problem of controlling the vibrations of a string occupying the
interval [0, π] by means of a force u(t) acting at its left end. If we assume that the
string is fixed at its right end, then the transverse deflection w satisfies the following
initial and boundary value problem:





∂2w

∂t2
(x, t) =

∂2w

∂x2
(x, t) , 0 < x < π, t > 0,

w(π, t) = 0,
∂w

∂x
(0, t) = u(t), t > 0,

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x), 0 < x < π.

(10.2.4)

To formulate (10.2.4) as a boundary control system, we take the solution space

Z =
[H2(0, π) ∩H1

R(0, π)
]×H1

R(0, π) ,

and the state space
X = H1

R(0, π)×H.
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We introduce the operator A : D(A) → X by

D(A) =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
×H1

R(0, π) , (10.2.5)

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) . (10.2.6)

Recall from Example 2.7.15 that A generates a group of isometries on X.

The operators L ∈ L(Z, X) and G ∈ L(Z, U) are defined by

L

[
f
g

]
=

[
g

d2f
dx2

]
, G

[
f
g

]
=

df

dx
(0) ∀

[
f
g

]
∈ Z .

Proposition 10.2.3. The pair (L,G) is a well-posed boundary control system on
U,Z and X. The control operator and its adjoint are given by

Bv =

[
0

A0Nv

]
∀ v ∈ U , (10.2.7)

B∗
[
ϕ
ψ

]
= − ψ(0) ∀

[
ϕ
ψ

]
∈ D(A∗) , (10.2.8)

where N has been defined by (10.2.1).

Proof. It is easy to see that Ker G = D(A) and L|D(A) = A, so that all the
conditions in Definition 10.1.1 are satisfied. This means that the pair (L,G) is
indeed a boundary control system on U,Z and X.

To determine B we use Remark 10.1.5. More precisely, for every v ∈ C, consider
the abstract elliptic problem

L

[
f
g

]
= 0 , G

[
f
g

]
= v .

It is easy to check that the unique solution of the above equations is g = 0 and
f = Nv. Using Remark 10.1.5 with β = 0, we obtain that −A−1Bv = Nv. Applying
−A to both sides, we obtain (10.2.7).

In order to check (10.2.8), we take
[

f
g

] ∈ Z and
[ ϕ

ψ

] ∈ D(A∗) = D(A). Then,
using integrations by parts and the fact that A is skew-adjoint, we obtain

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉
−

〈[
f
g

]
, A∗

[
f
g

]〉
= − df

dx
(0)ψ(0) .

The above formula together with (10.1.7) imply (10.2.8).

In order to show that B is an admissible control operator for the semigroup T
generated by A, we first notice that B∗ = C, where C is the operator defined in
(6.2.14). We have seen in Proposition 6.2.5 that C is an admissible observation
operator for T. Since T is invertible and A∗ = −A it follows that B∗ = C is an
admissible observation operator for T∗. From Theorem 4.4.3 it follows that B is
an admissible control operator for the semigroup generated by A, so that we have
indeed a well-posed boundary control system.
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Remark 10.2.4. Using Remark 4.2.6, the above result can be stated as follows:
For every f ∈ H1

R(0, π), every g ∈ L2[0, π] and every u ∈ L2
loc[0,∞) there exists a

unique function

w ∈ C([0,∞);H1
R[0, π]) ∩ C1([0,∞); L2[0, π]) ,

such that w(0) = f and w satisfies for every t > 0 and every ψ ∈ H1
R(0, π)

π∫

0

ẇ(x, t)ψ(x)dx−
π∫

0

g(x)ψ(x)dx = −
t∫

0




π∫

0

∂w

∂x
(x, σ)

dψ

dx
(x)dx + u(σ)ψ(0)


 dσ.

Therefore, Proposition 10.2.3 can be interpreted as an existence and uniqueness
result for weak solutions of (10.2.4).

We show in Example 11.2.6 that the system discussed in this subsection is exactly
controllable in any time τ > 2π.

10.3 A string equation with variable coefficients

Let a ∈ H1((0, π);R) and b ∈ L∞ ([0, π];R). Assume that there exists m > 0 with
a(x) > m for all x ∈ [0, π] and that b > 0.

Consider the initial and boundary value problem

∂2w

∂t2
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
− b(x)w(x, t) , 0 < x < π, t > 0 , (10.3.1)

w(0, t) = u(t) , w(π, t) = 0 , (10.3.2)

w(·, 0) = f ,
∂w

∂t
(·, 0) = g . (10.3.3)

These equations model the vibrations of a non-homogeneous elastic string which is
fixed at the end x = π and with a controlled displacement w(0, t) = u(t).

Throughout this section we denote

H = L2[0, π] , U = C ,

and the operator A0 : H1 → H is defined by

H1 = H2(0, π) ∩H1
0(0, π) , A0f = − d

dx

(
a
df

dx

)
+ bf ∀ f ∈ H1 . (10.3.4)

We know from Proposition 3.5.2 that A0 > 0 and that the Hilbert spaces H 1
2

and
H− 1

2
obtained from H and A0 according to the definitions in Section 3.4 are

H 1
2

= H1
0(0, π) , H− 1

2
= H−1(0, π) .
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From the same section we know that A0 has a unique extension to a unitary operator
from H 1

2
onto H− 1

2
and also from H onto H−1. We denote these extensions also by

A0. The inner products in H 1
2
, H and H− 1

2
will be denoted by 〈·, ·〉 1

2
, 〈·, ·〉 and

〈·, ·〉− 1
2
, respectively. With H and A0 as above we set

X = H ×H− 1
2
, D(A) = H 1

2
×H,

and A : D(A) → X is defined by

A

[
f
g

]
=

[
g

−A0f

]
∀

[
f
g

]
∈ D(A) . (10.3.5)

Since A0 is strictly positive, it follows from Proposition 3.7.6 that A is skew-adjoint
and 0 ∈ ρ(A). As usual, X1 is D(A) endowed with the graph norm.

To formulate equations (10.3.1)–(10.3.3) as a boundary control system, we take
the input space U = C and we introduce the solution space Z by

Z = H1
R(0, π)× L2[0, π] , where H1

R(0, π) = {ψ ∈ H1(0, π) | ψ(π) = 0} .
The state z(t) of the boundary control system will correspond to

[
w(·,t)
ẇ(·,t)

]
from

(10.3.1)–(10.3.3). The operators L ∈ L(Z,X) and G ∈ L(Z, U) are defined by

L

[
f
g

]
=

[
g

d
dx

(
adf

dx

)− bf

]
∀

[
f
g

]
∈ Z ,

G

[
f
g

]
= f(0) ∀

[
f
g

]
∈ Z . (10.3.6)

We need the following technical result:

Proposition 10.3.1. For every v ∈ U = C, there exists a unique function Dv ∈
H2(0, π) ∩H1

R(0, π) such that

d

dx

(
a
d(Dv)

dx

)
− b(Dv) = 0 in [0, π] , (10.3.7)

Dv(0) = v , (Dv)(π) = 0 . (10.3.8)

Clearly, D may be regarded as a bounded linear operator from U into H.

Proof. Let χ ∈ C∞[0, π] be such that χ(x) = 1 for x ∈ [
0, π

4

]
and χ(x) = 0 for

x ∈ [
3π
4

, π
]
. We define the operator D by

(Dv)(x) = vA−1
0

[
d

dx

(
a
dχ

dx

)
− bχ

]
(x) + vχ(x) . (10.3.9)

It is easy to check that the above formula defines a bounded linear map from U
into H, that Dv ∈ H2(0, π)∩H1

R(0, π) and that it satisfies (10.3.8). Moreover, from
(10.3.9), it follows that Dv − vχ ∈ D(A0) and

A0(Dv − vχ) = v

[
d

dx

(
a
dχ

dx

)
− bχ

]
,

which implies that Dv also satisfies (10.3.7). The uniqueness of the operator D with
the required properties follows easily from the fact that Ker A0 = {0}.
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Remark 10.3.2. In the case a = 1 and b = 0, the map D introduced above is the
one-dimensional counterpart of the Dirichlet map which will be studied in Section
10.6 and it is given explicitly by

(Dv)(x) =
v

π
(π − x) ∀ x ∈ [0, π] .

Proposition 10.3.3. The pair (L,G) is a well-posed boundary control system on
U,Z and X. Its control operator and its adjoint are given by

Bv =

[
0

A0Dv

]
∀ v ∈ U , (10.3.10)

B∗
[
ϕ
ψ

]
= a(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

∀
[
ϕ
ψ

]
∈ D(A∗) = D(A) , (10.3.11)

where D is defined as in Proposition 10.3.1.

Proof. Notice that G is onto, Ker G = X1 and A = L|X1 is the generator of a
unitary group on X, so that all the conditions in Definition 10.1.1 are satisfied.

In order to write a formula for B we use Remark 10.1.5. More precisely, for every
v ∈ C, the abstract elliptic problem

L

[
f
g

]
= 0 , G

[
f
g

]
= v ,

is equivalent to g = 0 and f = Dv. Using Remark 10.1.5 with β = 0, we obtain
that (−A)−1B = [ Dv

0 ]. Applying A to both sides, we obtain (10.3.10).

In order to calculate B∗ we take
[

f
g

] ∈ Z and
[ ϕ

ψ

] ∈ D(A∗) = D(A). Then

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

=

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

+

〈[
f
g

]
, A

[
ϕ
ψ

]〉

X

= 〈g, ϕ〉+

〈
d

dx

(
a
df

dx

)
− bf, ψ

〉

− 1
2

+ 〈f, ψ〉 − 〈g, A0ϕ〉− 1
2
. (10.3.12)

Assume for a moment that f ∈ H2(0, π) ∩ H1
R(0, π). Since A

1
2
0 is unitary from H

onto H− 1
2

(see Section 3.4), it follows that

〈
d

dx

(
a
df

dx

)
− bf, ψ

〉

− 1
2

=

〈
d

dx

(
a
df

dx

)
− bf, A−1

0 ψ

〉

=

π∫

0

(
d

dx

(
a
df

dx

)
− bf

)
A−1

0 ψdx.
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Using twice integration by parts, the above relation becomes

〈
d

dx

(
a
df

dx

)
− bf, ψ

〉

− 1
2

=

π∫

0

f
d

dx

(
a

dA−1
0 ψ

dx

)
dx + f(0)a(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

−
π∫

0

bf A−1
0 ψdx = 〈f, (−A0)A

−1
0 ψ〉+ f(0)a(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

= − 〈f, ψ〉+ f(0)a(0)
d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

.

Since H2(0, π) ∩H1
R(0, π) is dense in H1

R(0, π), it follows that〈
d

dx

(
a
df

dx

)
− bf, ψ

〉

− 1
2

= − 〈f, ψ〉+ f(0)a(0)
d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

, (10.3.13)

for every f ∈ H1
R(0, π) and ψ ∈ L2[0, π].

The inner product 〈g, A0ϕ〉− 1
2

from (10.3.12) can be expressed, using that A
1
2
0 is

unitary from H 1
2

to H, as

〈g, A0ϕ〉− 1
2

= 〈g, ϕ〉 ∀ g ∈ L2[0, π] , ϕ ∈ H1
0(0, π) . (10.3.14)

By combining (10.3.12), (10.3.13) and (10.3.14), it follows that〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

= f(0)a(0)
d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

.

Comparing this with (10.1.7), we obtain (10.3.11).

To prove that the system is well-posed, denote X2 = D(A2) = H1 ×H 1
2

with the

graph norm (see Remark 2.10.5) and recall that X1 is D(A) endowed with the graph
norm. Notice that

B∗Az = − a(0)Cz ∀ z ∈ X2 ,

where C is the operator from Proposition 8.2.2. We know from this proposition that
C is an admissible observation operator for the semigroup T generated by A, acting
on X1, and hence also for its inverse semigroup (whose generator is −A). Since
T is unitary (on any of the spaces X, X1), it follows that C is admissible for T∗
acting on the space X1. This implies that B∗ = CA−1 is an admissible observation
operator for the semigroup T∗ acting on X. From the duality result in Theorem
4.4.3 it follows that B is admissible for T acting on X.

Remark 10.3.4. In (10.3.10) A0 is the extension of the operator from (10.3.4) to an
operator in L(H,H−1) and this extension cannot be expressed in a simple manner,
other then by duality. More precisely,

〈A0Dv, ψ〉H−1,H1 = 〈Dv, A0ψ〉 ∀ ψ ∈ H1 .

In order to study the admissibility of the control operator B, it is more convenient to
study the admissibility of the observation operator B∗ for the semigroup generated
by A∗. We refer to Example 11.2.7 for a detailed discussion of this issue, together
with a discussion of the controllability of this system.
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10.4 An Euler-Bernoulli beam with torque control

In this section we study the initial and boundary value problem

∂2w

∂t2
(x, t) = − ∂4w

∂x4
(x, t) , 0 < x < π, t > 0 , (10.4.1)

w(0, t) = 0 , w(π, t) = 0 , (10.4.2)

∂2w

∂x2
(0, t) = u(t) ,

∂2w

∂x2
(π, t) = 0 , (10.4.3)

w(·, 0) = f ,
∂w

∂t
(·, 0) = g . (10.4.4)

These equations model the vibrations of an Euler-Bernoulli beam which is hinged
at the end x = π, whereas it is fixed at the end x = 0 and a bending torque
∂2w

∂x2
(0, t) = u(t) is applied at this end.

Throughout this section we denote H = L2[0, π], U = C and the operator A0 :
H1 → H is defined by

H1 = H2(0, π) ∩H1
0(0, π) , A0f = − d2f

dx2
∀ f ∈ H1 . (10.4.5)

We know from Proposition 3.5.1 that A0 > 0 and that the Hilbert spaces H 1
2

and
H− 1

2
obtained from H and A0 according to the definitions in Section 3.4 are given

by
H 1

2
= H1

0(0, π) , H− 1
2

= H−1(0, π) .

We know that A0 has unique extensions to unitary operators from H 1
2

onto H− 1
2

and from H onto H−1. These extensions are still denoted by A0. The inner products
in H 1

2
, H and H− 1

2
will be denoted by 〈·, ·〉 1

2
, 〈·, ·〉 and 〈·, ·〉− 1

2
. We denote H 3

2
=

A−1
0 H 1

2
. It is not difficult to check that

H 3
2

=

{
g ∈ H3(0, π) ∩H1

0(0, π)

∣∣∣∣
d2ψ

dx2
(0) =

d2ψ

dx2
(π) = 0

}
.

With H and A0 as above we set

X = H 1
2
×H− 1

2
, D(A) = H 3

2
×H 1

2
,

A

[
f
g

]
=

[
g

−A2
0f

]
∀

[
f
g

]
∈ D(A) . (10.4.6)

Since A2
0 is strictly positive on H− 1

2
, it follows from Proposition 3.7.6 that A is

skew-adjoint. As usual, we denote X1 = D(A), with the graph norm.
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Let

W =

{
g ∈ H3(0, π) ∩H1

0(0, π)

∣∣∣∣
d2ψ

dx2
(π) = 0

}
.

To formulate equations (10.4.1)-(10.4.4) as a boundary control system, we introduce
the solution space

Z = W ×H 1
2
.

The operators L ∈ L(Z,X) and G ∈ L(Z, U) are defined by

L

[
f
g

]
=




g

−d4f

dx4


 ∀

[
f
g

]
∈ Z ,

G

[
f
g

]
=

d2f

dx2
(0) ∀

[
f
g

]
∈ Z . (10.4.7)

We also define the operator E : C→ W by

(Ev)(x) =
v

6π
(π − x)3 − πv

6
(π − x) ∀ x ∈ [0, π] . (10.4.8)

Proposition 10.4.1. The pair (L, G) is a boundary control system on U,Z and X.
The control operator and its adjoint are given by

Bv =

[
0

A2
0Ev

]
∀ v ∈ U , (10.4.9)

B∗
[
ϕ
ψ

]
= − d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

∀
[
ϕ
ψ

]
∈ D(A∗) = D(A) . (10.4.10)

Proof. Notice that Ker G = X1 and A = L|X1 is the generator of a unitary group
on X, so that all the conditions in Definition 10.1.1 are satisfied. In order to write a
formula for B we use Remark 10.1.5. More precisely, for every v ∈ C, the abstract
elliptic problem

L

[
f
g

]
= 0 , G

[
f
g

]
= v ,

is equivalent to g = 0 and
d4f

dx4
= 0 in [0, π] ,

f(0) = f(π) = 0 ,

d2f

dx2
(0) = v ,

d2f

dx2
(π) = 0 .

It can be checked easily that the unique solution of the above boundary value prob-
lem is f = Ev, where the operator E has been defined in (10.4.8). Using Remark
10.1.5 with β = 0 we obtain (−A)−1B = [ Ev

0 ], which implies (10.4.9).
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Let
[

f
g

] ∈ Z and
[ ϕ

ψ

] ∈ D(A∗) = D(A). Then, using that A∗ = −A, we obtain

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

= 〈g, ϕ〉 1
2
−

〈
d4f

dx4
, ψ

〉

− 1
2

+ 〈f, ψ〉 1
2
− 〈g, A2

0ϕ〉− 1
2
. (10.4.11)

Assuming for a moment that f ∈ H4(0, π)∩Z and using the fact that A
1
2
0 is unitary

from H onto H− 1
2
, it follows that

〈
d4f

dx4
, ψ

〉

− 1
2

=

〈
d4f

dx4
, A−1

0 ψ

〉
=

π∫

0

d4f

dx4
A−1

0 ψdx.

Using integrations by parts, the above relation becomes

〈
d4f

dx4
, ψ

〉

− 1
2

= −
π∫

0

d3f

dx3

d

dx

(
A−1

0 ψ
)

dx

=

π∫

0

d2f

dx2

d2

dx2

(
A−1

0 ψ
)

dx +
d2f

dx2
(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

.

Using the facts that
d2

dx2

(
A−1

0 ψ
)

= −ψ, f ∈ H1 and
d2f

dx2
= −A0f together with

the density of H4(0, π) ∩W in W , it follows that
〈

d4f

dx4
, ψ

〉

− 1
2

= 〈f, ψ〉 1
2

+
d2f

dx2
(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

, (10.4.12)

for every f ∈ W and ψ ∈ H 1
2
.

To evaluate the last term in the right-hand side of (10.4.11) we use the fact that

A
1
2
0 is unitary from H 1

2
onto H and we obtain that

〈g, A2
0ϕ〉− 1

2
= − 〈g, ϕ〉 1

2
∀ g ∈ H 1

2
, ∀ ϕ ∈ H 3

2
. (10.4.13)

By combining (10.4.11), (10.4.12) and (10.4.13), it follows that
〈

L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

= − d2f

dx2
(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

.

Comparing this with (10.1.7), it follows that B∗ satisfies (10.4.10).

Remark 10.4.2. In (10.4.9) A0 is the extension of the operator from (10.4.5) to an
operator in L(H, H−1). Comments similar to those in Remark 10.3.4 apply also here:
In (10.4.9) A2

0 is not the fourth derivative operator in the sense of distributions. The
operator A2

0E can only be defined by duality:

〈A2
0Ev, ψ〉H−1,H1 = 〈A0Ev, A0ψ〉 ∀ ψ ∈ H1 .
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Proposition 10.4.3. The above boundary control system is well-posed.

Proof. We have seen in the proof of Proposition 10.4.1 that A = L|Ker G generates
a unitary group T on X. Thus we only have to show that the control operator B
expressed in the same proposition is admissible for T.

We return to the hinged Euler-Bernoulli equation discussed in Example 6.8.4.
With our current notation the state space in Example 6.8.4 is X1 = D(A), the
semigroup generator is A|D(A2), which generates the restriction of T to X1, and the
observation operator C : D(A2) → C is given by

C

[
f
g

]
=

dg

dx
(0) ∀

[
f
g

]
∈ D(A2) = H 5

2
×H 3

2
.

We have shown in Example 6.8.4 that C is an admissible observation operator for
T restricted to X1. Using the isomorphism Q =

[
A0 0
0 A0

]
from X1 to X (which com-

mutes with A and hence with T), we obtain that CQ−1 is an admissible observation
operator for T (acting on X). From (10.4.10) we see that CQ−1 = −B∗. Thus B∗ is
an admissible observation operator for T. Since T is invertible, B∗ is admissible also
for the inverse semigroup, which in our case is T∗. By the duality result in Theorem
4.4.3, B is an admissible control operator for T.

10.5 An Euler-Bernoulli beam with angular velocity control

In this section we consider a system modeling the vibrations of an Euler-Bernoulli
beam which is clamped at the end x = 1 whereas it is fixed at the end x = 0 and an

angular velocity
∂ẇ

∂x
(0, t) = u(t) is imposed at this end. More precisely, we study

the initial and boundary value problem

∂2w

∂t2
(x, t) = − ∂4w

∂x4
(x, t) , 0 < x < 1 , t > 0 , (10.5.1)

w(0, t) = 0 , w(1, t) = 0 , (10.5.2)

∂ẇ

∂x
(0, t) = u(t) ,

∂w

∂x
(1, t) = 0 , (10.5.3)

w(·, 0) = f ,
∂w

∂t
(·, 0) = g . (10.5.4)

We denote

X = V × L2[0, 1], where V =

{
h ∈ H2(0, 1) | h(0) = h(1) =

dh

dx
(1) = 0

}
.

The norm on X is defined by:

‖z‖2 = ‖z1‖2
V + ‖z2‖2

L2 ,
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where ‖z1‖2
V =

∫ 1

0

∣∣∣d2z1

dx2

∣∣∣
2

dx. We introduce the space Z ⊂ X by

Z =
(
V ∩H4(0, 1)

)× V ,

and we define the operators L : Z→X, G : Z→C by

L =

[
0 I

− d4

dx4 0

]
, G

[
z1

z2

]
=

dz2

dx
(0) .

With the above notation, the equations (10.5.1)-(10.5.3) can be written as follows:

ż = Lz, Gz = u.

Such equations determine a boundary control system if L and G satisfy certain
conditions, see Section 10.1. We prove below that this is indeed the case. Before
doing this, we introduce the operator A = L|Ker G. It is easy to verify that

D(A) = Ker G =
(
V ∩H4(0, 1)

)×H2
0(0, 1)

which is a closed subspace of V .

Proposition 10.5.1. The pair (L,G) is a well-posed boundary control system on
C, Z and X. Its control operator B is determined by

B∗
[
ψ1

ψ2

]
= − d2ψ1

dx2
(0) ∀

[
ψ1

ψ2

]
∈ D(A∗) = D(A) . (10.5.5)

Proof. It is clear that G is onto. We decompose the state space X into two parts:
the null-space of A, denoted Xn, and its orthogonal complement Xr. From a simple
computation,

Xn = Ker A =

{[
aq(x)

0

] ∣∣∣∣ a ∈ C
}

, where q(x) = x(x− 1)2 .

Now we determine Xr = X⊥
n . If z = [ z1

z2 ] ∈ Xr then z1 ∈ V and z2 ∈ L2[0, 1]. The
condition z ∈ X⊥

n is equivalent to

〈q, z1〉V = 0 .

We have, using integration by parts, that for every h ∈ V ,

〈q, h〉V =

[
d2q

dx2
· dh

dx

]1

0

−
1∫

0

d3q

dx3
(x) · dh

dx
(x)dx.

Since dh
dx

(1) = 0, we get, by another integration by parts,

〈q, h〉V = − d2q

dx2
(0) · dh

dx
(0)−

[
d3q

dx3
· h

]1

0

+

1∫

0

d4q

dx4
· hdx.
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Using that d4q
dx4 = 0 and h(0) = h(1) = 0, we get

〈q, h〉V = − d2q

dx2
(0) · dh

dx
(0) ∀ h ∈ V .

Therefore we have for z1 in place of h

d2q

dx2
(0) · dz1

dx
(0) = 0 .

Since d2q
dx2 (0) = −4, it follows that dz1

dx
(0) = 0, so that z1 ∈ H2

0(0, 1). Thus we get
Xr ⊂ H2

0(0, 1)×L2[0, 1]. The converse inclusion is proved by the same computation,
so that

Xr = H2
0(0, 1)× L2[0, 1] .

We denote by Ar the part of A in Xr. Then

D(Ar) =
(H2

0(0, 1) ∩H4(0, 1)
)×H2

0(0, 1) ,

Ar =

[
0 I

− d4

dx4 0

]
.

It is easy to see that Xr is invariant under A, i.e., Arz ∈ Xr for every z ∈ D(Ar).
Moreover, by comparing the last two formulas with those in Section 6.10 we see
that the operator Ar corresponds to the equations of a beam clamped at boths
ends. Therefore, according to the remarks at the beginning of Section 6.10, the
operator Ar is skew-adjoint, so that it generates a unitary group S on Xr. Since

X = Xr ⊕Xn , A =

[
Ar 0
0 0

]
, (10.5.6)

it follows that A is skew-adjoint and hence it generates a unitary group T on X

given by Tt =
[
St 0
0 I

]
. In particular, it follows that conditions (ii)-(iv) in Definition

10.1.1 are satisfied, so that (L,G) is a boundary control system.

To compute the control operator B we use Remark 10.1.6, i.e., we use the formula
(10.1.7) to find B∗. Using the fact that A∗ = −A, (10.1.7) becomes

〈Gz, B∗ψ〉C = 〈Lz, ψ〉X + 〈z, Aψ〉X ∀ z ∈ Z , ψ ∈ D(A) .

Hence, denoting z = [ z1
z2 ] , ψ =

[
ψ1

ψ2

]
,

Gz ·B∗ψ =

〈[
z2

−d4z1

dx4

]
,

[
ψ1

ψ2

]〉

X

+

〈[
z1

z2

]
,

[
ψ2

−d4ψ1

dx4

]〉

X

= 〈z2, ψ1〉V −
〈

d4z1

dx4
, ψ2

〉

L2

+ 〈z1, ψ2〉V −
〈

z2,
d4ψ1

dx4

〉

L2

.
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Using twice integration by parts for the above inner products in L2, many terms
cancel and we are left with

dz2

dx
(0) ·B∗ψ = − dz2

dx
(0)

d2ψ1

dx2
(0) ∀ z ∈ Z , ψ ∈ D(A) .

This implies (10.5.5).

In order to show that the boundary control system (L,G) is well-posed, it remains
to prove that B is an admissible control operator for T, or equivalently, that B∗ is
an admissible observation operator for T∗. We use again the decomposition (10.5.6)
of X. As already mentioned, the operator Ar coincides with the group generator
of the clamped Euler-Bernoulli beam in Section 6.10. We define the operators Cr

and Cn as the restrictions of B∗ to D(Ar) and to Xn, so that B∗ =
[
Cr Cn

]
. It is

easy to see that Cr = −C, where C is the operator defined in (6.10.5). Since C is
admissible for S (see Proposition 6.10.1) and since Cn is bounded, it follows that B∗

is an admissible observation operator for T. Since T is invertible, B∗ is admissible
also for the inverse semigroup, which in our case is T∗. We have thus checked that
the boundary control system (L,G) is well-posed.

10.6 The Dirichlet map on an n-dimensional domain

In this section we introduce the Dirichlet map and the boundary trace operators γ0

and γ1, which are important tools for the formulation of certain PDEs as boundary
control systems (see, for example, Section 10.8).

We consider Ω to be an open bounded subset of Rn with boundary ∂Ω of class
C2 (as defined in Section 13.5). We denote by −A0 the Dirichlet Laplacian on Ω,
as introduced in Section 3.6, so that A0 : D(A0)→L2(Ω), where

D(A0) = H2(Ω) ∩H1
0(Ω) ,

see Theorem 3.6.2, and A0 > 0. For any f ∈ H2(Ω) we denote by ∂f
∂ν

the outward
normal derivative of f on ∂Ω (see Section 13.6 for more details on this concept).

We denote H = L2(Ω) and, as in Section 3.4, we define H1 = D(A0), H 1
2

=

D(A
1
2
0 ), with the norms ‖z‖1 = ‖A0z‖H and ‖z‖ 1

2
= ‖A

1
2
0 z‖H . The spaces H−1

and H− 1
2

are defined as the duals of H1 and of H 1
2

with respect to the pivot space

H, respectively. As explained a little earlier, we have H1 = H2(Ω) ∩ H1
0(Ω) and,

according to Proposition 3.6.1, we have H 1
2

= H1
0(Ω) and H− 1

2
= H−1(Ω).

Proposition 10.6.1. For every v ∈ L2(∂Ω), there exists a unique function Dv ∈
L2(Ω) such that

∫

Ω

(Dv)(x)g(x)dx = −
∫

∂Ω

v
∂(A−1

0 g)

∂ν
dσ ∀ g ∈ L2(Ω) . (10.6.1)
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Moreover, the operator D defined above (called the Dirichlet map) is linear and
bounded from L2(∂Ω) into L2(Ω) and its adjoint D∗ ∈ L(L2(Ω), L2(∂Ω)) is given by

D∗g = − ∂(A−1
0 g)

∂ν
∀ g ∈ L2(Ω) . (10.6.2)

Proof. We denote U = L2(∂Ω). Since A−1
0 ∈ L(H, H1), and since by Theorem

13.6.6 in Appendix II, the map ψ 7→ ∂ψ

∂ν
is in L(H1, U), it follows that the expression

∂(A−1
0 g)

∂ν
∈ U depends boundedly on g ∈ H. According to the Riesz representation

theorem for every v ∈ U there exists a unique Dv ∈ H such that

〈Dv, g〉H =

〈
v, − ∂(A−1

0 g)

∂ν

〉

U

∀ g ∈ L2(Ω) ,

which is almost (10.6.1). To really get (10.6.1), we have to replace g with its complex
conjugate g. It is clear that the above formula implies (10.6.2).

Proposition 10.6.2. For every v ∈ L2(∂Ω) we have Dv ∈ C∞(Ω) and ∆Dv = 0.

Proof. First we prove that for every v ∈ L2(∂Ω) we have ∆Dv = 0, in the sense
of distributions on Ω. Indeed, if we take in (10.6.1) g = ∆ϕ, where ϕ ∈ D(Ω), we
obtain ∫

Ω

(Dv)(x)(∆ϕ)(x)dx =

∫

Γ

v
∂ϕ

∂ν
dσ = 0 ∀ ϕ ∈ D(Ω) .

From the definition of the Laplacian of a distribution (see Section 3.6 or Section
13.3) we now see that ∆Dv = 0 (in D′(Ω)).

It follows from Remark 13.5.6 in Appendix II that for any v ∈ L2(∂Ω) we have
Dv ∈ Hm

loc(Ω), for every m ∈ N. According to Remark 13.4.5 (also in Appendix II)
it follows that Dv ∈ C∞(Ω). Thus, the formula ∆Dv = 0 (which holds in the sense
of distributions) must actually hold in the classical sense.

Remark 10.6.3. The last proposition implies, in particular, that

D ∈ L(L2(∂Ω),W(∆)) ,

where
W(∆) = {g ∈ L2(Ω) | ∆g ∈ H−1(Ω)} , (10.6.3)

which is a Hilbert space with the norm

‖g‖W(∆) =
√
‖g‖2

L2(Ω) + ‖∆g‖2
H−1(Ω) ∀ g ∈ W(∆) .

For Ω as above and for every f ∈ C2(clos Ω), we introduce the boundary traces

γ0f = f |∂Ω , γ1f =
∂f

∂ν
. (10.6.4)
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It can be shown that the operators γ0 and γ1 can be extended such that

γ0 ∈ L(H1(Ω),H 1
2 (∂Ω)) , γ1 ∈ L(H2(Ω),H 1

2 (∂Ω)) ,

For the definition of the space H 1
2 (∂Ω) and some of its properties we refer to Section

13.5 in Appendix II. The dual of H 1
2 (∂Ω)) with respect to the pivot space L2(∂Ω)

is denoted by H− 1
2 (∂Ω)) - for more on this space we refer to Section 13.7.

The formulas (10.6.4) determine γ0 and γ1, because C2(clos Ω) is dense in both
H1(Ω) and in H2(Ω). γ0f is called the Dirichlet trace of f , while γ1f is called the
Neumann trace of f . For more details on these trace operators and for references
see Section 13.6. It is shown in Section 13.7 that γ0 has a unique extension such
that

γ0 ∈ L(W(∆),H− 1
2 (∂Ω)) (10.6.5)

and for every ϕ ∈ H 1
2 (∂Ω) and every g ∈ W(∆),

〈γ0g, ϕ〉H− 1
2 (∂Ω),H 1

2 (∂Ω)
=

∫

Ω

g ∆ϕ̃dx − 〈∆g, ϕ̃〉H−1(Ω),H1
0(Ω) . (10.6.6)

Here ϕ̃ ∈ H2(Ω) is obtained from ϕ as in the proof of Proposition 13.7.8, so that

γ0ϕ̃ = 0, γ1ϕ̃ = ϕ. (10.6.7)

Remark 10.6.3 with (10.6.5) imply that γ0D is well defined.

Proposition 10.6.4. We have γ0D = I (the identity on L2(∂Ω)).

Proof. Take v ∈ L2(∂Ω), ϕ ∈ H 1
2 (∂Ω) and g = Dv. According to (10.6.6), we

obtain (using Proposition 10.6.2) that

〈γ0Dv, ϕ〉H− 1
2 (∂Ω),H 1

2 (∂Ω)
=

∫

Ω

(Dv)(x)(∆ϕ̃)(x)dx.

Using the definition of D in Proposition 10.6.1, we obtain

〈γ0Dv, ϕ〉H− 1
2 (∂Ω),H 1

2 (∂Ω)
= −

∫

∂Ω

v
∂(A−1

0 ∆ϕ̃)

∂ν
dσ.

Since ϕ̃ ∈ D(A0), we have −A−1
0 ∆ϕ̃ = ϕ̃. Thus, we get

〈γ0Dv, ϕ〉H− 1
2 (∂Ω),H 1

2 (∂Ω)
=

∫

∂Ω

vϕdσ,

for all ϕ ∈ H 1
2 (∂Ω). Since this space is dense in L2(∂Ω), we get γ0Dv = v.
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Remark 10.6.5. The name “Dirichlet map” for the operator D is due to the fact
that, as we have shown, z = Dv is a solution of the Dirichlet problem

∆z = 0 , γ0z = v . (10.6.8)

Proposition 10.6.6. For every v ∈ L2(∂Ω), z = Dv is the unique solution of the
Dirichlet problem (10.6.8) in L2(Ω).

Proof. Let z ∈ L2(Ω) be a solution of (10.6.8). Then g = Dv−z ∈ L2(Ω) satisfies

∆g = 0 , γ0g = 0 .

From (10.6.6) it follows that
∫

Ω

g ∆ϕ̃dx = 0 ∀ ϕ ∈ H 1
2 (∂Ω) ,

where ϕ̃ ∈ H2(Ω) is obtained from ϕ as in the proof of Proposition 13.7.8. Using
the definition of the Laplacian in the distributional sense, it follows that

∫

Ω

g ∆(ϕ̃ + ψ)dx = 0 ∀ ϕ ∈ H 1
2 (∂Ω) , ψ ∈ D(Ω) .

Recall that ϕ̃ ∈ H2(Ω)∩H1
0(Ω), so that φ+ψ ∈ D(A0) and the last formula implies

that
〈g, A0(ϕ̃ + ψ)〉 = 0 , (10.6.9)

for every ϕ ∈ H 1
2 (∂Ω) and ψ ∈ D(Ω).

Let us show that the set of all the functions of the form ϕ̃ + ψ as above are
dense in H2(Ω) ∩ H1

0(Ω). Take f ∈ H2(Ω) ∩ H1
0(Ω) and denote ϕ = γ1f . Then,

according to (10.6.7), the corresponding ϕ̃ ∈ H2(Ω) satisfies γ1ϕ̃ = γ1f . It follows
that ψ0 = f−ϕ̃, which is an element of H2(Ω)∩H1

0(Ω), satisfies γ1ψ0 = 0. According
to Proposition 13.6.7 in Appendix II it follows that ψ0 ∈ H2

0(Ω). By the definition
of H2

0(Ω) given in the same Appendix, for every ε > 0 there exists ψ ∈ D(Ω) such
that ‖ψ − ψ0‖H2(Ω) < ε. It follows that ‖f − (ϕ̃ + ψ)‖H2(Ω) < ε. This shows that

indeed the space of all the functions of the form η = ϕ̃ + ψ, where ϕ ∈ H 1
2 (∂Ω) and

ψ ∈ D(Ω), is dense in H1 = H2(Ω) ∩H1
0(Ω).

The density result that we have just proved, together with (10.6.9) and the fact
that A0 ∈ L(H1, H), implies that

〈g, A0η〉 = 0 ∀ η ∈ H1 .

Since A0 is onto H, it follows that g = 0.

We know from Remark 3.6.3 that A0 can be uniquely extended to a unitary
operator in L(H 1

2
, H− 1

2
) or in L(H, H−1). These extensions (still denoted by A0)

may also be regarded as strictly positive operators on H− 1
2

or on H−1, respectively.

Denote X = H− 1
2

= H−1(Ω) and regard A0 as a positive operator on X, with

domain X1 = H 1
2

= H1
0(Ω). According to Remark 3.4.7, X 1

2
= H = L2(Ω) and

X− 1
2

= H−1 is the dual of X 1
2

with respect to the pivot space X.
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Proposition 10.6.7. Let B0 ∈ L(L2(∂Ω), X− 1
2
) be defined by B0 = A0D. Identify-

ing L2(∂Ω) with its dual, we have that B∗
0 ∈ L(X 1

2
, L2(∂Ω)) is given by

B∗
0g = − ∂(A−1

0 g)

∂ν
∀ g ∈ X 1

2
.

Proof. For v ∈ L2(∂Ω) and g ∈ X 1
2

we have

〈B0v, g〉X− 1
2

,X 1
2

= 〈A0Dv, g〉X− 1
2

,X 1
2

= 〈A
1
2
0 Dv, A

1
2
0 g〉X .

Since A
1
2
0 is a unitary operator from X 1

2
to X and X 1

2
= H, it follows that for every

v ∈ L2(∂Ω) and g ∈ X 1
2

we have

〈B0v, g〉X− 1
2

,X 1
2

= 〈Dv, g〉H .

The above formula and (10.6.1) imply that

〈B0v, g〉X− 1
2

,X 1
2

= − 〈v,
∂(A−1

0 g)

∂ν
〉H ∀ g ∈ X 1

2
, v ∈ L2(∂Ω) ,

which yields the conclusion.

10.7 The heat and Schrödinger equations with
boundary control

In this section Ω ⊂ Rn is open, bounded and with C2 boundary ∂Ω. Let Γ be
a non-empty open subset of ∂Ω. We first consider an initial and boundary value
problem corresponding to the heat equation

∂z

∂t
= ∆z in Ω× (0,∞) . (10.7.1)

We impose the initial and boundary conditions

z = u on Γ× (0,∞) , (10.7.2)

z = 0 on (∂Ω \ Γ)× (0,∞) . (10.7.3)

z(x, 0) = f(x) for x ∈ Ω , (10.7.4)

To formulate these equations as a boundary control system, we introduce the
following input space U , solution space Z and state space X:

U = L2(Γ) , Z = H1
0(Ω) + DU , X = H−1(Ω) , (10.7.5)
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where D is the Dirichlet map introduced in Proposition 10.6.1. The space U is
regarded as a (closed) subspace of L2(∂Ω) by extending any element v ∈ U to be
zero on ∂Ω \ Γ. Thus, D can be applied to elements of U .

The operators L ∈ L(Z, X) and G ∈ L(Z, U) are defined by

Lz = ∆z , Gz = γ0z , (10.7.6)

where γ0 is the extension of the Dirichlet trace operator to the domain W(∆)
introduced in (10.6.3). We have Z ⊂ W(∆), as follows from the fact that ∆ :
H1

0(Ω)→H−1(Ω) and from Remark 10.6.3. Thus, γ0z in (10.7.6) is well defined.

As in the previous section (and in Section 3.6), we denote by −A0 the Dirichlet
Laplacian on Ω and its various extensions. Again, A0 can be regarded as a strictly
positive operator (densely defined) on X. Considering this extension of A0, we
denote (as at the end of the previous section)

X1 = D(A0) = H1
0(Ω) , X 1

2
= D(A

1
2
0 ) = L2(Ω) .

The space X− 1
2

is the dual of X 1
2

with respect to the pivot space X, hence X− 1
2

is

the dual of H2(Ω)∩H1
0(Ω) with respect to the pivot space L2(Ω). Using Proposition

3.4.5 and Corollary 3.4.6 (with X in place of H) we see that A0 can be extended
also to an operator in L(X 1

2
, X− 1

2
) and A0 is a unitary operator from X1 to X, from

X 1
2

to X− 1
2

and from X to X−1. Similarly, A
1
2
0 is a unitary operator from X1 to X 1

2
,

from X 1
2

to X and from X to X− 1
2
. Hence,

〈z, w〉X = 〈A− 1
2

0 z, A
− 1

2
0 w〉L2(Ω) ∀ z, w ∈ X.

Proposition 10.7.1. The pair (L, G) defined by (10.7.6) is a well-posed boundary
control system on the spaces U,Z and X defined by (10.7.5). Its generator is A =
−A0 and its control operator is B = A0D (this is B0 from Proposition 10.6.7).

Proof. It follows from Proposition 10.6.4 that if we take an arbitrary element of
Z, i.e., an element of the form z = h + Dv, where h ∈ H1

0(Ω) and v ∈ U , then
Gz = v. This shows that G is onto U , as required in Definition 10.1.1. To check the
other conditions in this definition, introduce A = L|Ker G. Clearly Ker G = H1

0(Ω).
Recall from (the second part of) Remark 3.6.3 that on H1

0(Ω), ∆ = −A0. Hence,
A = L|Ker G is the generator of the heat semigroup, see Remark 3.6.11. Moreover, it
follows that conditions (ii)-(iv) in Definition 10.1.1 are satisfied with β = 0, so that
L and G define a boundary control system.

Let us determine the control operator B of this system. We do this directly from
(10.1.3) (the definition of B). Indeed, if v ∈ U then (according to (10.1.3))

LDv − ADv = BGDv .

Taking into account the definitions of L and D and using Proposition 10.6.2, we
obtain

A0Dv = BGDv .
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Since GD = I (see Proposition 10.6.4), we obtain the desired formula for B.

It remains to show the well-posedness. We have already seen that A = −A0

generates the heat semigroup T. Using the fact that B∗ ∈ L(X 1
2
, U) combined with

Proposition 5.1.3 we get that B∗ is an admissible observation operator for T = T∗.
By applying Theorem 4.4.3 it follows that B is an admissible control operator for
T, so that we have indeed a well-posed boundary control system.

Using the terminology of the PDE literature, the above result can be stated in
terms of the existence and uniqueness of weak solutions of (10.7.1)-(10.7.4), without
using any operators.

Definition 10.7.2. For f ∈ H−1(Ω) and u ∈ L2([0, τ ]; L2(Γ)), we say that

z ∈ C([0,∞),H−1(Ω))

is a weak solution of (10.7.1)–(10.7.4) if

〈z(t), ψ〉H−1(Ω),H1
0(Ω) − 〈f, ψ〉H−1(Ω),H1

0(Ω)

=

t∫

0

〈z(s), ∆ψ〉H−1(Ω),H1
0(Ω)ds−

t∫

0

∫

Γ

u(s)
∂ψ

∂ν
dσdt (10.7.7)

for every t > 0 and every ψ ∈ H2(Ω) ∩H1
0(Ω) such that ∆ψ ∈ H1

0(Ω).

The above definition is motivated by the fact that if z is a smooth solution of
(10.7.1)–(10.7.4) then, by taking the product of (10.7.1) with ψ and by integrating
by parts on Ω and then on [0, t], we easily obtain (10.7.7). Conversely, if z is smooth
enough and it satisfies (10.7.7), then z satisfies (10.7.1)–(10.7.4).

Proposition 10.7.3. For every f ∈ H−1(Ω) and u ∈ L2([0,∞); L2(Γ)) the problem
(10.7.1)–(10.7.4) admits a unique weak solution, in the sense of Definition 10.7.2.

Proof. Since B = A0D is an admissible control operator for the semigroup T
generated by the self-adjoint A = −A0 on X (as proved in the previous proposition),
according to Remark 4.2.6, for every z0 ∈ X and every u ∈ L2

loc([0,∞); U) there
exists a unique z ∈ C([0,∞); X) such that, for every t > 0,

〈z(t)−z0, ϕ〉X =

t∫

0

[−〈z(ζ), A0ϕ〉X + 〈u(ζ), B∗ϕ〉U ] dζ ∀ ϕ ∈ D(A) . (10.7.8)

Using the fact that A
1
2
0 is an isomorphism from H onto H− 1

2
and Proposition 10.6.7,

it follows that for every t > 0,

〈z(t)− z0, A
−1
0 ϕ〉H− 1

2
,H 1

2

= −
t∫

0


〈z(ζ), ϕ〉H− 1

2
,H 1

2

+

∫

Γ

u(x, ζ)
∂(A−1

0 ϕ)

∂ν
(x, ζ)dσ


 dζ .
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Setting A−1
0 ϕ = ψ, the above formula implies that z is a solution of (10.7.1)–(10.7.4),

with f = z0, in the sense of Definition 10.7.2.

We show that this weak solution is unique. Let z be a weak solution of (10.7.1)–
(10.7.4), in the sense of Definition 10.7.2. Setting A0ϕ = ψ it follows that z satisfies
(10.7.8). Since, according to Remark 4.2.6, such a z is unique in C([0,∞); X), we
obtain the uniqueness of the weak solution of (10.7.1)–(10.7.4).

Now we consider an initial and boundary value problem corresponding to the
Schrödinger equation

∂z

∂t
= i∆z in Ω× (0,∞) .

We impose the initial and boundary conditions

z = u on Γ× (0,∞) ,

z = 0 on (∂Ω \ Γ)× (0,∞) ,

z(x, 0) = f(x) for x ∈ Ω .

Proposition 10.7.4. The pair (iL,G) defined by (10.7.6) is a well-posed boundary
control system on the spaces U,Z and X defined by (10.7.5). Its control operator is
B = iB0, where B0 = A0D is as in Proposition 10.6.7.

Proof. We have seen in the proof of Proposition 10.7.1 that G maps Z onto U .
Moreover, we have Ker G = H1

0(Ω) and L|Ker G = −iA0, so that L|Ker G generates
a unitary group T on X. It follows that conditions (ii)-(iv) in Definition 10.1.1 are
satisfied with β = 0, so that L and G define a boundary control system.

In order to determine the control operator B of this system we use (10.1.3). More
precisely, if v ∈ U then, according to (10.1.3), we have

iLDv + iA0Dv = BGDv .

Since LD = 0 and GD = I, we obtain the claimed formula for B.

The well-posedness of this boundary control system is equivalent to the fact that
B∗ is an admissible observation operator for the semigroup T∗, which in our case is
the inverse semigroup of T. According to Proposition 10.6.7 we have

B∗g = i
∂(A−1

0 g)

∂ν
= iC1(A

−1
0 g) ∀ g ∈ X 1

2
,

where C1f = ∂f
∂ν
|Γ. According to Proposition 7.5.1, C1 is an admissible observation

operator for T acting on X1 = H 1
2
. This implies that B∗ is admissible for T acting

on X, and hence also for its inverse T∗ acting on X.

Remark 10.7.5. The concept of weak solution of the Schrödinger equation, with the
initial and boundary conditions imposed as before Proposition 10.7.4, is a very slight
modification of the one in Definition 10.7.2. It follows from the last proposition that
for every f ∈ H−1(Ω) and every u ∈ L2([0,∞); L2(Γ)) the Schrödinger equation with
the initial and boundary conditions mentioned above has a unique weak solution.
The proof is a very slight modification of the proof of Proposition 10.7.3.
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10.8 The convection-diffusion equation with
boundary control

In this section, Ω ⊂ Rn is open, bounded and with C2 boundary ∂Ω. In Example
5.4.4 we have introduced (with less assumptions on Ω) the operator semigroup Tcl

corresponding to the convection-diffusion equation

∂z

∂t
= ∆z + b · ∇z + cz in Ω× (0,∞) , (10.8.1)

with the homogeneous boundary condition

z = 0 on ∂Ω .

In this section we assume that

b ∈ L∞(Ω;Cn) , c ∈ L∞(Ω) , div b ∈ L∞(Ω) (10.8.2)

(this is more restrictive than in Example 5.4.4). We continue to regard Tcl as a
perturbation of the heat semigroup, of the type discussed in Section 5.4. How-
ever, in this section we need to extend the semigroup Tcl to the larger state space
X = H−1(Ω). This is needed in order to introduce a boundary control system
corresponding to the same PDE with Dirichlet boundary control.

We denote H = L2(Ω), A is the Dirichlet Laplacian on Ω, so that (as shown

in Section 3.6) A < 0, D(A) = H2(Ω) ∩ H1
0(Ω), H 1

2
= D((−A)

1
2 ) = H1

0(Ω) and

H− 1
2

= H−1(Ω). We define C ∈ L(H 1
2
, H) by

Cz = b · ∇z + cz ∀ z ∈ H1
0(Ω) . (10.8.3)

Remark 10.8.1. In this remark we discuss the extension of the semigroup Tcl to
the space H−1. It is not difficult to verify (using (13.3.1) to express div (bψ), first
for ψ ∈ D(Ω) and then for ψ ∈ H1

0(Ω) by continuous extension) that

(A + C)∗ψ = ∆ψ − div (bψ) + cψ

= ∆ψ − b · ∇ψ + (c− div b)ψ,

for all ψ ∈ D((A + C)∗) = D(A). Thus, (A + C)∗ is a perturbation of A of a
similar nature as A + C. The graph norms of A, A + C and (A + C)∗ on D(A) are
clearly equivalent. It follows that that space H−1 for A + C (which is the dual of
Hd

1 = D((A + C)∗) with respect to the pivot space H, see Proposition 2.10.2) is the
same as the space H−1 for A. According to Proposition 2.10.4 Tcl can be extended

to a strongly continuous semigroup T̃cl on H−1, and the generator of this extended

semigroup is an extension of A + C, denoted Ã + C, with domain H. For us, it is
more interesting to understand the extension of Tcl to the smaller space H− 1

2
. This

extension of the original Tcl can be understood using the properties of the semigroup
Tcl acting on H and on H−1 and then using the interpolation results from Remark
3.4.10. An alternative, direct approach will be used in the sequel.
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As in the previous two sections, introduce the state space X = H− 1
2

= H−1(Ω).
It is clear that the heat semigroup T generated by A, originally defined on H, has a
continuous extension to an operator semigroup acting on X, still denoted by T. The
generator of this semigroup is an extension of the Dirichlet Laplacian, still denoted
by A, with D(A) = X1 = H 1

2
. Unless otherwise stated, when we write A, we mean

this operator. As mentioned in Section 10.6, we have X 1
2

= D((−A)
1
2 ) = L2(Ω).

Lemma 10.8.2. We define C by (10.8.3), where b and c satisfy (10.8.2). Then C
has an extension Ce such that

Ce ∈ L(L2(Ω),H−1(Ω)) . (10.8.4)

Proof. We rewrite C using (13.3.1):

Cz = div (bz)− (div b)z + cz .

This is true for z ∈ D(Ω) and, by the density of D(Ω) in H1
0(Ω), it holds for all

z ∈ H1
0(Ω). Since div is a bounded operator from L2(Ω) to H−1(Ω) (this follows

from Proposition 13.4.9), using our assumptions on b and c, (10.8.4) follows.

In the sequel we consider the boundary controlled convection diffusion equation.
Let Γ be a non-empty open subset of ∂Ω. We consider the initial and boundary value
problem corresponding to the convection-diffusion equation (10.8.1), where b and c
are as in (10.8.2). We impose the initial and boundary conditions (10.7.2)–(10.7.4).
To formulate these equations as a boundary control system, we introduce the same
input and solution spaces as in the previous section:

U = L2(Γ) , Z = H1
0(Ω) + DU ,

where D is the Dirichlet map. As usual, U is regarded as a subspace of L2(∂Ω).

The operators Lcl ∈ L(Z,X) and G ∈ L(Z, U) are defined by

Lclz = ∆z + Cez , Gz = γ0z , (10.8.5)

where ∆ is the Laplacian in the sense of distributions, Ce is the operator introduced
in Lemma 10.8.2 and γ0 is a suitable extension of the Dirichlet trace operator (as in
the previous section). As explained after (10.7.6), γ0z in (10.8.5) is well defined. It
is clear that indeed Lcl corresponds to the convection-diffusion equation (10.8.1).

Theorem 10.8.3. The pair (Lcl, G) defined above is a well-posed boundary control
system on the spaces U,Z and X.

Proof. We denote L = ∆ (as in the previous section), so that (according to
Proposition 10.7.1) (L,G) is a well-posed boundary control system on U,Z and X.
The generator of (L,G) is A and its control operator is B1 = −AD. According to
Proposition 5.1.3 and Lemma 10.8.2, C from (10.8.3) is an admissible observation
operator for the heat semigroup T on X (with output space X). We have Lcl =
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L + Ce, where Ce is the extension of C from Lemma 10.8.2. Clearly Z ⊂ L2(Ω)
with continuous embedding, so that Ce ∈ L(Z,X). To be able to apply Proposition
10.1.10 (with Y = X and B = I) we only have to verify that for some α ∈ R,

‖Ce(sI − A)−1B1‖L(U,X) 6 M ∀ s ∈ Cα . (10.8.6)

Let us factor Ce = Cb(−A)
1
2 , where Cb ∈ L(X) (we have used that (−A)

1
2 is

unitary from X 1
2

to X). Similarly, we factor B1 = (−A)
1
2 (−A)

1
2 D, where (−A)

1
2 D ∈

L(U,X). Then (10.8.6) follows if we can show that for some α ∈ R we have

‖(−A)
1
2 (sI − A)−1(−A)

1
2‖L(X) 6 M ∀ s ∈ Cα .

For every α > 0, the above estimate is an easy consequence of A < 0. Thus, the
statement follows from Proposition 10.1.10.

Remark 10.8.4. With the notation of the last theorem, the generator of the well-
posed boundary control system (Lcl, G) is A+C and its control operator is −JAD,
where J is the extension of the identity operator introduced in Proposition 10.1.10.
These additional statements follow from Proposition 10.1.10, once we have reached
the end of the proof of the theorem.

Remark 10.8.5. Let us denote by Tcl the operator semigroup on X corresponding
to the well-posed boundary control system in Theorem 10.8.3. As explained in the
previous remark, its generator is A + C. This semigroup is an extension of the
one from Example 5.4.4. This follows from the last part of Proposition 2.4.4 (with
V = L2(Ω)). In particular, it follows that L2(Ω) is an invariant subspace for Tcl.

10.9 The wave equation with Dirichlet boundary control

The physical system that we have in mind in this section consists of a vibrating
membrane which is fixed on a part of the boundary, while the displacement field is
controlled on the remaining part of the boundary. A membrane could be modeled
in a domain in R2, but we consider a more general wave equation on a bounded
n-dimensional domain Ω. We denote by Γ the part of ∂Ω where the control acts.
Our model is the following initial and boundary value problem:

∂2w

∂t2
= ∆w in Ω× (0,∞), (10.9.1)

w = 0 on ∂Ω \ Γ× (0,∞) , (10.9.2)

w = u on Γ× (0,∞), (10.9.3)

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) for x ∈ Ω . (10.9.4)

The input of this system is the function u in (10.9.3). At the end of this Section we
shall define weak solutions for the above initial and boundary value problem and we
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shall prove the existence and uniqueness of these solutions. We shall also see that
lower order terms can be added in the equation at no extra cost in the difficulty of
proving its well-posedness. (This is in contrast to the convection-diffusion equation,
where the lower order terms needed much effort to handle.)

Notation. In this section, Ω ⊂ Rn is bounded and open with boundary ∂Ω of
class C2. Let Γ be an open subset of ∂Ω and denote U = L2(Γ). For ϕ ∈ H1(Ω)
we denote by ϕ|Γ the restriction of the boundary trace γ0ϕ to Γ. Similarly, for
ϕ ∈ H2(Ω), we denote by ∂ϕ

∂ν
|Γ the restriction of the normal derivative γ1ϕ to Γ

(γ0 and γ1 have been introduced in Section 10.6). We denote H = L2(Ω) and
the operator A0 is the Dirichlet Laplacian defined in Section 3.6. With the above
smoothness assumptions on ∂Ω, we know from Theorem 3.6.2 that A0 : H1 → H is
defined by

H1 = H2(Ω) ∩H1
0(Ω) , A0f = −∆f ∀ f ∈ H1 .

We know from from Proposition 3.6.1 that A0 is strictly positive and that the Hilbert
spaces H 1

2
and H− 1

2
obtained from H and A0 according to the definitions in Section

3.4 are given by
H 1

2
= H1

0(Ω) , H− 1
2

= H−1(Ω) .

We know from Corollary 3.4.6 and Remark 3.4.7 that A0 can be extended to a unitary
operator from H 1

2
onto H− 1

2
and from H onto H−1. As usual, these extensions will

be denoted also by A0. The inner products in H 1
2
, H and H− 1

2
will be denoted by

〈·, ·〉 1
2
, 〈·, ·〉 and 〈·, ·〉− 1

2
. We also introduce the spaces

X = H ×H− 1
2

= L2(Ω)×H−1(Ω) , D(A) = H 1
2
×H = H1

0(Ω)× L2(Ω)

and the operator A : D(A) → X defined by

A =

[
0 I

−A0 0

]
. (10.9.5)

Since A0 is strictly positive, we know from Proposition 3.7.6 that A is skew-adjoint,
so that it generates a unitary group T on X. We also know that 0 ∈ ρ(A). Moreover,
we have X−1 = H− 1

2
×H−1. Finally, we introduce

W = H1
0(Ω) + DU , (10.9.6)

where D is the Dirichlet map introduced in Proposition 10.6.1. Note that this space
has been denoted by Z in Section 10.7, where it was used as the solution space for
the boundary controlled heat and Schrödinger equations. However, in this section
we shall need the notation Z for the solution space for the wave equation.

To formulate equations (10.9.1)-(10.9.4) as a boundary control system, we intro-
duce the solution space

Z = W ×H.
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The operators L ∈ L(Z, X) and G ∈ L(Z,U) are defined by

L

[
f
g

]
=

[
g

∆f

]
, G

[
f
g

]
= f |Γ ∀

[
f
g

]
∈ Z . (10.9.7)

The fact that L takes values in X follows from the decomposition (10.9.6). Indeed,
any f ∈ W can be written as f = f0 + Dv, with f0 ∈ H1

0(Ω) and v ∈ L2(Ω), which
implies (using Proposition 10.6.2) that ∆f = ∆f0 ∈ H−1(Ω).

Proposition 10.9.1. The pair (L,G) is a well-posed boundary control system on
U,Z and X. Its control operator and its adjoint are given by

Bv =

[
0

A0Dv

]
∀ v ∈ U , (10.9.8)

B∗
[
ϕ
ψ

]
= − ∂

∂ν

(
A−1

0 ψ
)∣∣∣∣

Γ

∀
[
ϕ
ψ

]
∈ D(A∗) = D(A) . (10.9.9)

Proof. It follows from Proposition 10.6.4 that if we take an arbitrary element of
W , i.e., an element of the form f = f0 + Dv, where f0 ∈ H1

0(Ω) and v ∈ U , then
G

[
f
0

]
= v. This shows that G is onto U , as required in Definition 10.1.1. Notice

that Ker G = D(A) and L|Ker G = A. Indeed, we know from (the second part
of) Remark 3.6.3 that on H1

0(Ω), ∆ = −A0. We know that A is skew-adjoint and
0 ∈ ρ(A), so that conditions (ii)-(iv) in Definition 10.1.1 are satisfied with β = 0.
Thus, L and G define a boundary control system.

In order to write a formula for B, we use Remark 10.1.5. For every v ∈ C, we
solve the following abstract elliptic problem in the unknown

[
f
g

] ∈ Z:

L

[
f
g

]
= 0 , G

[
f
g

]
= v .

This problem is equivalent to g = 0, f ∈ W , ∆f = 0 and γ0f = v. It is easy
to see that the unique solution of this problem is given by f = Dv. (Proposition
10.6.6 is not needed for this.) Using Remark 10.1.5 with β = 0, we obtain that
(−A)−1Bv = [ Dv

0 ]. Applying A to both sides, we obtain (10.9.8).

In order to express B∗, we use Remark 10.1.6. We take
[

f
g

] ∈ Z and
[ ϕ

ψ

] ∈
D(A∗) = D(A). Then, using that A∗ = −A, we have

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

= 〈g, ϕ〉+ 〈∆f, ψ〉− 1
2

+ 〈f, ψ〉 − 〈g, A0ϕ〉− 1
2
. (10.9.10)

Using that
f = f0 + Dv with f0 ∈ H1

0(Ω) , v ∈ U ,

it follows that the second term in the right-hand side of the above relation can be
written as

〈∆f, ψ〉− 1
2

= 〈∆f0, ψ〉− 1
2

= 〈−f0, ψ〉 ,
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since A−1
0 (∆f0) = −f0. Writing f0 = f −Dv and using (10.6.1), it follows that

〈∆f, ψ〉− 1
2

= − 〈f, ψ〉 −
〈

v,
∂(A−1

0 ψ)

∂ν

〉

U

. (10.9.11)

The inner product 〈g, A0ϕ〉− 1
2

from (10.9.10) can be expressed, using that A
1
2
0 is

unitary from H 1
2

to H, as follows:

〈g, A0ϕ〉− 1
2

= 〈g, ϕ〉 . (10.9.12)

By combining (10.9.10), (10.9.11) and (10.9.12), it follows that

〈
L

[
f
g

]
,

[
ϕ
ψ

]〉

X

−
〈[

f
g

]
, A∗

[
ϕ
ψ

]〉

X

= −
〈

v,
∂(A−1

0 ψ)

∂ν

〉

U

.

Comparing this with (10.1.7), we obtain (10.9.9).

To show that our boundary control system is well-posed we note that

B∗A
[
f
g

]
=

∂f

∂ν
|Γ ∀

[
f
g

]
∈ D(A2) = H1 ×H 1

2
.

Denote C = B∗A ∈ L(X2, U), where X2 = D(A2) = H1 × H 1
2

with the graph

norm (see Remark 2.10.5). We know from Theorem 7.1.3 that C is an admissible
observation operator for T acting on X1, and hence also for its inverse semigroup
(whose generator is −A). Since T is unitary (on any of the spaces X, X1), it follows
that C is admissible for T∗ acting on the space X1. This implies that B∗ = CA−1

is an admissible observation operator for the semigroup T∗ acting on X. From the
duality result in Theorem 4.4.3 it follows that B is an admissible control operator
for T acting on X.

Let us express the above result using the terminology commonly used by re-
searchers working on PDEs. First we define a concept of weak solution of (10.9.1)-
(10.9.4) in terms of these equations only, without using any operators.

Definition 10.9.2. For u ∈ L2([0,∞); L2(Γ)), f ∈ L2(Ω) and g ∈ H−1(Ω), a
function

w ∈ C([0,∞), L2(Ω)) ∩ C1([0,∞),H−1(Ω))

is called a weak solution of (10.9.1)–(10.9.4) if the relation

∫

Ω

w(x, t)ϕ(x)dx−
∫

Ω

f(x)ϕ(x)dx− t〈g, ϕ〉H−1(Ω),H1
0(Ω)

=

t∫

0

s∫

0

∫

Ω

w(x, ζ)∆ϕ(x)dxdζds−
t∫

0

s∫

0

∫

Γ

u(x, ζ)
∂ϕ

∂ν
(x)dσdζds, (10.9.13)

holds for every t > 0 and every ϕ ∈ H2(Ω) ∩H1
0(Ω).
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This definition is motivated by the fact that if we assume that w is a smooth
solution of (10.9.1)-(10.9.4) then, multiplying (10.9.1) with ϕ and integrating by
parts on Ω and then twice in time, we easily obtain (10.9.13). Conversely, if w
is smooth enough and it satisfies (10.9.13), then it is easy to see that w satisfies
(10.9.1)-(10.9.4).

The main result from this section is the following:

Theorem 10.9.3. For every f ∈ L2(Ω), g ∈ H−1(Ω) and u ∈ L2 ([0,∞); L2(Γ)) the
system (10.9.1)-(10.9.4) admits a unique weak solution, in the sense of Definition
10.9.2. Moreover, for every τ > 0, the map u 7→ w is bounded from L2([0, τ ]; L2(Γ))
to C([0, τ ]; L2(Ω)) ∩ C1([0, τ ];H−1(Ω)). This solution coincides with the solution
of ż = Az + Bu, z(0) =

[
f
g

]
, as given in Proposition 4.2.5, if we put z = [ w

ẇ ].

Proof. Since B is an admissible control operator for T acting on X (as proved in
the previous proposition), according to Remark 4.2.6, for every z0 ∈ X and every
u ∈ L2

loc([0,∞); U) there exists a unique z ∈ C([0,∞); X) such that, for every t > 0,

〈z(t)−z0, φ〉X =

t∫

0

[〈z(ζ), A∗φ〉X + 〈u(ζ), B∗φ〉U ] dζ ∀ φ ∈ D(A∗) . (10.9.14)

Taking here z(t) =
[

w(t)
v(t)

]
, φ =

[ ϕ
ψ

]
and z0 =

[
f
g

]
, we obtain that, for every t > 0,

〈w(t)− f, ϕ〉H + 〈v(t)− g, ψ〉H− 1
2

=

t∫

0


−〈w(ζ), ψ〉H + 〈v(ζ), A0ϕ〉H− 1

2

−
∫

Γ

u(x, ζ)
∂(A−1

0 ψ)

∂ν
(x, ζ)dσ


 dζ .

for every ϕ ∈ H 1
2
, ψ ∈ H (we have used (10.9.9) to express B∗). Using the fact that

A
1
2
0 is an isomorphism from H onto H− 1

2
, it follows that

〈w(t)− f, ϕ〉H + 〈v(t)− g, A−1
0 ψ〉H− 1

2
,H 1

2

=

t∫

0


−〈w(ζ), ψ〉H + 〈v(ζ), ϕ〉H− 1

2
,H 1

2

−
∫

Γ

u(x, ζ)
∂(A−1

0 ψ)

∂ν
(x, ζ)dσ


 dζ .

(10.9.15)

Choosing ψ = 0 in the above relation it follows that v(t) = ẇ(t). Therefore

w ∈ C([0,∞); L2(Ω)) ∩ C1([0,∞),H−1(Ω)) .

Using v(t) = ẇ(t) in (10.9.15) it follows that for every ψ ∈ H we have

〈ẇ(t)− g, A−1
0 ψ〉H− 1

2
,H 1

2

= −
t∫

0


〈w(ζ), ψ〉H +

∫

Γ

u(x, ζ)
∂(A−1

0 ψ)

∂ν
(x, ζ)dσ


 dζ .
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Using in the above the fact that A0 is an isomorphism from H1 onto H, it follows
that for every η ∈ H1 we have

〈ẇ(t)− g, η〉H− 1
2

,H 1
2

= −
t∫

0


〈w(ζ), A0η〉H +

∫

Γ

u(x, ζ)
∂η

∂ν
(x, ζ)dσ


 dζ . (10.9.16)

Integrating the last formula with respect to t it follows that w is a weak solution of
(10.9.1)-(10.9.4), in the sense of Definition 10.9.2 (use η = ϕ).

Now we show that this weak solution is unique. Indeed, let w be a weak solution of
(10.9.1)-(10.9.4), in the sense of Definition 10.9.2. By differentiating (10.9.13) with
respect to t, it follows that w satisfies (10.9.16) (with η = ϕ). From here it is easy

to check that z(t) =
[

w(t)
ẇ(t)

]
satisfies (10.9.14). Since, according to Remark 4.2.6,

such a z is unique in C([0,∞); X), we obtain the uniqueness of the weak solution
of (10.9.1)–(10.9.4), in the sense of Definition 10.9.2.

10.10 Remarks and bibliographical notes on Chapter 10

Section 10.1. The abstract theory of boundary control systems started with Fat-
torini [61] and it was significantly developed by Salamon [203]. Our exposition
follows the ideas of [203], but in a more concise form. Relevant earlier references
on the translation of boundary control systems into the semigroup language can be
found in [203] and also in the survey of Emirsajlow and Townley [56]. Interesting
recent papers on passive and conservative boundary control systems are Malinen
and Staffans [165], [166]. As already mentioned, most references consider also an
output given by y = Kz, where K ∈ L(Z, Y ), and a boundary control system is
defined as the triple (L,G, K). Without such an output, the discussion of passivity
in [165], [166] would not be possible. In this chapter we are only concerned with the
the pair (L,G) and the tranlation of the equations (10.1.1) into the standard form
ż(t) = Az(t) + Bu(t).

The definition of a boundary control system in [203] (see assumption (B0) there)
is not exactly the same as ours. Apart from the fact that we do not consider outputs,
the difference is that instead of our assumption (iii) the following weaker requirement
appears: “βI−L is onto”. From the subsequent text in [203] it is clear that Salamon
believed his assumptions to imply that βI − A is invertible. Unfortunately, this is
not the case. For example, consider U = C2, Z = H1(0, 1), X = L2[0, 1], Lz = z′,
Gz = [z(0) z(1)], then A is dissipative but not m-dissipative.

Sections 10.2-10.5. These examples of systems in one space dimension are classical
and we are not able to trace their origin. Our treatment of the beam from Section
10.5 is a particular case of the arguments in Section 4 of Zhao and Weiss [242].

Section 10.6. The existence, uniqueness and regularity properties for the Laplacian
with homogeneous Dirichlet boundary conditions are classical topics, presented in
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most of the standard books on PDEs (see, for instance, Brezis [22], Evans [59]
or Taylor [217]). The Laplace equation with non-homogeneous Dirichlet boundary
conditions can be reduced to the homogeneous case if the boundary trace is in
H

1
2 (∂Ω), but things get more complicated for less regular boundary data. The

study of the latter case is more difficult to find in classical books. Our presentation
of the Dirichlet map, defined on L2(∂Ω), is close to the “transposition method” as
described in Lions and Magenes [157]. However, some of the properties we derive
(such as Proposition 10.6.4) have not been published before, as far as we know.

Sections 10.7 and 10.8. The semigroup approach to parabolic equations with
nonhomogeneous Dirichlet boundary conditions (in view of control) in L2(∂Ω) has
been introduced (as far as we know) in Balakrishnan [12] and Washburn [225].
An alternative definition of weak solutions, which was also extended for non-linear
equations, relies on taking test functions that depend both on the time and on the
space variables. We refer to Amann [4] for a concise presentation of this approach.

Sections 10.9. The use of the Dirichlet map and of semigroup theory for hyperbolic
equations with non-homogeneous Dirichlet boundary conditions in L2(∂Ω) goes back
to Lasiecka and Triggiani [144] and [145]. The fact that, for every τ > 0, the
corresponding boundary control system defines a bounded map from L2(∂Ω) to

C([0, τ ]; L2(Ω)) ∩ C1([0, τ ];H−1(Ω)) ,

has been shown in [145]. A different notion of weak solution for the wave equation
with non-homogeneous Dirichlet boundary conditions in L2(∂Ω) has been introduced
in Lions [156]. This notion of weak solution can be defined briefly as follows: For
u ∈ L2([0,∞); L2(Γ)), f ∈ L2(Ω) and g ∈ H−1(Ω), a function

w ∈ C([0, τ ], L2(Ω)) ∩ C1([0, τ ],H−1(Ω))

is called a weak solution of (10.9.1)–(10.9.4) if the relation

τ∫

0

∫

Ω

w(x, t)
(
θ̈(x, t)−∆θ(x, t)

)
dxdt +

∫

Ω

f(x)θ(x, 0)dx− 〈g, θ(·, 0)〉H−1(Ω),H1
0(Ω)

= −
τ∫

0

∫

Γ

u(x, t)
∂θ

∂ν
(x, t)dσdt,

holds for every function θ satisfying

θ ∈ C([0, τ ];H2(Ω) ∩H1
0(Ω)) ∩ C1([0, τ ];H1

0(Ω)) ,

θ(·, τ) = θ̇(·, τ) = 0 .

It is not difficult to check that the above notion of weak solution coincides with the
concept from Definition 10.9.2.



Chapter 11

Controllability

Notation. Throughout this chapter, U,X and Y are complex Hilbert spaces which
are identified with their duals. T is a strongly continuous semigroup on X, with
generator A : D(A)→X and growth bound ω0(T). Remember that we use the
notation A and Tt also for the extension of the original generator to X and for the
extension of the original semigroup to X−1. Recall also that Xd

1 is D(A∗) with the
norm ‖z‖d

1 = ‖(βI − A∗)z‖ and Xd
−1 is the completion of X with respect to the

norm ‖z‖d
−1 = ‖(βI − A∗)−1z‖. Recall that X−1 is the dual of Xd

1 with respect to
the pivot space X.

For u ∈ L2
loc([0,∞); U) and τ > 0, the truncation of u to [0, τ ] is denoted by Pτu.

This is regarded as an element of L2([0,∞); U) which is zero for t > τ .

For any open interval J , the spaces H1(J ; U) and H2(J ; U) are defined as at the
beginning of Chapter 2. H1

loc(0,∞; U) is the space of those functions on (0,∞) whose
restriction to (0, n) is in H1(0, n; U), for every n ∈ N. The space H2

loc(0,∞; U) is
defined similarly. Recall that Cα is the half-plane where Re s > α.

11.1 Some controllability concepts

For infinite-dimensional systems we have at least three important controllability
concepts, each depending on the time τ . In this section we introduce these concepts
and explore how they are related to each other.

We assume that U is a complex Hilbert space and B ∈ L(U,X−1) is an admissible
control operator for T. According to the definition in Section 4.2 this means that
for every τ > 0, the formula

Φτu =

τ∫

0

Tτ−σBu(t)dσ (11.1.1)

defines a bounded operator Φτ : L2([0,∞); U)→X.

363
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Definition 11.1.1. Let τ > 0.

• The pair (A,B) is exactly controllable in time τ if Ran Φτ = X.

• (A,B) is approximately controllable in time τ if Ran Φτ is dense in X.

• The pair (A,B) is null-controllable in time τ if Ran Φτ ⊃ Ran Tτ .

It is easy to see that exact controllability in time τ is equivalent to the following
property: for any z0, z1 ∈ X there exists u ∈ L2([0, τ ]; U) such that the solution z of

ż(t) = Az(t) + Bu(t) , z(0) = z0 , (11.1.2)

satisfies z(τ) = z1. Approximate controllability in time τ is equivalent to the fol-
lowing: for any z0, z1 ∈ X and any ε > 0, there exists u ∈ L2([0, τ ]; U) such that
the solution z of (11.1.2) satisfies ‖z(τ) − z1‖ < ε. Null-controllability in time τ is
equivalent to the following: for any z0 ∈ X, there exists a u ∈ L2([0, τ ]; U) such that
the solution z of (11.1.2) satisfies z(τ) = 0. Indeed, all this follows from the formula
(4.2.7). Often we need the above controllability concepts without having to specify
the time τ . For this reason we introduce the following:

Definition 11.1.2. (A,B) is exactly controllable if it is exactly controllable in some
finite time τ > 0. (A,B) is approximately controllable if it is approximately con-
trollable in some finite time τ > 0. The pair (A,B) is null-controllable if it is
null-controllable in some finite time τ > 0.

Remark 11.1.3. It is easy to see that if T is right-invertible, then (A,B) is exactly
controllable in time τ iff (A, B) is null-controllable in time τ . Another simple ob-
servation is that if Ran Tτ is dense in X and (A,B) is null-controllable in time τ ,
then (A,B) is approximately controllable in time τ .

Remark 11.1.4. The following simple observations are often useful. If the pair
(A,B) has one of the controllability properties introduced in Definition 11.1.1 and
λ ∈ C, then also (A−λI, B) has the same controllability property. If T is invertible,
and if (A,B) has one of the controllability properties introduced in Definition 11.1.1,
then also (−A,B) has the same property.

The following proposition shows that if the system described by (11.1.2) is null-
controllable in time τ , then there exists a bounded operator Fτ which, when applied
to z0, provides the input function u that drives z(τ) to zero.

Proposition 11.1.5. Suppose that (A,B) is null-controllable in time τ . Then there
exist operators Fτ ∈ L(X,L2([0,∞); U)) such that

Tτ + ΦτFτ = 0 .

Indeed, this follows from Proposition 12.1.2 by taking F = −Tτ and G = Φτ .
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11.2 The duality between controllability and observability

In this section we show that the observability concepts introduced in Definition
6.1.1 are dual to the controllability concepts introduced in Definition 11.1.1 and we
give several applications of this duality to systems governed by PDEs.

Theorem 11.2.1. We assume that B ∈ L(U,X−1) is an admissible control operator
for T, the semigroup generated by A, and let τ > 0.

(1) The pair (A, B) is exactly controllable in time τ if and only if (A∗, B∗) is exactly
observable in time τ .

(2) The pair (A,B) is approximately controllable in time τ if and only if (A∗, B∗) is
approximately observable in time τ .

(3) The pair (A,B) is null-controllable in time τ if and only if (A∗, B∗) is final state
observable in time τ .

Proof. We know from Theorem 4.4.3 that B∗ is an admissible observation operator
for the semigroup T∗ generated by A∗. Using the reflection operators Rτ introduced
at the beginning of this chapter, the formula (4.4.1) can be written as follows:

Φ∗
τ = RτΨ

d
τ , (11.2.1)

where Ψd
τ is the output map corresponding to (A∗, B∗):

(Ψd
τz0)(t) =

{
B∗T∗t z0 for t ∈ [0, τ ] ,

0 for t > τ .

In order to prove statement (1) note that, according to Proposition 12.1.3, Φτ

is onto iff Φ∗
τ is bounded from below. By (11.2.1) this is equivalent to Ψd

τ being
bounded from below, i.e., to the fact that (A∗, B∗) is exactly observable in time τ .

In order to prove statement (2) note that, according to Remark 2.8.2, Ran Φτ is
dense in X iff Ker Φ∗

τ = {0}. By (11.2.1) this is equivalent to Ker Ψd
τ = {0}, i.e., to

the fact that (A∗, B∗) is approximately observable in time τ .

In order to prove statement (3) we note that, according to Proposition 12.1.2,
Ran Φτ ⊃ Ran Tτ iff there exists a c > 0 such that c‖Φ∗

τz‖ > ‖T∗τz‖ for every
z ∈ X. By (11.2.1) this is equivalent to c‖Ψd

τz‖ > ‖T∗τz‖ for all z ∈ X, i.e., to the
fact that (A∗, B∗) is final state observable in time τ .

Example 11.2.2. We consider the problem of controlling the vibrations of an elastic
membrane by a force field acting on a part of this membrane. More precisely, let
n ∈ N, let Ω ⊂ Rn be a bounded open set with ∂Ω of class C2 or let Ω be a
rectangular domain. The physical problem described above can be modeled by the
equations

∂2w

∂t2
−∆w = u in Ω× (0,∞), (11.2.2)
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w = 0 on ∂Ω× (0,∞), (11.2.3)

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) for x ∈ Ω , (11.2.4)

where f is the initial displacement and g is the initial velocity. Let O be a non-
empty open subset of Ω and let u ∈ L2([0,∞); L2(O)) be the input function. For
any such u we consider that u(x, t) = 0 for x ∈ Ω \ O.

Equations (11.2.2)–(11.2.4) can be put in the form (11.1.2) using the following
spaces and operators:

X = H1
0(Ω)× L2(Ω), D(A) =

[H2(Ω) ∩H1
0(Ω)

]×H1
0(Ω) ,

A

[
f
g

]
=

[
g

∆f

]
∀

[
f
g

]
∈ D(A) ,

U = L2(O) ⊂ L2(Ω) and Bu =

[
0
u

]
∀ u ∈ U .

The space X and the operator A coincide with those introduced in the preamble
of Chapter 7 so that, as mentioned there, A is skew-adjoint and, consequently, it
generates a unitary group T. Moreover we clearly have B ∈ L(U,X), so that B is
an admissible control operator for T and

〈
Bu,

[
f
g

]〉

X

= 〈u, g〉U ∀ u ∈ U,

[
f
g

]
∈ X.

From the above formula it follows that

B∗
[
f
g

]
= g|O ∀

[
f
g

]
∈ X,

so that B∗ = C, where C is the operator introduced at the beginning of Section 7.4.

Let Γ be a relatively open subset of ∂Ω. From the above facts it follows that if
Γ and O satisfy the assumptions in Theorem 7.4.1, then the pair (A,B) is exactly
controllable in the same time τ as in Theorem 7.4.1. In particular, by combining
Theorems 7.4.1 and 7.2.4, we get that the above controllability property holds if
there exists x0 ∈ Rn and ε > 0 such that

Nε({x ∈ ∂Ω | (x− x0) · ν(x) > 0}) ⊂ closO . (11.2.5)

Here we have used the notation Nε from (7.4.1). If (11.2.5) holds, then the pair
(A,B) is exactly controllable in any time τ > 2r(x0), where r(x0) = supx∈Ω |x−x0|.
Example 11.2.3. Let the open sets Ω, O and the space U be as in the previous
example. We denote H = L2(Ω) (so that U ⊂ H) and D(A0) = H1 is the Sobolev
space H2(Ω) ∩H1

0(Ω). The strictly positive operator A0 : D(A0)→H is defined by
A0ϕ = −∆ϕ for all ϕ ∈ D(A0). Let B0 ∈ L(U,H) be defined by

B0u = u ∀ u ∈ U .
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Then the pair (−iA0, B0) is exactly controllable in any time τ > 0 provided that
one of the following assumptions hold:

(A1) The boundary ∂Ω of Ω is of class C2 and O satisfies the assumption in
Proposition 7.5.3.

(A2) The set Ω is a rectangle in R2 (with no restrictions on O).

In terms of PDEs this means that if (A1) or (A2) holds, then for every f ∈ L2(Ω)
there exists u ∈ L2([0,∞); L2(O)) such that the solution of the Schrödinger equation

∂z

∂t
= i∆z + u in Ω× (0,∞), (11.2.6)

z = 0 on ∂Ω× (0,∞), (11.2.7)

z(x, 0) = 0 for x ∈ Ω , (11.2.8)

satisfies z(·, τ) = f .

To prove the above assertions we notice that (−iA0)
∗ = iA0 and B∗

0 = C0, where

C0f = f |O ∀ f ∈ H.

With the assumption (A1) we know from Proposition 7.5.3 that the pair (iA0, C0)
is exactly observable for any time τ > 0, whereas under the assumption (A2) the
same property holds thanks to Theorem 8.5.1. Consequently, the claimed assertions
follow by applying Theorem 11.2.1.

Example 11.2.4. Let n ∈ N, let Ω ⊂ Rn be a bounded open set with ∂Ω of class
C2 or let Ω be a rectangular domain and let O be an open subset of Ω. We consider
the problem of controlling the vibrations of an elastic plate occupying the domain
Ω by a force field acting on O. More precisely, we consider the initial and boundary
value problem

∂2w

∂t2
+ ∆2w = u in Ω× (0,∞), (11.2.9)

w = ∆w = 0 on ∂Ω× (0,∞), (11.2.10)

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0 for x ∈ Ω , (11.2.11)

where u ∈ L2([0,∞); L2(O)) is the input function. As usual, we consider u(x, t) = 0
for x ∈ Ω\O. Equations (11.2.9)-(11.2.11) determine a system with state space X =
[H2(Ω) ∩H1

0(Ω)]× L2(Ω) and input space U = L2(Ω), which is exactly controllable
in any time τ > 0 if the pair (Ω,O) satisfies one of the assumptions (A1) or (A2)
in Example 11.2.3. Indeed, let us use the same notation for H, A0 and H1 as in
Example 11.2.3 and let H2 = D(A2

0), endowed with the graph norm. Let X be the
Hilbert space H1×H, consider the dense subspace of X defined by D(A) = H2×H1

and let the linear operator A : D(A)→X be defined by

A =

[
0 I

−A2
0 0

]
.
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It is not difficult to see that equations (11.2.9)-(11.2.11) can be written in the form

ż(t) = Az(t) + Bu(t) , z(0) = 0 ,

where B ∈ L(U,X ) is defined by Bu = [ 0
u ] for all u ∈ U . We have seen at the begin-

ning of Section 7.5 that A is skew-adjoint. Moreover, it is not difficult to see that
B∗ = C0, where C0 is the operator introduced in Proposition 7.5.7. From Proposition
7.5.7 and Theorem 8.5.1 it follows that the pair (A, C0) is exactly observable in any
time τ > 0 if one of the assumptions (A1) or (A2) in Example 11.2.3 holds, so that
the conclusion follows by applying Theorem 11.2.1.

Example 11.2.5. We consider the problem of controlling the temperature of a rod
by means of the heat flux at its left end. The equations describing this problem
have been formulated as a well-posed boundary control system in Subsection 10.2.1.
Here we continue to use the notation of Subsection 10.2.1. Thus,

H = L2[0, π] , H1
R(0, π) =

{
φ ∈ H1(0, π) | φ(π) = 0

}
,

H1 =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}

and the operator A : H1 → H is defined by

Af =
d2f

dx2
∀ f ∈ H1 .

Recall that A < 0 and the control operator of this system satisfies

B∗ψ = − ψ(0) ∀ ϕ ∈ H1 ,

so that B∗ = C0, where C0 is the observation operator in Example 9.2.4. We have
seen in Example 9.2.4 that the pair (A,C0) is final state observable in any time τ > 0.
According to Theorem 11.2.1 it follows that the pair (A,B) is null-controllable in
any time τ > 0. In terms of PDEs this means that for any z0 ∈ L2[0, π] and for any
τ > 0 there exists u ∈ L2[0, τ ] such that the weak solution of (10.2.1) (in the sense
of Remark 10.2.2) satisfies z(·, τ) = 0.

Example 11.2.6. We consider the problem of controlling the vibrations of a string
occupying the interval [0, π] by means of a force u(t) acting at its left end. The
equations describing this problem have been formulated as a well-posed boundary
control system in Subsection 10.2.2. Here we continue to use the notation of Subsec-
tion 10.2.2. Thus, X = H1

R(0, π) × L2[0, π] and A : D(A) → X is the skew-adjoint
operator defined by

D(A) =

{
f ∈ H2(0, π) ∩H1

R(0, π)

∣∣∣∣
df

dx
(0) = 0

}
×H1

R(0, π) ,

A

[
f
g

]
=

[
g

d2f
dx2

]
∀

[
f
g

]
∈ D(A) .
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We know from Proposition 10.2.3 that the control operator of this boundary con-
trol system satisfies

B∗
[
f
g

]
= − g(0) ∀

[
f
g

]
∈ D(A) ,

which means that B∗ = −C, where C is the observation operator considered in
Proposition 6.2.5. According to this proposition (A,C) is exactly observable in
any time τ > 2π and (A,C) is not approximately observable in any time τ < 2π.
According to Theorem 11.2.1 it follows that (A,B) is exactly controllable in time τ
if τ > 2π and that for τ < 2π the pair (A,B) is not approximately controllable.

In terms of PDEs, the above results imply that for every
[

f
g

]
, [ w0

w1 ] ∈ X and
τ > 2π, there exists u ∈ L2[0,∞) such that the weak solution w of (10.2.4) (in the
sense of Remark 10.2.4) satisfies w(·, τ) = w0 and ∂w

∂t
(·, t) = w1.

Example 11.2.7. We return to the boundary control of the non-homogeneous elas-
tic string that has been considered in Section 10.3. The model consists of the equa-
tions (10.3.1)–(10.3.3). Here the coefficients functions are such that a ∈ C2[0, π],
b ∈ L∞[0, π], a(x) > m > 0 and b(x) > 0 for all x ∈ [0, π].

We know from Proposition 10.3.3 that these equations correspond to a well-posed
boundary control system with state space

X = L2[0, π]×H−1(0, π)

and input space C. The generator of this boundary control system is

A

[
f
g

]
=

[
g

−A0f

]
∀

[
f
g

]
∈ D(A) = H1

0(0, π)× L2[0, π] ,

where, as in in Section 10.3, A0 ∈ L(H1
0(0, π),H−1(0, π)) is defined by

A0f = − d

dx

(
a
df

dx

)
+ bf ∀ f ∈ H1

0(0, π) .

The operator A is skew-adjoint, so that it generates a unitary group T on X.

The control operator B of this boundary control system is determined by

B∗
[
ϕ
ψ

]
= a(0)

d

dx

(
A−1

0 ψ
)∣∣∣∣

x=0

∀
[
ϕ
ψ

]
∈ D(A∗) = D(A) .

We claim that the pair (A,B) is exactly controllable in any time

τ > 2

π∫

0

dx√
a(x)

. (11.2.12)

To prove this claim, notice that

B∗Az = − a(0)Cz ∀ z ∈ D(A2) ,
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where C is the operator from Proposition 8.2.2. We know from this proposition that
C is an admissible observation operator for the semigroup T restricted to X1 = D(A)
(with the graph norm). According to the same proposition the pair (A,C) is exactly
observable in any time τ satisfying (11.2.12). Since A is a unitary operator from X1

to X, it follows that B∗ is an admissible observation operator for the semigroup T
on X and the pair (A,B∗) is exactly observable in any time τ satisfying (11.2.12).
Since T is invertible, the same conclusions remain valid if we replace A with −A.
Since −A = A∗, we obtain that the pair (A∗, B∗) is exactly observable in any time
τ satisfying (11.2.12). The claim follows by applying Theorem 11.2.1.

We refer to Corollary 11.3.9 for further controllability properties of this system.

Example 11.2.8. We consider the problem of controlling the vibrations of a beam
occupying the interval [0, π] by means of a torque u(t) acting at its left end. The
equations describing this problem have been formulated as a well-posed boundary
control system in Section 10.4. We briefly recall what we need from Section 10.4.
We denote H = L2[0, π] and A0 : H1 → H is the operator defined by

H1 = H2(0, π) ∩H1
0(0, π) , A0f = − d2f

dx2
∀ f ∈ H1 .

We have A0 > 0. The Hilbert spaces H 1
2

and H− 1
2

are given by

H 1
2

= H1
0(0, π) , H− 1

2
= H−1(0, π) .

The unique extensions of A0 to unitary operators from H 1
2

onto H− 1
2

and from H

onto H−1 are still denoted by A0. The space H 3
2

= A−1
0 H 1

2
is

H 3
2

=

{
g ∈ H3(0, π) ∩H1

0(0, π)

∣∣∣∣
d2ψ

dx2
(0) =

d2ψ

dx2
(π) = 0

}
.

We set
X = H 1

2
×H− 1

2
, D(A) = H 3

2
×H 1

2
,

A

[
f
g

]
=

[
g

−A2
0f

]
∀

[
f
g

]
∈ D(A) ,

and A is skew-adjoint. We know from Proposition 10.4.1 that the control operator
B of this boundary control system is determined by

B∗
[
f
g

]
= − d

dx
(A−1

0 g)

∣∣∣∣
x=0

∀
[
f
g

]
∈ D(A∗) = D(A) .

As in the proof of Proposition 10.4.3, we return to the hinged Euler-Bernoulli
equation discussed in Example 6.8.4. With our current notation the state space in
Example 6.8.4 is X1 = D(A), the semigroup generator is A|D(A2), which generates
the restriction of T to X1, and the observation operator C : D(A2) → C is given by

C

[
f
g

]
=

dg

dx
(0) ∀

[
f
g

]
∈ D(A2) = H 5

2
×H 3

2
.
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We have shown in Example 6.8.4 that C is an admissible observation operator for
T restricted to X1 and (A,C) is exactly observable in any time τ > 0. Using again
the isomorphism Q =

[
A0 0
0 A0

]
from X1 to X, we obtain that (A,CQ−1) is exactly

observable in any time τ > 0. From (10.4.10) we see that CQ−1 = −B∗. Thus,
(A, B∗) is exactly observable in any time τ > 0. Since T is invertible, also (−A,B∗)
is exactly observable in any time τ > 0. In our case −A = A∗, so that by the duality
result in Theorem 11.2.1, (A,B) is exactly controllable in any time τ > 0.

Example 11.2.9. We consider the problem of controlling the vibrations of a beam
occupying the interval [0, 1] by means of an angular velocity u(t) applied at its left
end. The equations describing this problem have been formulated as a well-posed
boundary control system in Section 10.5. Here we continue to use the notation of
Section 10.5, so that we know from Proposition 10.5.1 that the control operator B
of this boundary control system is determined by

B∗
[
ψ1

ψ2

]
= − d2ψ1

dx2
(0) ∀

[
ψ1

ψ2

]
∈ D(A∗) = D(A) .

Recall from Section 10.5 that X = Xr ⊕Xn where Xn = Ker A and Xr = X⊥
n . We

have seen in the proof of Proposition 10.5.1 that

A =

[
Ar 0
0 0

]
, B∗ =

[
Cr Cn

]
,

where Ar is the part of A in Xr while Cr and Cn are the restrictions of B∗ to D(Ar)
and to Xn, respectively. As shown in the proof of Proposition 10.5.1, the pair
(Ar, Cr) coincides with (A,−C) from Section 6.10. We have seen in Proposition
6.10.1 that this pair is exactly observable in any time τ > 0. Moreover, since
Xn = span {[ q

0 ]} with q(x) = x(x−1)2 and Cn [ q
0 ] 6= 0, the finite-dimensional system

(An, Cn) is observable. Since 0 is not an eigenvalue of Ar, from Theorem 6.4.2 we get
that the pairs (Ar, Cr) and (An, Cn) are simultaneously exactly observable in any
time τ > 0. This means that (A, B∗) is exactly observable in any time τ > 0. Since
A generates a strongly continuous group, it follows that also (−A,B∗) is exactly
observable in any time τ > 0. Since −A = A∗, according to Theorem 11.2.1 it
follows that the pair (A, B) is exactly controllable in any time τ > 0.

11.3 Simultaneous controllability and the reachable space
with H1 inputs

Definition 11.3.1. For j ∈ {1, 2}, let Aj be the generator of a strongly continuous
semigroups Tj acting on the Hilbert space Xj. Let U be a Hilbert space and let
Bj ∈ L(U,Xj

−1) be an admissible control operator for Tj.

The pairs (Aj, Bj) are called simultaneously exactly controllable in time τ > 0, if
for every (z1, z2) ∈ X1 ×X2 there exists a function u ∈ L2([0, τ ]; U) such that

τ∫

0

Tj
T−σBju(σ)dσ = zj , j ∈ {1, 2} .



372 Controllability

The same pairs are called simultaneously approximately controllable in time τ > 0,
if the property described above holds for (z1, z2) in a dense subspace of X1 ×X2.

It is clear that the concepts introduced in the last definition are equivalent to the
exact (approximate) controllability in time τ of the pair

A =

[
A1 0
0 A2

]
, B =

[
B1

B2

]
.

Using Theorem 11.2.1, it is easy to see the that the concept of simultaneous exact
(respectively approximate) observability is the dual of the concept of simultaneous
exact (respectively approximate) controllability. More precisely, we have:

Proposition 11.3.2. With the notation of Definition 6.4.1 we have :

1. The pairs (A1, C1) and (A2, C2) are simultaneously exactly observable in time
τ if and only if the pairs (A∗

1, C
∗
1) and (A∗

2, C
∗
2) are simultaneously exactly

controllable in time τ .

2. The pairs (A1, C1) and (A2, C2) are simultaneously approximately observable
in time τ if and only if the pairs (A∗

1, C
∗
1) and (A∗

2, C
∗
2) are simultaneously

approximately controllable in time τ .

By combining the above result with Theorem 6.4.2, we obtain the following:

Corollary 11.3.3. Let A be the generator of the strongly continuous semigroup T
acting on the Hilbert space X. Let B ∈ L(Cm, X) be an admissible control operator
for T and assume that (A,B) is exactly controllable in time τ0. Let a ∈ Cn×n and
b ∈ Cn×m be matrices such that (a, b) is controllable. Assume that A∗ and a∗ have
no common eigenvalues. Then the pairs (A,B) and (a, b) are simultaneously exactly
controllable in any time τ > τ0.

A useful application of the simultaneous exact controllability concept is the char-
acterization of the reachable subspaces of an exactly controllable system, when the
input function is restricted to Sobolev type spaces strictly included in L2. The
remaining part of this section is devoted to this issue.

Suppose that the pair (A,B) is exactly controllable in time τ . This means that
the range of the operator Φτ defined by (4.2.1) is equal to X. A natural question
is the characterization of the states which can be reached by more regular inputs.
Define

H1
L((0, τ); U) = {ψ ∈ H1((0, τ); U) | ψ(0) = 0} . (11.3.1)

The existence and uniqueness result in Lemma 4.2.8 shows that the space reachable
by means of controls in H1

L((0, τ); U) cannot be larger than Z defined in (4.2.9).

In the case of a finite-dimensional input space, we can now characterize the states
which are reachable by means of input functions in H1

L((0, τ); U), as follows :
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Proposition 11.3.4. Suppose that the pair (A,B) is exactly controllable in time
τ0 and that U is finite-dimensional. Then for every τ > τ0, the reachable space by
means of input functions u ∈ H1

L((0, τ); U) is

Z = X1 + (βI − A)−1BU = (βI − A)−1(X + BU) . (11.3.2)

Proof. We know from Lemma 4.2.8 that the reachable space is included in Z.
To show that for τ > τ0, Z is contained in the reachable space, take β ∈ ρ(A) and
consider two systems with states w(t) ∈ X and v(t) ∈ U and with the input u1,
described by

ẇ = (A− βI)w + Bu1 , v̇ = u1 . (11.3.3)

For an arbitrary z0 ∈ Z choose w0 ∈ X, v0 ∈ U such that

z0 = (βI − A)−1[w0 −Bv0] . (11.3.4)

Since 0 is not an eigenvalue of A − βI, by Corollary 11.3.3 the systems in (11.3.3)
are simultaneously exactly controllable in any time τ > τ0. Hence we can find
u1 ∈ L2([0, τ ]; U) such that the solutions w, v of (11.3.3) satisfy

w(0) = 0 , w(τ) = e−βτw0 , v(0) = 0 , v(τ) = e−βτv0 . (11.3.5)

We define the function z1 by

z1(t) = (βI − A)−1(w(t)−Bv(t)), ∀ t ∈ [0, τ ].

Then it is easy to se that

z1(0) = 0, z1(τ) = e−βτz0. (11.3.6)

Moreover, after a simple calculation, (11.3.3) implies that

ż1(t) = − w(t) = (A− βI)z1(t)−Bv(t), ∀ t ∈ (0, τ). (11.3.7)

If we define now
z(t) = eβtz1(t), u(t) = eβtv(t),

relations (11.3.6) and (11.3.7) imply that z and u satisfy (4.2.10) together with
z(0) = 0 and z(τ) = z0. This means that Z is included in the space reachable by
means of input functions u ∈ H1

L((0, τ); U), as claimed.

The above result remains true also if U is an arbitrary Hilbert space, but then the
proof becomes much longer. For this, we need the following lemma on simultaneous
exact observability, which is related to Theorem 6.4.2.

Lemma 11.3.5. Let A be the generator of the strongly continuous exponentially
stable semigroup T on X. Let Y be another Hilbert space, let C ∈ L(X1, Y ) be an
admissible observation operator for T and assume that (A, C) is exactly observable
in time τ0 > 0. Assume that λ > 0, let c ∈ L(Y ) be the identity, c = I, and let
a ∈ L(Y ) be defined by a = λI.
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Then the pairs (A,C) and (a, c) are simultaneously exactly observable in any time

τ > τ0 +
1

λ
log

K

kτ0

, (11.3.8)

where K is the infinite-time admissibility constant of (A,C), as in (4.6.6), and kτ0

is the exact observability constant of (A,C) in time τ0, as in (6.1.1).

Notice that K > kτ0 , so that in (11.3.8) τ > τ0.

Proof. Let eλ denote the exponential function eλ(t) = eλt (for all t > 0). Assume
that the claimed simultaneous observability property is not true (to show that this
leads to a contradiction). Then there exists τ satisfying (11.3.8) such that the two
systems are not simultaneously exactly observable in time τ . This means that the
expression Ψτz0 + eλx0 ∈ L2([0, τ ]; Y ) can be made as small as we wish (in norm),
for some (z0, x0) ∈ X × Y with ‖z0‖2 + ‖x0‖2 = 1. Thus, for each ε > 0 there exist
(z0, x0) ∈ X × Y with ‖z0‖2 + ‖x0‖2 = 1 such that

Ψτz0 = − eλx0 + δ , ‖δ‖L2[0,τ ] 6 ε. (11.3.9)

We shall now derive two estimates that link ‖x0‖, ‖z0‖ and ε, if x0, z0 and ε
satisfy (11.3.9). Estimating the norm in L2([0, τ0]; Y ), we get from (11.3.9)

kτ0‖z0‖ 6 ‖Ψτ0z0‖ 6 ‖eλx0‖L2[0,τ0] + ‖δ‖L2[0,τ0] 6
√

e2λτ0 − 1

2λ
· ‖x0‖+ ε.

This implies √
e2λτ0 − 1

2λ
· ‖x0‖ > kτ0‖z0‖ − ε. (11.3.10)

On the other hand, estimating norms in L2([0, τ ]; Y ), we get from (11.3.9)

√
e2λτ − 1

2λ
· ‖x0‖ = ‖eλx0‖L2[0,τ ] = ‖ −Ψτz0 + δ‖L2[0,τ ] 6 ‖Ψτz0‖L2[0,τ ] + ε.

It follows from the above estimate and the definition of K that
√

e2λτ − 1

2λ
· ‖x0‖ 6 K‖z0‖+ ε. (11.3.11)

This resembles (11.3.10), but the inequality is reversed.

The next step is to show that ‖z0‖ cannot be very small. Notice from the Taylor
expansion of e2λτ that √

e2λτ − 1

2λ
>
√

τ .

Let us agree that we shall only use ε <
√

τ
2

. Define ϕ ∈ (0, π
2
) such that

‖x0‖ = cos ϕ, ‖z0‖ = sin ϕ.
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Then (11.3.11) implies that
√

τ cos ϕ < K sin ϕ+
√

τ
2

. By elementary considerations
this inequality can only hold for ϕ > ϕmin > 0, where ϕmin depends on τ and K. It
follows that ‖z0‖ > sin ϕmin > 0.

If we divide the sides of (11.3.11) by the sides of (11.3.10), we obtain
√

e2λτ − 1

e2λτ0 − 1
6 K‖z0‖+ ε

kτ0‖z0‖ − ε
. (11.3.12)

We take a sequence of possible choices for ε that converges to zero. For each ε there
exist corresponding z0 and x0 with all the properties explained earlier, including the
formula (11.3.12). We know from the previous step of the proof that the sequence
of ‖z0‖ is bounded from below. Therefore, in the limit, (11.3.12) implies that

√
e2λτ − 1

e2λτ0 − 1
6 K

kτ0

.

By elementary manipulations this implies that

e2λτ

e2λτ0
6 K2

k2
τ0

, hence λ(τ − τ0) 6 log
K

kτ0

.

The last inequality contradicts (11.3.8). It follows that our assumption at the be-
ginning of this proof was false, hence the statement in the lemma is true.

Now we can state and prove the promised generalization of Proposition 11.3.4.

Theorem 11.3.6. Suppose that the pair (A, B) (with input space U and state space
X) is exactly controllable in time τ0. Then for every τ > τ0, the reachable space by
means of input functions u ∈ H1

L((0, τ); U) is Z from (11.3.2).

Proof. First, notice that we may assume, without loss of generality, that A is
exponentially stable. Indeed, otherwise we replace A with A − µI, with µ > 0
sufficiently large, and this does not change the reachable space.

We know from Lemma 4.2.8 that the reachable space with H1
L inputs is included

in Z (for every τ > 0). To show that Z is included in the reachable space for all
τ > τ0, we choose a fixed τ > τ0. Then we can find λ > 0 such that (11.3.8) holds.
Consider two systems with states w(t) ∈ X and u(t) ∈ U and the common input
u1, described by

ẇ = Aw + Bu1 , u̇ = λu + u1 . (11.3.13)

For an arbitrary z0 ∈ Z choose w0 ∈ X, v0 ∈ U such that

z0 = A−1[w0 −Bv0] . (11.3.14)

By Lemma 11.3.5 translated into its dual form, the systems in (11.3.13) are si-
multaneously exactly controllable in time τ . Hence, there exists an input signal
u1 ∈ L2([0, τ ]; U) such that the solutions w, u of (11.3.13) satisfy

w(0) = 0 , w(τ) = w0 − λz0 , u(0) = 0 , u(τ) = v0 . (11.3.15)
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It is clear that u ∈ H1
L((0, τ); U).

We define the function z ∈ C([0, τ ]; X) by

z(t) = (A− λI)−1[w(t)−Bu(t)] .

It is clear that z(0) = 0. It is easy to see that

z(τ) = (A− λI)−1[w0 −Bv0 − λz0] = (A− λI)−1[Az0 − λz0] = z0 .

The proof will be complete if we show that z is a solution in X−1 of

ż(t) = Az(t) + Bu(t) .

First we verify that z satisfies the differential equation

ż(t) = λz(t) + w(t) ∀ t ∈ [0, τ ] . (11.3.16)

Indeed, we have (using the definition of z)

ż(t) = (A− λI)−1[ẇ(t)−Bu̇(t)] = (A− λI)−1[Aw(t)− λBu(t)]

= (A− λI)−1[(A− λI)w(t) + λ(w(t)−Bu(t))] = w(t) + λz(t) .

Note that (11.3.16) implies that z ∈ C1([0, τ ]; X). Now from (11.3.16) we get, using
again the definition of z,

ż(t) = (λI − A + A)(A− λI)−1[w(t)−Bu(t)] + w(t)

= − [w(t)−Bu(t)] + A(A− λI)−1[w(t)−Bu(t)] + w(t)

= Az(t) + Bu(t) .

In the case of boundary control systems, which have been studied in Chapter 10,
the above theorem yields the following controllability result:

Proposition 11.3.7. Let (L,G) be a well-posed boundary control system on U,Z
and X. Assume that this system is exactly controllable in time τ0 > 0. Then for
every τ > τ0 and every f ∈ Z there exists u ∈ H1

L((0, τ); U) such that the solution
z of

ż(t) = Lz(t) , Gz(t) = u(t) , z(0) = 0 , (11.3.17)

satisfies z(τ) = f .

Proof. We know from Proposition 10.1.8 that for every τ > 0 and every u ∈
H1

L((0, τ); U), equations (11.3.17) admit a unique solution z ∈ C([0, τ ]; Z), so that
the reachable space is included in the solution space Z. We denote by A and B
the generator and the control operator of this system. According to Remark 10.1.4
we have ż(t) = Az(t) + Bu(t) for all t ∈ [0, τ ]. To show that Z is included in the
reachable space it suffices to note that, according to Remark 10.1.3, the solution
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space of our boundary control system coincides with Z from (11.3.2) and then to
apply Theorem 11.3.6 for this (A,B).

Note that if U is finite-dimensional, then in the above proof we do not need
Theorem 11.3.6, it is enough to use the simpler Proposition 11.3.4.

We now give a Proposition that is analogous to Proposition 11.3.4 but it considers
the following smoother space of input functions:

H2
L((0, τ); U) = {u ∈ H2((0, τ); U) | u(0) = u̇(0) = 0} .

Proposition 11.3.8. Suppose that the pair (A,B) (with input space U and state
space X) is exactly controllable in time τ0 and that U is finite-dimensional. Then
for every τ > τ0, the reachable space by means of input functions in H2

L((0, τ); U) is

Z2 = X2 + (βI − A)−2BU + (βI − A)−1BU , (11.3.18)

where β ∈ ρ(A) is arbitrary.

Proof. We may assume, without loss of generality, that 0 ∈ ρ(A) (otherwise, we
replace A with A− µI). First we prove that the reachable space is contained in Z2.
For u ∈ H2

L((0, τ); U) we consider the new input ũ = u̇ (which is in H1
L((0, τ); U))

and the corresponding state trajectory z̃ = ż. Then (from z(0) = 0 and ũ(0) = 0)
we have z̃(0) = 0 so that, according to Lemma 4.2.8, z̃(τ) ∈ Z = D(A) + A−1BU .
From z̃(τ) = ż(τ) = Az(τ) + Bu(τ) we can easily see that z(τ) ∈ Z2.

Conversely, suppose that we want to reach (at time τ) z1 ∈ Z2, so that

z1 = z0 + A−2Bu0 − A−1Bu1 , where z0 ∈ D(A2) , u0, u1 ∈ U .

Consider the following two systems with the common input signal ũ:

˙̃z = Az̃ + Bũ, u̇ = ũ .

According to Corollary 11.3.3 these systems are simultaneously controllable in any
time τ > τ0. It follows from Proposition 11.3.4 that the reachable space for the pair[

z̃(τ)
u(τ)

]
using ũ ∈ H1

L((0, τ); U) is

Z̃ =

[
(βI − A)−1 0

0 1
β
I

](
X × U +

[
B
I

]
U

)
,

where β ∈ ρ(A), β 6= 0. A simple argument shows that Z̃ = Z × U .

Let ũ ∈ H1
L((0, τ); U) be the input that causes

z̃(τ) = Az0 + A−1Bu0 , u(τ) = u1 ,

and let u ∈ H2
L((0, τ); U) be the corresponding input (the integral of ũ). The

state trajectory z corresponding to the input u and satisfying z(0) = 0 satisfies
z̃(τ) = ż(τ) = Az(τ) + Bu(τ), which becomes

Az0 + A−1Bu0 = Az(τ) + Bu1 .
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Applying A−1, we easily get that z(τ) = z1.

We think that the above proposition remains valid for infinite-dimensional U .

We now describe an application of Propositions 11.3.4 and 11.3.8 to the non-
homogeneous string equations (10.3.1)–(10.3.3). As in Section 10.3 we denote

H1
R(0, π) = {ψ ∈ H1(0, π) | ψ(π) = 0} .

The notations H1
L(0, τ) and H2

L(0, τ) are as defined earlier, but now U = C.

Corollary 11.3.9. For every τ > 2
∫ π

0
dx√
a(x)

the space of states
[

w(·,τ)
ẇ(·,τ)

]
which can be

reached by using inputs u ∈ H1
L(0, τ), from the initial state [ 0

0 ], by solving (10.3.1)–
(10.3.3), is H1

R((0, π))× L2[0, π].

Moreover, for every τ as above, the space of states which can be reached by using
inputs u ∈ H2

L(0, τ), from the initial state [ 0
0 ], is (H2(0, π) ∩H1

R(0, π))×H1
R(0, π).

Proof. We have seen in Proposition 10.3.3 that the equations (10.3.1)–(10.3.3)
correspond to a well-posed boundary control system (L,G) with solution space Z =
H1

R(0, π) × L2[0, π]. Moreover, we know from Example 11.2.7 that this system is
exactly controllable in any time τ > 2

∫ π

0
dx√
a(x)

, so that the first assertion in the

Corollary follows by applying Proposition 11.3.7.

To prove the second assertion, let A and B be the semigroup generator and the
control operator of this system, as expressed in Section 10.3, and let τ be as in
the corollary. According to Proposition 11.3.8 the reachable space by inputs u ∈
H2

L(0, τ), starting from the initial state 0, is Z2 from (11.3.18). It follows easily from
the material in Section 10.3 that

X2 = D(A2) =
(H2(0, π) ∩H1

0(0, π)
)×H1

0(0, π) .

It is easy to see from Proposition 10.3.3 that

A−1B =

[−D
0

]
, A−2B =

[
0
−D

]
,

where D ∈ L(C,H2(0, π) ∩ H1
R(0, π)) is the operator from Proposition 10.3.1.

Putting these facts together, we obtain that

Z2 =
(H2(0, π) ∩H1

R(0, π)
)×H1

R(0, π) .

11.4 An example of a coupled system

Consider a vertical string whose horizontal displacement in a given plane is de-
scribed by the one-dimensional wave equation on the domain (0, π). The upper end
(corresponding to x = π) is kept fixed and an object of mass M is attached at the
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lower end (corresponding to x = 0). The external input is a horizontal force v acting
on the object, and it is contained in the plane mentioned earlier. We neglect the
moment of inertia of the object (i.e., we imagine the object to be very small). From
simple physical considerations, and taking a certain constant to be one, we obtain
that this system is described by the following equations, valid for all x ∈ (0, π) and
for all t ∈ (0,∞):





∂2w

∂t2
(x, t) =

∂

∂x

(
a(x)

∂w

∂x
(x, t)

)
, w(π, t) = 0 ,

M
∂2w

∂t2
(0, t) + a(0)wx(0, t) = v(t) , t > 0 ,

w(x, 0) =
∂w

∂t
(x, 0) = 0, x ∈ (0, π).

(11.4.1)

Here, w is the controlled wave (horizontal displacement) and ∂w
∂t

is the horizontal
velocity. Due to the weight of the string the function a is strictly increasing, even
for a homogeneous string. For technical reasons, we assume that a ∈ C2[0, π] and
that there exists m > 0 such that

a(x) > m ∀ x ∈ [0, π] .

The appropriate spaces for all these functions will be specified later. The point x = π
is just reflecting waves, while the active end x = 0 is where both the observation and
the control take place. We shall often write w(t) to denote a function of x, meaning
that w(t)(x) = w(x, t), and similarly for other functions.

A direct analysis of the well-posedness, controllability and observability of this
system is not trivial, in spite of the simplicity of the system. We shall show below
that we can obtain a sharp result by simply applying the results in the previous sub-
section. First we investigate an auxiliary Hilbert space and an operator generating
a group in this space. Denote

X =








f
g
h
κ


 ∈ H1

R(0, π)× L2[0, π]× C× C

∣∣∣∣∣∣∣∣
f(0) = h





.

On X we consider the inner product

〈



f1

g1

h1

κ1


 ,




f2

g1

h2

κ2




〉

X

=

π∫

0

(
a
df1

dx

df 2

dx
+ g1g2

)
dx + κ1κ2 .

Lemma 11.4.1. Let A : D(A) → X be the operator defined by

D(A) =








f
g
h
κ


 ∈ X

∣∣∣∣∣∣∣∣
f ∈ H2(0, π), g ∈ H1(0, π), g(0) = κ





,
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A




f
g
h
κ


 =




g
d
dx

(
adf

dx

)
κ

−a(0)df
dx

(0)


 . (11.4.2)

Then A generates a unitary group on X .

Proof. We have

〈
A




f
g
h
κ


 ,




f
g
h
κ




〉
=

π∫

0

(
a
dg

dx

df̄

dx
+ g

d2f̄

dx2

)
dx− a(0)

df

dx
(0)κ̄.

If we integrate by parts, we take real parts and we use the fact that g(0) = κ we
obtain that

Re

〈
A




f
g
h
κ


 ,




f
g
h
κ




〉
= 0 ∀




f
g
h
κ


 ∈ D(A) ,

so that A is skew-symmetric. To show that A is onto, we take

[ ϕ
ψ
δ
γ

]
∈ X and we

note that there exists a unique f ∈ H2(0, π) such that





d

dx

(
a
df

dx

)
= ψ

f(π) = 0

a(0)
df

dx
(0) = −γ .

.

It follows that 


f
ϕ

f(0)
ϕ(0)


 ∈ D(A) and A




f
ϕ

f(0)
ϕ(0)


 =




ϕ
ψ
δ
γ


 .

We have shown that A is skew-symmetric and onto so that, by Proposition 3.7.3, A
is skew-adjoint. By Stone’s theorem A generates a unitary group on X .

Corollary 11.4.2. For every v ∈ C1[0,∞) the initial and boundary value problem
(11.4.1) admits a unique solution

w ∈ C([0,∞);H1
R(0, π) ∩H2(0, π)) ∩ C1([0,∞);H1

R(0, π)). (11.4.3)

The result below gives the natural state space of (11.4.1).

Proposition 11.4.3. Suppose that v ∈ L2[0, τ ]. Then the initial and boundary value
problem (11.4.1) admits a unique solution

w ∈ C([0,∞);H1
R(0, π) ∩H2(0, π)) ∩ C1([0,∞);H1

R(0, π)) . (11.4.4)
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Proof. By using Lemma 11.4.1, it is easy to prove that, for all v ∈ L2[0, T ], the
problem (11.4.1) admits a unique solution

w ∈ C([0,∞);H1
R(0, π)) ∩ C1([0,∞); L2[0, π]), (11.4.5)

which satisfies the first equation from (11.4.1) in D′((0, π)× (0,∞)) and the second
in D′(0,∞) (notice that wx(0, ·) makes sense in H−2(0,∞)). Consider a sequence
(vn) in D(0,∞) such that vn→ v in L2[0, τ ]. If we denote by (wn) the corresponding
sequence of smooth solutions of (11.4.1) (see Corollary 11.4.2 for the existence and
uniqueness of these solutions), it is clear that

wn→w in C([0, τ ];H1
L(0, π)) ∩ C1([0, τ ]; L2[0, π]), (11.4.6)

wn(0, t) =
∂wn

∂t
(0, t) = 0 , ∀ n > 1 . (11.4.7)

Moreover, by multiplying the equation

∂2

∂t2
(wm − wn)(x, t) =

∂2

∂x2
(wm − wn)(x, t)

by (x − 1) ∂
∂x

(wm − wn)(x, t) and by integrating over [0, π] × [0, τ ] we obtain, after
some integrations by parts, the existence of a constant C > 0 such that

τ∫

0

∣∣∣∣
∂

∂x
(wm − wn)(0, t)

∣∣∣∣
2

dt 6

6 C

(
‖wn − wm‖C([0,τ ];H1(0,π)) +

∥∥∥∥
∂wn

∂t
− ∂wm

∂t

∥∥∥∥
C([0,τ ];L2[0,π])

)
. (11.4.8)

Since

Mẅn(0, t) + a(0)
∂wn

∂x
(0, t) = vn(t),

relation (11.4.8) implies that ∂2wn

∂t2
(0, ·) is a Cauchy sequence in L2[0, τ ]. By using

(11.4.6) and (11.4.7) we obtain that w(0, ·) ∈ H2
L(0, τ). The regularity (11.4.4)

follows now from Proposition 11.3.9.

Proposition 11.4.4. Assume that τ > 2π. Then the system (11.4.1) is exactly
controllable in time τ in the state space X = [H1

R(0, π) ∩ H2(0, π)] × H1
R(0, π). In

other words, (w0, w1) ∈ [H1
R(0, π) ∩ H2(0, π)] × H1

L(0, π) if and only if there exists
v ∈ L2[0, τ ] such that the solution of (11.4.1) satisfies

w(·, τ) = w0,
∂w

∂t
(·, τ) = w1 . (11.4.9)

Proof. By Proposition 11.3.9, for any (w0, w1) ∈ [H1
R(0, π)∩H2(0, π)]×H2

R(0, π)
there exist

w ∈ C([0,∞);H2(0, π)), u ∈ H2
L(0, τ) (11.4.10)

satisfying (10.3.1)–(10.3.3) and (11.4.9). From (11.4.10) it obviously follows that if
we define

v(t) = Mü(t) + a(0)wx(0, t) ,

then v ∈ L2[0, τ ] and w, v satisfy (11.4.1) and (11.4.9).
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11.5 Null-controllability for heat and convection-
diffusion equations

In this section we consider systems governed by the heat or by the convection-
diffusion equation, with an input function given either by a source/sink term sup-
ported on an open set or by a Dirichlet boundary condition on a part of the bound-
ary. Recall that the null-controllability of a one-dimensional heat equation with
Neumann boundary control has been considered in Example 11.2.5.

In this section, Ω ⊂ Rn is an open bounded and connected set with boundary
of class C2. We denote X = L2(Ω) and for a while we consider the operator A :
D(A) → X introduced in Example 5.4.4 (and discussed also in Section 10.8):

D(A) = H2(Ω) ∩H1
0(Ω) ,

Af = ∆f + b · ∇f + cf ∀ f ∈ D(A) ,

where b ∈ L∞(Ω;Rn) and c, div b ∈ L∞(Ω).

Let O be an open subset of Ω and let U = L2(O). We regard U as closed subspace
of X by considering functions in U to be zero on Ω\O. Let B ∈ L(U,X) be defined
by Bu = u (i.e., B is the embedding of U into X).

Proposition 11.5.1. The pair (A,B) is null-controllable in any time τ > 0.

Proof. We have seen in Remark 10.8.1 that the adjoint of A is given by

D(A∗) = H2(Ω) ∩H1
0(Ω) ,

A∗f = ∆f − b · ∇f + (c− div b)f ∀ f ∈ D(A∗) ,

so that A∗ is of the same nature as A, only with different coefficient functions.

It is easy to check that the adjoint of B is given by

B∗f = f |O ∀ f ∈ X.

We have seen in Theorem 9.5.1 that the pair (A∗, B∗) is final-state observable in any
time τ > 0, so that the conclusion follows by applying Theorem 11.2.1.

Remark 11.5.2. In terms of PDEs the above proposition means that for any τ > 0
and any f ∈ L2(Ω) there exists u ∈ L2([0, τ ]; L2(O)) such that the solution of

∂z

∂t
= ∆z + b · ∇z + cz + u in Ω× (0,∞), (11.5.1)

z = 0 on ∂Ω× (0,∞), (11.5.2)

z(x, 0) = f(x) for x ∈ Ω , (11.5.3)

satisfies z(x, τ) = 0 for all x ∈ Ω. This result can be interpreted in physical terms
by asserting that the temperature field of a body occupying the domain Ω can be
driven to zero (the choice of the temperature level zero is arbitrary) by using a heat
source/sink localized in an arbitrary subset O of Ω.
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Remark 11.5.3. For b = 0 it is not difficult to check, by using Theorem 11.2.1 and
Proposition 9.1.1 that the pair (A,B) is not exactly controllable.

A natural question is controlling the temperature of a body by acting on the
temperature field on a part of its boundary. Such a system is modeled by the
equations

∂z

∂t
= ∆z in Ω× (0,∞), (11.5.4)

z = u on Γ× (0,∞), (11.5.5)

z = 0 on (∂Ω \ Γ)× (0,∞), (11.5.6)

z(x, 0) = f(x) for x ∈ Ω , (11.5.7)

where Γ is a non-empty open subset of ∂Ω.

Our aim is to control the above system by inputs u ∈ L2([0, τ ]; L2(Γ)). We have
seen in Section 10.7 that the above equations determine a well-posed boundary
control system with input space U = L2(Γ), state space X = H−1(Ω), generator
A = −A0 (the Dirichlet Laplacian) and control operator B = A0D, where D is
the Dirichlet map. We have seen in the same section that the weak solutions of
(11.5.4)–(11.5.7) are in fact the solutions of ż = Az + Bu (with the same initial
conditions).

Proposition 11.5.4. For every initial state f ∈ H−1(Ω) and τ > 0 there exists u ∈
L2([0, τ ]; L2(Γ)) such that the weak solution z of (11.5.4)–(11.5.7) satisfies z(τ) = 0.
In other words, the pair (A,B) is null-controllable in any time τ > 0.

Proof. We shall now construct a larger open set Ω̃ which is like Ω with a little
hump O glued to Γ, see Figure 11.1. For the precise definition of Ω̃ we take a point
x0 ∈ Γ and a rectangular open neighborhood V of x0 in Rn as in the definition of
the boundary of class C2 (see Section 13.5 in Appendix II). In a suitable system
of orthonormal coordinates (y1, . . . yn), the set V can be written as V ′ × [−an, an],
where

V ′ = {(y1, . . . yn−1) | − ai < yj < aj, 1 6 j 6 n− 1} ,
and there exists a real-valued ϕ ∈ C2(V ′) such that |ϕ(y′)| 6 an

2
for every y′ ∈ V ′,

Ω ∩ V = {y = (y′, yn) ∈ V | yn < ϕ(y′)},
∂Ω ∩ V = {y = (y′, yn) ∈ V | yn = ϕ(y′)}.

We choose V sufficiently small such that V ∩∂Ω ⊂ Γ. We choose a non-zero function
ψ ∈ D(V ′) with values in

[
0, an

2

)
. We define the hump by

O = {y = (y′, yn) ∈ V | ϕ(y′) < yn < ϕ(y′) + ψ(y′)} .

We define the enlarged domain by

Ω̃ = int (clos O ∪ clos Ω) ,
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Figure 11.1: The domain Ω with the hump O which is glued to the part Γ of the
boundary in such a way that the enlarged domain Ω̃ has again a C2 boundary.

and this has again a C2 boundary.

Let T be the heat semigroup generated by A and let τ > 0. As we have seen in
Remark 3.6.11, we have Tτ/2f ∈ H1

0(Ω). We extend Tτ/2f to a function, denoted

by g, defined on Ω̃ by setting g(x) = 0 for x ∈ Ω̃ \ clos Ω. From Lemma 13.4.11
it follows that g ∈ H1

0(Ω̃). According to Remark 11.5.2 it follows that there exists
ũ ∈ L2([0, τ ]; L2(O)) such that the solution z̃ of

∂z̃

∂t
= ∆z + ũ in Ω̃× (0,∞), (11.5.8)

z̃ = 0 on ∂Ω̃× (0,∞), (11.5.9)

z̃(x, 0) = g(x) for x ∈ Ω̃ , (11.5.10)

satisfies z̃(x, τ/2) = 0 for all x ∈ Ω̃. Note that z̃ ∈ C([0,∞),H1
0(Ω̃)) so that, by the

trace theorem, we have z̃|∂Ω ∈ C([0,∞); L2(Γ)). Define

u(t) =

{
0 if t ∈ [0, τ/2]
z̃(t− τ/2)|Γ if t ∈ [τ/2, τ ] ,

z(t) =

{
Ttf if t ∈ [0, τ/2]
z̃(t− τ/2) if t ∈ [τ/2, τ ] .
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Then the pair (u, z) satisfies (11.5.4)-(11.5.7) (in the sense of Definition 10.7.2) and
z(τ) = 0.

Remark 11.5.5. By duality (using Theorem 11.2.1) we can obtain the following
final state observability result from the last proposition: If z is the solution of

∂z

∂t
= ∆z in Ω× (0,∞) ,

z = 0 on ∂Ω× (0,∞) ,

z(x, 0) = f(x) for x ∈ Ω ,

with f ∈ H1
0(Ω), then for every non-empty open set Γ ⊂ ∂Ω and for every τ > 0

there exists a constant kτ > 0 (independent of f) such that

τ∫

0

∫

Γ

∣∣∣∣
∂z

∂ν

∣∣∣∣
2

dσdt > k2
τ‖z(τ)‖2

H1
0(Ω) .

To obtain this, we have used Proposition 10.6.7 to express B∗ and then the fact that
A−1

0 is an isomorphism from H−1(Ω) to H1
0(Ω).

11.6 Boundary controllability for Schrödinger and
wave equations

Notation. Throughout this section, Ω denotes a bounded open set in Rn, where
n ∈ N, with boundary ∂Ω of class C2. Let Γ be a non-empty open subset of ∂Ω and
denote U = L2(Γ). For ϕ ∈ H1(Ω) we denote by ϕ|Γ the restriction of the boundary
trace γ0ϕ to Γ. Similarly, for ϕ ∈ H2(Ω), we denote by ∂ϕ

∂ν
|Γ the restriction of

the normal derivative of ϕ to Γ (the precise definitions of these trace operators are
given in Section 10.6 and in Appendix II). We denote H = L2(Ω) and the operator
A0 is the Dirichlet Laplacian defined in Section 3.6. With the above smoothness
assumptions on ∂Ω, we know from Theorem 3.6.2 that A0 : H1 → H is defined by

H1 = H2(Ω) ∩H1
0(Ω) , A0f = −∆f ∀ f ∈ H1 .

We know from from Proposition 3.6.1 that A0 is strictly positive and that the Hilbert
spaces H 1

2
and H− 1

2
obtained from H and A0 according to the definitions in Section

3.4 are given by

H 1
2

= H1
0(Ω) , H− 1

2
= H−1(Ω) .

We know from Corollary 3.4.6 and Remark 3.4.7 that A0 can be extended to a strictly
positive (densely defined) operator on H− 1

2
, also denoted by A0, with domain H 1

2
.

The operator A0 can also be regarded as a unitary operator from H 1
2

to H− 1
2

and
from H onto H−1, where H−1 is the dual of H1 with respect to the pivot space H.
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11.6.1 Boundary controllability for the Schrödinger
equation

We consider a system governed by the Schrödinger equation, with the input
function being the Dirichlet boundary condition on a part of the boundary:

∂z

∂t
= i∆z in Ω× (0,∞) , (11.6.1)

z = u on Γ× (0,∞) , (11.6.2)

z = 0 on (∂Ω \ Γ)× (0,∞) , (11.6.3)

z(x, 0) = f(x) for x ∈ Ω . (11.6.4)

Define X = H− 1
2

= H−1(Ω). We have seen in Section 10.7 that the above equa-
tions determine a well-posed boundary control system with input space U , solution
space Z = H1

0(Ω) + DU (where D is the Dirichlet map), state space X, generator
A = −iA0 and control operator B = iA0D. We have seen in the same section that
the weak solution of (11.6.1)–(11.6.4), with an initial state in f ∈ X, is in fact the
solution of ż = Az + Bu (with the same initial state).

Proposition 11.6.1. Assume that Γ satisfies the assumption in Proposition 7.5.1
(i.e., the wave equation with Neumann boundary observation defines an exactly ob-
servable system). Then the pair (A,B) is exactly controllable in any time τ > 0.

Proof. According to Proposition 10.6.7 we have

B∗g = i
∂(A−1

0 g)

∂ν
∀ g ∈ L2(Ω) .

As usual, we denote X1 = D(A) with the graph norm. Since A is skew-adjoint, the
generator of T∗ is −A = iA0, so that for any w0 ∈ X1 we have

‖B∗T∗t w0‖U =

∥∥∥∥
∂(A−1

0 w(t))

∂ν

∥∥∥∥
U

∀ t > 0 , (11.6.5)

where w is the solution of the initial value problem

ẇ(t) = iA0w(t) , w(0) = w0 .

If we set η(t) = A−1
0 w(t) then (11.6.5) becomes

‖B∗T∗t w0‖U =

∥∥∥∥
∂η(t)

∂ν

∥∥∥∥
U

∀ t > 0 , (11.6.6)

where

η̇(t) = iA0η(t) , η(0) = A−1
0 w0 .
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We know from Remark 7.5.2 that for any τ > 0 there exist kτ > 0 such that

τ∫

0

∥∥∥∥
∂η(t)

∂ν

∥∥∥∥
2

U

dt > k2
τ‖A−1

0 w0‖2
X1

∀ w0 ∈ X1 .

The above estimate, combined with (11.6.6) and to the fact that A0 is unitary from
X1 to X, implies that

τ∫

0

‖B∗T∗t w0‖2
U dt > k2

τ‖w0‖2
X ,

so that the pair (A∗, B∗) is exactly observable in time τ . From Theorem 11.2.1 it
follows that the pair (A, B) is exactly controllable in time τ .

Remark 11.6.2. The above proposition can be formulated in terms of PDEs as
follows: for every f, g ∈ X and τ > 0, there exists u ∈ L2([0, τ ]; U) such that
the weak solution of the Schrödinger equation (in the sense of Remark 10.7.5) with
initial data f and Dirichlet boundary control u satisfies z(τ) = g.

11.6.2 Boundary controllability for the wave equation

As in Section 10.9, we consider the following initial and boundary value problem:

∂2w

∂t2
= ∆w in Ω× (0,∞) , (11.6.7)

w = 0 on ∂Ω \ Γ× (0,∞) , (11.6.8)

w = u on Γ× (0,∞), (11.6.9)

w(x, 0) = f(x),
∂w

∂t
(x, 0) = g(x) for x ∈ Ω . (11.6.10)

The input of this system is the function u in (11.6.9).

We also set X = H ×H− 1
2
, D(A) = H 1

2
×H and we define A : D(A) → X by

A =

[
0 I

−A0 0

]
. (11.6.11)

By Proposition 3.7.6, A is skew-adjoint. By Stone’s theorem A generates a unitary
group T. As usual, the semigroup T can be restricted to an operator semigroup
on X1 = H 1

2
× H (which is D(A) with the graph norm). The generator of this

restriction is A|D(A2), where D(A2) = H1 × H 1
2
. For this restricted semigroup we

consider the observation operator C ∈ L(H1 ×H 1
2
, U) defined by

C

[
ϕ
ψ

]
=

∂ϕ

∂ν
|Γ ∀ ϕ ∈ H1 ×H 1

2
. (11.6.12)
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We have seen in Theorem 7.1.3 that C is admissible for T acting on X1.

We have seen in Section 10.9 that the equations (11.6.7)–(11.6.10) correspond to
a well-posed boundary control system with input pace U and state space X. Hence,
according to Theorem 10.9.3, these equations have a unique weak solution.

The main result from this subsection is the following:

Theorem 11.6.3. If τ and Γ are such that the pair (A,C), with state space X1,

is exactly observable in time τ , then for every f, f̃ ∈ L2(Ω), g, g̃ ∈ H−1(Ω) there
exists u ∈ L2 ([0, τ ]; L2(Γ)) such that the weak solution of (11.6.7)–(11.6.10) satisfies

w(·, τ) = f̃ ,
∂w

∂t
(·, τ) = g̃ . (11.6.13)

Proof. We have seen in Proposition 10.9.1 that the equations (11.6.7)–(11.6.10)
correspond to a well-posed boundary control system whose generator is A and whose
control operator B satisfies

B∗
[
ϕ
ψ

]
= − ∂

∂ν

(
A−1

0 ψ
)∣∣∣∣

Γ

∀
[
ϕ
ψ

]
∈ D(A∗) = D(A) .

Notice that B∗A = C. Since (A,C) is exactly observable in time τ on the state space
X1 and since A is a unitary operator from X1 to X, it follows that (B∗, A) is exactly
observable in time τ , on the state space X. Since A∗ = −A, the pair (B∗, A∗) is
also exactly observable in time τ , on the state space X. By using Theorem 11.2.1
it follows that (A,B) is exactly controllable in time τ (on the state space X). As

mentioned after Definition 11.1.1, this means that for any
[

f
g

]
,

[
f̃
g̃

]
∈ X, there

exists u ∈ L2([0, τ ]; U) such that the solution of ż = Az + Bu, with z(0) =
[

f
g

]

satisfies z(τ) =
[

f̃
g̃

]
. We know from Theorem 10.9.3 that this solution coincides

with the weak solution of (11.6.7)–(11.6.10) if we put z = [ w
ẇ ].

By combining the above result with Theorem 7.2.4, we obtain:

Corollary 11.6.4. Assume that there exists x0 ∈ Rn such that

Γ ⊃ {x ∈ ∂Ω | (x− x0) · ν(x) > 0} ,

and denote
r(x0) = sup

x∈Ω
|x− x0| .

Then the conclusion in Theorem 11.6.3 holds for every τ > 2r(x0).

11.7 Remarks and bibliographical notes on Chapter 11

General remarks. As far as we know, the first approaches of controllability for sys-
tems governed by partial differential equations were based on the moment method,
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already mentioned at the beginning of Section 8.6. We refer to Fattorini and Russell
[62], [63] and to Russell [199], [197] for early contributions in this direction. The
method of moments has then been developed and systematically applied to systems
governed by partial differential equations in the book of Avdonin and Ivanov [9].

We give below a more precise formulation of this method, using the notation in-
troduced in this chapter. Let A be the generator of a semigroup T on the Hilbert
space X, let U be a Hilbert space and let B ∈ L(U,X−1) be an admissible control
operator for T. If we assume that A is diagonalizable, with an orthonormal ba-
sis (φk)k∈N of eigenvectors corresponding to the eigenvalues (λk)k∈N, then the pair
(A, B) is exactly controllable in time τ if an only if for every sequence (ck) ∈ l2 there
exists u ∈ L2([0, τ ]; U) such that

τ∫

0

〈u(t), eλk tB∗φk〉U dt = ck ∀ k ∈ N . (11.7.1)

Indeed, by combining (11.1.1) and (2.6.9), it is not difficult to check that the con-
dition

Φτu =
∑

k∈N
ckφk ,

is equivalent to (11.7.1). By taking c = el, for every l ∈ N (where (el) is the
standard basis of l2) we obtain that a necessary condition for exact observability
is the existence of a family (Ψk)k∈N which is biorthogonal (in L2([0, τ ]; U)) to the

family
(
eλk tB∗φk

)
k∈N

, i.e., a family satisfying

τ∫

0

〈
Ψl(t), e

λk tB∗φk

〉
U

= δlk ∀ k, l ∈ N .

(See also Lemma 9.2.1.) The existence of a family (Ψk)k∈N as above is sufficient
for a weaker property of controllability. This property, usually called spectral con-
trollability, means that for each k ∈ N there exists uk ∈ L2([0, τ ]; U) such that
Φτuk = φk. For a detailed study of spectral controllability, which is weaker than ex-
act controllability but stronger than approximate controllability, we refer to [9]. For
an interesting study of this property in the case of Euler-Bernoulli plate equation
we refer to Haraux and Jaffard [95].

Section 11.2. The duality of controllability and of observability has been first
formulated in an infinite-dimensional setting in Dolecki and Russell [51] but it has
been used for proving the exact controllability of PDEs systems only several years
later. We refer to Lions [155], [154] and Triggiani [221] for early contributions
using this approach for the exact boundary controllability of the wave equation
with Dirichlet boundary control. This duality approach has been mainly developed
under the name Hilbert Uniqueness Method (HUM) in the book of J.-L. Lions [156]
and then used on various PDEs. For more information on the examples in Section
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11.2, we refer to the comments in Sections 7.7, 8.6 and 9.6 on the corresponding
observability problems.

Section 11.3. Simultaneous exact controllability was first considered by Russell in
[200] and it is the subject of Lions [156, Chapter 5]. The simultaneous controllability
of two Riesz spectral systems (one hyperbolic and one parabolic) was studied in
Hansen [87, Section 4] (see also Hansen and Zhang [90]). Our presentation follows
closely Tucsnak and Weiss [222]. There are now papers which extend the results
from [222] to the simultaneous controllability of two infinite-dimensional systems,
see Avdonin and Tucsnak [11] (for two strings) and Avdonin and Moran [10] (for
several strings or beams with a common endpoint). Theorem 11.3.6 is new.

Section 11.4. The study of the controllability properties of systems coupling PDEs
in one space dimension with ODE’s (sometimes called hybrid systems) has been
probably initiated by Littman and Markus in [159]. This paper was at the origin of
a considerable number of articles on this subject (see, for instance, Guo and Ivanov
[78], Hansen and Zuazua [91], Morgul, Rao and Conrad [173], Rao [187]). Our
approach, following [222], is based on simultaneous exact controllability results.

Section 11.5. As already mentioned, the first results on null-controllability of the
heat equation, in one space dimension, have been obtained in [62], [63] by using the
moment method. The duality approach combined with various Carleman estimates
has been initiated by the works of Fursikov and Imanuvilov in [69] and of Lebeau
and Robbiano [151]. We refer to the paragraph on Section 9.5 from Section 9.6 for
comments on the dual observability properties.

The result in Proposition 11.5.1 has been generalized recently in Ammar-Khodja
et al [6]. Their result refers to the system described by the equations

ż = D∆z + Az + Bu in Ω× (0, T ) ,

z = 0 in ∂Ω× (0, T ) ,

where z(t) ∈ L2(Ω)n is the state at time t > 0 and u ∈ L2([0, T ]; L2(O)m) is the
input function (Ω and O are as in Proposition 11.5.1). The matrix D is assumed to
be real, diagonal and constant (i.e., independent of x and t). The matrices A and
B are also constant, A ∈ Rn×n and B ∈ Rn×m. Let us denote by −A0 the Dirichlet
Laplacian on Ω. The result is that the above system is null-controllable in any time
τ > 0 iff for every λ ∈ σ(A0) the finite-dimensional pair (A−λD,B) is controllable.
In particular, if D = I then the condition reduces to the controllability of (A,B).

Section 11.6. The first results on the exact controllability of the wave equation
have been first obtained by using the method of moments, see Russell [197]. This
approach has been extended to the wave equation in a spherical region by Graham
and Russell [76]. We refer to [197], [199] and to Littman [158] for a method based
on solving first the initial value problem in the whole space.

For more general spatial domains, the exact controllability for the n-dimensional
wave equation with control acting on the whole boundary has been established, via
Russell’s “stabilizability implies controllability” argument (see [198]), in Lasiecka
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and Triggiani [146]. The fact that only a part of the boundary might be sufficient
for the the boundary exact controllability of the wave equation has been first proved
by Lions in [154], by using the duality approach which he called HUM. For further
information on the dual exact observability problem we refer to the paragraph on
Section 7.2 from Section 7.7.

The results of B. Jacob, R. Rebarber and H. Zwart on the spectrum of
optimizable systems. An important concept in distributed parameter systems
theory that has not been touched in this book is optimizability. Suppose that A is
the generator of a strongly continuous semigroup T on X and B ∈ L(U,X−1) is an
admissible control operator for T. We call (A,B) optimizable if for every z0 ∈ X
there exists u ∈ L2([0,∞); U) such that the corresponding state trajectory z is in
L2([0,∞); X). Clearly null-controllability implies optimizability. Much material
on optimizability can be found, among other sources, in Jacob and Zwart [118],
Rebarber and Zwart [189] and Weiss and Rebarber [234]. We mention here two
interesting results from [189] and [118]:

Theorem 11.7.1. Suppose that U is finite-dimensional and (A,B) is optimizable.
Then there exists ε > 0 such that all elements λ ∈ σ(A) with Re λ > −ε are isolated
and they are eigenvalues of A with finite algebraic multiplicity.

A point λ ∈ σ(A) is called isolated if here exists r > 0 such that the disk B(λ, r)
contains no other points from σ(A) besides λ.

Theorem 11.7.2. With the notation of the previous theorem, denote Λ = σ(A)∩C0

(this set is at most countable). For every λ ∈ Λ we denote by m(λ) its algebraic
multiplicity. Then ∑

λ∈Λ

m(λ)

|λ|2 < ∞ .

The results of B. Jacob, J. Partington and S. Pott on controllability for
systems with diagonal semigroups. Applications of Hardy space interpolation
and the the theory of Carleson measures to the controllability of systems with a
diagonal semigroup has been discussed recently in three papers:

Jacob and Partington [113] considers a one-dimensional input space and a (possi-
bly unbounded) control operator. A priori it is not assumed that the input operator
is admissible. Necessary and sufficient conditions for different notions of controllabil-
ity such as null-controllability, exact controllability and approximate controllability
are presented. These conditions, which are given in terms of the eigenvalues of the
diagonal generator and in terms of the control operator, are linked with the theory of
interpolation in Hardy spaces. Specifically, given a sequence of positive weights (wn)
and a sequence (zn) in the open unit disk D of C, the existence for each sequence
(an) with

∑∞
n=1 |anwn|2 < ∞ of a function f ∈ H2(D) solving the the interpolation

problem f(zn) = an (n = 1, 2, 3, . . .) is equivalent to the controllability of a diagonal
system with eigenvalues λn = (zn − 1)/(zn + 1).
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This work is extended in Jacob, Partington and Pott [117], where norm esti-
mates are obtained for the problem of minimal-norm tangential interpolation by
vector-valued analytic functions (solving GnF (zn) = an, where Gn are given linear
mappings), expressed in terms of the Carleson constants of related scalar measures.
Again, applications are given to the controllability properties of systems with a
diagonal semigroup, where now the input space is finite-dimensional.

Finally, in Jacob, Partington and Pott [114], norm estimates are obtained for the
problem of minimal-norm tangential interpolation by vector-valued analytic func-
tions in weighted Hp spaces, expressed in terms of the Carleson constants of related
scalar measures. Applications are given to the notion of p-controllability of linear
systems and controllability by functions in certain Sobolev spaces.



Chapter 12

Appendix I: Some background in
functional analysis

12.1 The closed graph theorem and some consequences

In this section we state the closed graph theorem without proof, and then we
prove a few applications that are needed in he book.

Let X and Y be Banach spaces and let T : X→Y be a linear operator. T is
called closed if for every convergent sequence (xn) with terms in X the following
holds: If lim Txn exists, then lim Txn = T lim xn.

Theorem 12.1.1. If T : X→Y is closed, then T is bounded.

This is a non-trivial result called the closed graph theorem. Its proof can be found
in all the standard textbooks on functional analysis.

A typical application of this theorem is the following: Suppose that V and X
are Banach spaces such that V ⊂ X, with continuous embedding (i.e., the identity
operator on V belongs to L(V,X)). If T ∈ L(X) and TV ⊂ V , then T |V ∈ L(V ).
Here, T |V denotes the restriction of T to V . Indeed, the assumptions imply that
T |V is closed, so that according to the closed graph theorem, T |V is bounded.

Another application concerns inverse operators. If X and Y are Banach spaces
and T ∈ L(X, Y ) is invertible, then it is easy to see that T−1 is closed. It follows
from the closed graph theorem that the inverse operator is bounded: T−1 ∈ L(Y,X).
In particular, it follows that T is bounded from below.

We need the following consequence of the closed graph theorem:

Proposition 12.1.2. Suppose that Z1, Z2 and Z3 are Hilbert spaces, F ∈ L(Z1, Z3)
and that G ∈ L(Z2, Z3). Then the following statements are equivalent:

(a) Ran F ⊂ Ran G;

393
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(b) There exists a c > 0 such that

‖F ∗z‖Z1 6 c‖G∗z‖Z2 ∀ z ∈ Z3 ;

(c) There exists an operator L ∈ L(Z1, Z2) such that F = GL.

Proof. To show that (a) implies (c), we suppose that Ran F ⊂ Ran G. For
x ∈ Z1 we have Fx ∈ Ran F ⊂ Ran G, so there exists a unique y ∈ (Ker G)⊥

such that Gy = Fx. By setting Lx = y, we have F = GL. It remains to prove
that L is bounded from Z1 to Z2. Since L is defined on all of Z1, it suffices to
show that L has a closed graph. Let (xn, yn) be a sequence in the graph of L such
that lim(xn, yn) = (x, y) in Z1 × Z2, then lim Fxn = Fx and lim Gyn = Gy. Thus,
Fx = Gy and, since (Ker G)⊥ is closed, y ∈ (Ker G)⊥, so that Lx = y.

It is clear that assertion (c) implies assertion (a).

To show that (b) implies (c), suppose that (b) holds. Define a mapping K from
Ran G∗ to Ran F ∗ so that K(G∗z) = F ∗z, for all z ∈ Z3. Then K is well defined,
since if G∗z1 = G∗z2 then ‖F ∗(z1 − z2)‖Z1 6 c‖G∗(z1 − z2)‖Z2 = 0, so that F ∗z1 =
F ∗z2. Moreover, the same calculation shows that

‖K(G∗z)‖Z1 6 c‖G∗z‖Z2 ∀ z ∈ Z3 .

Hence, K has a uniquely continuous extension to the closure Ran G∗. If we define
K on (Ran G∗)⊥ in an arbitrary bounded way (for example, as zero), then we still
have KG∗ = F ∗. If we set L = K∗, then F = GL.

It is easy to see that (c) implies (b). Indeed, if F = GL, then

‖F ∗z‖Z1 = ‖L∗G∗z‖Z1 6 ‖L∗‖L(Z2,Z1)‖G∗z‖Z2 ∀ z ∈ Z3 .

Thus, (a), (b) and (c) are equivalent.

Proposition 12.1.3. If Z, X are Hilbert spaces and G ∈ L(Z, X), then the following
statements are equivalent:

(a) G is onto.

(b) G∗ is bounded from below, i.e., there exists a constant m > 0 such that

‖G∗x‖Z > m‖x‖X ∀ x ∈ X.

(c) GG∗ > 0 (as defined in Section 3.3).

Moreover, if these statements are true then ‖(GG∗)−1‖ 6 1
m2 , where m is the

constant appearing in statement (b).

Proof. The equivalence of (a) and (b) follows from Proposition 12.1.2 by taking
Z1 = Z3 = X, Z2 = Z, F = I and c = 1/m.

We show that (b) implies (c). If (b) holds then from

〈GG∗x, x〉 = ‖G∗x‖2 > m2‖x‖2

we see that GG∗ > m2I > 0. By Proposition 3.3.2, GG∗ is invertible and satisfies
‖(GG∗)−1‖ 6 1

m2 . Conversely, it is obvious that (c) implies (b).
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12.2 Compact operators

In this section we gather, for easy reference, some results on compact operators on
a Hilbert space. For a more detailed presentation of this topic we refer, for instance,
to Akhiezer and Glazman [2], Dowson [52], Kato [127] or Rudin [195].

Recall that a subset M of a Hilbert space H is said to be relatively compact if every
sequence in M has a convergent subsequence. It is well known that a set M ⊂ H
is relatively compact iff it has the following property, known as total boundedness:
For every n ∈ N there exists a finite set Fn ⊂ H such that

min
f∈Fn

‖x− f‖ 6 1

n
∀ x ∈ M . (12.2.1)

M is called compact if it is relatively compact and closed. We denote by B1 the
closed unit ball of H. It is well known that B1 is compact iff dim H < ∞.

Definition 12.2.1. Let H and Y be Hilbert spaces. K ∈ L(H, Y ) is compact if the
set KB1 is relatively compact in Y .

It is clear that the compact operators form a subspace of L(H, Y ). Let U be
another Hilbert space. It is easy to see that if K ∈ L(H, Y ), T ∈ L(Y, U) and K is
compact, then TK is compact. Similarly, if T ∈ L(U,H) and K is as before, then
KT is compact. It is easy to see (from what we said earlier in this section) that I
(the identity operator on H) is compact if and only if dim H < ∞.

Proposition 12.2.2. For any K ∈ L(H, Y ) the following statements are equivalent:

(a) K is compact.

(b) There exists a sequence (Kn) in L(H,Y ) such that

dim Ran Kn < ∞ , lim Kn = K. (12.2.2)

Proof. Suppose that K is compact, so that M = KB1 is relatively compact in
Y . For every n ∈ N let Fn be the finite set with the property (12.2.1). Denote by
Pn the orthogonal projector from Y onto the finite-dimensional space span Fn and
define Kn = PnK. Then it is easy to see that ‖K −Kn‖ 6 1/n.

Conversely, suppose that (Kn) is a sequence in L(H,Y ) such that (12.2.2) holds
and choose m ∈ N. We can find n ∈ N such that ‖K−Kn‖ 6 1

2m
. Since M = KnB1

is relatively compact, according to (12.2.1) we can find a finite set F2m ⊂ Y such
that minf∈F2m ‖x− f‖ 6 1

2m
for all x ∈ M . It follows that

min
f∈F2m

‖x− f‖ 6 1

m
∀ x ∈ KB1 .

This holds for every m ∈ N, so that KB1 is relatively compact in Y .

Corollary 12.2.3. If K ∈ L(H, Y ) is compact then also K∗ is compact.
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Proof. If K is compact then, as we have seen in the first part of the proof of
Proposition 12.2.2, there exists a sequence (Pn) of orthogonal projectors onto finite-
dimensional subspaces of Y such that lim PkK = K. It follows that lim K∗Pk = K∗.
Since dim Ran K∗Pk < ∞, according to Proposition 12.2.2, K∗ is compact.

We need to recall the following fact from functional analysis, which is a particular
case of Alaoglu’s theorem:

Lemma 12.2.4. If (xn) is a bounded sequence in H, then there exists a subsequence
(xnk

) and a vector x0 ∈ H such that

lim
k→∞

〈xnk
, ϕ〉 = 〈x0, ϕ〉 ∀ ϕ ∈ H. (12.2.3)

A sequence that behaves like (xnk
) in the above lemma is called weakly convergent

to x0 (in H). An equivalent way to state the above lemma is the following: the unit
ball of any Hilbert space is weakly sequentially compact. We refer to Brezis [22,
p. 46] or to Rudin [195, Theorem 3.17] for the proof.

Now we show that the compact operators are precisely those that map weakly
convergent sequences into convergent sequences.

Proposition 12.2.5. For any K ∈ L(H, Y ) the following statements are equivalent:

(a) K is compact.

(b) If (xk) is a sequence in H that converges weakly to an element x0 ∈ H, i.e.,

lim
k→∞

〈xk, ϕ〉 = 〈x0, ϕ〉 ∀ ϕ ∈ H, (12.2.4)

then limk→∞ Kxk = Kx0.

Proof. Suppose that K is compact and (xk), x0 are as in (12.2.4). From the
uniform boundedness theorem we know that the sequence (xk) is bounded: for all
k ∈ N, ‖xk − x0‖ 6 M . We have to show that for every ε > 0 and for sufficiently
large k ∈ N we have ‖K(xk − x0)‖ 6 ε. According to Proposition 12.2.2, for any
given ε > 0 we can choose an operator Kε ∈ L(H, Y ) such that Vε = Ran Kε is
finite-dimensional and ‖Kε − K‖ 6 ε/(2M). It is easy to see (using orthonormal
coordinates in Vε) that limk→∞ Kε(xk − x0) = 0. In the simple estimate

‖K(xk − x0)‖ 6 ‖Kε(xk − x0)‖+ ‖(K −Kε)(xk − x0)‖
we see that for sufficiently large k, both terms on the right-hand side are 6 ε/2.
Thus, we have shown that limk→∞ Kxk = Kx0, so that (b) holds.

Conversely, suppose that statement (b) holds. Let (Kxn) be an arbitrary sequence
in KB1. Since xn ∈ B1, according to Lemma 12.2.4 there exists a weakly convergent
subsequence (xnk

). According to (b), the sequence (TXnk
) is convergent. This shows

that KB1 is relatively compact in Y , i.e., K is compact.

In the sequel we look at spectral properties of compact operators. For this, we
consider compact operators in L(H).
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Remark 12.2.6. If dim H = ∞ and K ∈ L(H) is compact, then H is neither
left-invertible nor right-invertible. In particular, 0 ∈ σ(K). Indeed, if K were left-
invertible then there would be a Q ∈ L(H) such that QK = I, whence I would be
compact, which is absurd. A similar reasoning applies for right-invertibility.

Proposition 12.2.7. If K ∈ L(H) is compact and λ is a non-zero complex number,
then Ran (λI −K) is closed.

Proof. Denote V = (Ker (λI −K))⊥, so that S, defined as the restriction of
λI − K to V , is one-to-one. We claim that S is actually bounded from below.
Indeed, suppose that this is not the case. Then there exists a sequence (xn) in V
such that ‖xn‖ = 1 and lim Sxn = 0. Because of the compactness of K, (Kxn)
has a convergent subsequence (Kxnk

). Thus, lim Kxnk
= z, which implies that

λ lim xnk
= z, hence ‖z‖ = |λ|. By the continuity of S we obtain Sz = 0, which is a

contradiction. We conclude from this contradiction that S is bounded from below,
and hence Ran S is closed. Finally, notice that Ran (λI −K) = Ran S.

If K ∈ L(H) and λ ∈ σp(K) (recall that σp(K) denotes the set of all the eigen-
values of K), then the geometric multiplicity of λ is dim Ker (λI −K).

Proposition 12.2.8. If K ∈ L(H) is compact and λ ∈ σ(K), λ 6= 0, then λ is an
eigenvalue of K, with finite geometric multiplicity.

Proof. If dim H < ∞ then this is a well-known fact from linear algebra. Now
consider dim H = ∞. Take λ ∈ σ(K) with λ 6= 0. First we prove that λ ∈ σp(K).
Suppose that this were not true, so that λI −K would be one-to-one. According to
Proposition 12.2.7 the space V = Ran (λI −K) is closed, so that λI −K would be
invertible as an operator in L(H, V ). The inverse could be extended to an operator
Q ∈ L(H) by defining it to be zero on V ⊥, and then QK = I, so that K is left-
invertible. According to Remark 12.2.6 this is absurd. Thus, in fact λ ∈ σp(K).

Now we show that λ has finite geometric multiplicity. The restriction of K to the
space E = Ker (λI −K) is λI. This must be compact, which implies (as remarked
earlier in this section) that dim E < ∞.

Proposition 12.2.9. If K ∈ L(H) is compact and (λk) is a sequence of distinct
eigenvalues of K, then lim λk = 0.

Proof. Let (xk) be a sequence of eigenvectors corresponding to the sequence of
eigenvalues (λk). Suppose that the assertion lim λk = 0 is not true. Then we can
extract from (λk) a subsequence with the property that each term in the subsequence
satisfies |λk| > δ > 0. For the sake of simplicity, we denote this subsequence also by
(λk). Clarly the vectors xk are independent, so that if we denote

Mn = span {x1, x2 , . . . xn}
then we have the strict inclusions Mn−1 ⊂ Mn and KMn ⊂ Mn. For each n ∈ N,
take zn to be in the orthogonal complement of Mn−1 in Mn and such that ‖zn‖ = 1.
For m,n ∈ N with m < n we have

Kzn −Kzm = λnzn − q , where q = (λnI −K)zn + Kzm .
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Notice that q ∈ Mn−1, so that 〈zn, q〉 = 0. Hence

‖Kzn −Kzm‖ > |λn| · ‖zn‖ > δ .

This shows that (Kzk) does not have any convergent subsequence, which contradicts
the definition of a compact operator. Thus, lim λk = 0.

Corollary 12.2.10. Let K ∈ L(H) be a diagonalizable operator with the sequence
of eigenvalues (λk), as in (2.6.5). Then K is compact if and only if lim λk = 0.

Proof. The “if” part follows from Proposition 12.2.2 (by truncating the sequence
in (2.6.5)). The “only if” part follows from Proposition 12.2.9.

Theorem 12.2.11. Assume that K ∈ L(H) is compact and self-adjoint. Then there
exists in H an at most countable orthonormal set B consisting of eigenvectors of K,

B = {ϕk | k ∈ I} , where I ⊂ Z ,

with the following properties: If µk is the eigenvalue corresponding to ϕk, then

Kz =
∑

k∈I
µk〈z, ϕk〉ϕk ∀ z ∈ H, (12.2.5)

µk ∈ R, µk 6= 0 and if I is infinite then lim|k|→∞ µk = 0. Moreover,

B⊥ = Ker K. (12.2.6)

Proof. It will be convenient to denote σ0(K) = σ(K) \ {0}. According to Propo-
sitions 12.2.8 and 12.2.9, σ0(K) consists of an at most countable set of eigenvalues
of K, with zero as the only possible accumulation point. Denote

Eλ = Ker (λI −K) ∀ λ ∈ σ0(K) .

We know from Proposition 12.2.8 that dim Eλ < ∞. We know from Proposition
3.2.6 that σ(K) ⊂ R. For each λ ∈ σ0(K) let Bλ be an orthonormal basis in Eλ and
put

B =
⋃

λ∈σ0(K)

Bλ .

We can now construct sequences (µk) and (ϕk) indexed by a set I ⊂ Z such that:

(1) For each k ∈ I, µk ∈ σ0(K) and ϕk ∈ Bµk
.

(2) There are no repetitions in the sequence (ϕk).

(3) B = {ϕk | k ∈ I}.
Thus, each λ ∈ σ0(K) appears in the sequence (µk) repeated dim Eλ times. If I

is infinite then (by a simple rearranging of the indices from Proposition 12.2.9) we
see that lim|k|→∞ µk = 0. An easy consequence of K∗ = K is the following: if φ, ψ
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are eigenvectors of K corresponding to different eigenvalues, then 〈φ, ψ〉 = 0. This
implies that the set {ϕk | k ∈ I} is orthonormal.

Let K0 be the operator defined by the sum in (12.2.5), so that K0 is self-adjoint,
as it is easy to verify. It is also easy to check that

spanB ⊂ Ker (K −K0) . (12.2.7)

Denote E0 = (spanB)⊥. Since K(spanB) ⊂ spanB, it is easy to see that KE0 ⊂ E0.
Let us denote by N the restriction of K to E0, regarded as an element of L(E0). It is
easy to see that N is self-adjoint and compact. N cannot have non-zero eigenvalues,
because the corresponding eigenvectors would have to belong to F , which is absurd.
It follows that σ(N) ⊂ {0}, so that its spectral radius is r(N) = 0. According to
Proposition 3.2.7 we obtain that N = 0. On the other hand, it is clear that the
restriction of K0 to E0 is also zero. Thus,

E0 ⊂ Ker (K −K0) .

Combining this with (12.2.7), we obtain that K = K0.

Finally, we have to prove (12.2.6). The inclusion B⊥ ⊂ Ker K is clear from
(12.2.5). Conversely, suppose that x ∈ Ker K and for each k ∈ I denote xk =
〈x, ϕk〉. If

x̃ =
∑

k∈I
sign(µk)xkϕk ,

then
0 = 〈Kx, x̃〉 =

∑

k∈I
µkxksign(µk)xk =

∑

k∈I
|µk| · |xk|2 .

This shows that xk = 0, so that x ∈ B⊥.

12.3 The square root of a positive operator

In this section we introduce the square root of a bounded positive operator. This
is needed in Section 3.4 in order to define the square root of an unbounded positive
operator. In this section, H is a Hilbert space.

Lemma 12.3.1. If P ∈ L(H), P > 0, x ∈ H and 〈Px, x〉 = 0, then Px = 0.

Proof. Denote z = (λI − P )x, where λ > 0. We have

〈Pz, z〉 = 〈P (λ2I − 2λP + P 2)x, x〉 = − 2λ‖Px‖2 + 〈P 3x, x〉 .
If we had ‖Px‖ > 0 then the above expression would become negative for large λ,
which is absurd. Hence, ‖Px‖ = 0, so that Px = 0.

One of the uses of the above lemma is in the proof of the following slight gener-
alization of the Cauchy-Schwarz inequality: If P ∈ L(H) and P > 0 then

|〈Px, y〉|2 6 〈Px, x〉 · 〈Py, y〉 ∀ x, y ∈ H. (12.3.1)
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The proof of this follows the same argument as for the classical Cauchy-Schwarz
inequality, but eliminating first the case when 〈Px, x〉 = 0.

By using the inequality (12.3.1), it is easy to show that

P, Q ∈ L(H) and 0 6 P 6 Q ⇒ ‖P‖ 6 ‖Q‖ . (12.3.2)

Lemma 12.3.2. Let (Qn) be a sequence of bounded and positive operators on H
such that Qn > Qn+1 for all n ∈ N. Then there exists a positive Q ∈ L(H) such
that

lim Qnx = Qx ∀ z ∈ H.

Moreover, we have Q 6 Qn for all n ∈ N.

Proof. For m,n ∈ N, n > m, using (12.3.1) and the fact that Q1 > Qm−Qn > 0,
we have that for every x ∈ H,

‖(Qm −Qn)x‖4 = 〈(Qm −Qn)x, (Qm −Qn)x〉2
6 〈(Qm −Qn)x, x〉 · 〈(Qm −Qn)2x, (Qm −Qn)x〉

6 (〈Qmx, x〉 − 〈Qnx, x〉) · ‖Q1‖3 · ‖x‖2 . (12.3.3)

The sequence (〈Qnx, x〉) is positive and decreasing and hence convergent. Thus
(12.3.3) shows that the sequence (Qnx) is convergent in H. Define

Qx = lim Qnx ∀ x ∈ H.

Clearly Q is linear. Moreover, since Qn 6 Q1, by using (12.3.2) we have ‖Qn‖ 6
‖Q1‖ for all n ∈ N, so that Q is bounded and ‖Q‖ 6 ‖Q1‖. Since 〈Qx, x〉 =
lim〈Qnx, x〉 > 0, it follows that 0 6 Q 6 Qn for all n ∈ N.

If S, T ∈ L(X), we say that S commutes with T if ST = TS.

Lemma 12.3.3. If M, N ∈ L(H) are positive operators which commute and
M2 = N2, then M = N .

Proof. It is easy to verify the identity

(M −N)M(M −N) + (M −N)N(M −N) = 0 .

Both terms are positive, which implies that both terms are in fact zero. Hence, we
have for every x ∈ H that 〈M(M − N)x, (M − N)x〉 = 0. According to Lemma
12.3.1, it follows that M(M − N)x = 0, so that M(M − N) = 0. By a similar
argument we have that also N(M −N) = 0. Combining these facts we can see that
(M −N)2 = 0. Since M −N is self-adjoint, it follows that M −N = 0.

Theorem 12.3.4. If P ∈ L(H) is positive, then there exists a unique positive

operator P
1
2 , called the square root of P , such that (P

1
2 )2 = P . Moreover, P

1
2

commutes with every operator that commutes with P .
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Proof. If P = 0 then the statements are trivially true. Assuming that P 6= 0,
introduce S = P/‖P‖, so that S 6 I. Define the sequence (Qn) in L(H) recursively:

Q1 = I and Qn+1 = Qn +
1

2
(S −Q2

n) ∀ n ∈ N .

Each term Qn is a real polynomial in S, hence it is self-adjoint and it commutes
with every operator that commutes with P . Notice that we have

I −Qn+1 =
1

2
(I −Qn)2 +

1

2
(I − S) ∀ n ∈ N . (12.3.4)

From here we can show by induction that for every n ∈ N, I − Qn = pn(I − S),
where pn is a polynomial with positive coefficients. It follows that for every n ∈ N,

I − 1

2
(Qn+1 + Qn) =

1

2
(pn+1 + pn)(I − S) , (12.3.5)

where pn+1 + pn is another polynomial with positive coefficients.

Subtracting the defining (recursive) formula of Qn+2 from that of Qn+1, we obtain

Qn+1 −Qn+2 = (Qn −Qn+1) ·
[
I − 1

2
(Qn+1 + Qn)

]
∀ n ∈ N .

We have Q1 −Q2 = 1
2
(I − S), and the above formula together with (12.3.5) implies

(by induction) that for every n ∈ N, Qn − Qn+1 can be expressed as a polynomial
with positive coefficients in the variable I−S > 0. This implies that Qn−Qn+1 > 0,
which is one of the conditions in Lemma 12.3.2.

Now we show that Qn > 0. From (12.3.4) we see that

‖I −Qn+1‖ 6 1

2
‖I −Qn‖2 +

1

2
‖I − S‖ ∀ n ∈ N . (12.3.6)

From 0 6 I−S 6 I we know that ‖I−S‖ 6 1. This, together with (12.3.6) implies
(again by induction) that ‖I − Qn‖ 6 1 for all n ∈ N. We have seen earlier that
I −Qn = pn(I −S), so that I −Qn > 0. This implies that I −Qn 6 I, i.e., Qn > 0.

We have shown that the sequence (Qn) satisfies all the assumptions of Lemma
12.3.2. Thus, by the lemma, there exists a positive Q ∈ L(H) such that

lim Qnx = Qx ∀ x ∈ H.

Since Qn commutes with every operator that commutes with P , it follows that also
Q has this property. Similarly, since Qn 6 I, we have Q 6 I.

Applying the recursive definition of Qn to x ∈ H and taking limits, we obtain that
lim Q2

nx = Sx for all x ∈ H. On the other hand, it is easy to see that lim Q2
nx = Q2x

for all x ∈ H (because Q2
n − Q2 = (Qn + Q)(Qn − Q)). It follows that Q2 = S, so

that the operator
P

1
2 = ‖P‖ 1

2 Q

is positive and (P
1
2 )2 = P . The only thing left to prove is the unicity of P

1
2 . If

M > 0 is such that M2 = P , then clearly M commutes with P and hence P
1
2

commutes with M . Now M = P
1
2 follows from Lemma 12.3.3.
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Remark 12.3.5. With the notation of the last theorem, it follows from Proposition
2.2.12 that

σ(P
1
2 ) = σ(P )

1
2 .

This implies further properties of P
1
2 . For example, since ‖P‖ = r(P ) (see Propo-

sition 3.2.7), it follows that ‖P 1
2‖ = ‖P‖ 1

2 . Another consequence is the following:

If λ > 0 is such that P > λI, then P
1
2 > λ

1
2 I. Indeed, by Remark 3.3.4 we

have σ(P ) ⊂ [λ,∞), hence σ(P
1
2 ) ⊂ [λ

1
2 ,∞), hence (using again Remark 3.3.4)

P
1
2 > λ

1
2 I. Of course, there are also alternative proofs for these statements.

12.4 The Fourier and Laplace transformations

In this section we recall some facts about the Fourier and Laplace transforma-
tions, we introduce the Hardy space H2(C0), we state the Plancherel theorem, the
Paley-Wiener theorem for H2(C0) and the Carleson measure theorem. We do not
give proofs, but the reader can find the material on the Fourier and Laplace trans-
formations in a large number of books, such as Akhiezer and Glazman [2], Arendt,
Batty, Hieber and Neubrander [8], Bochner and Chandrasekaran [20], Dautray and
Lions [42], Doetsch [50], Dym and McKean [55], Nikolski [178], Rudin [194], Young
[240]. We shall give separate references for the Carleson measure theorem.

The Fourier transformation on L1(R). Denote by D(R) the space of C∞ func-
tions on R that have compact support. We define the Fourier transformation initially
as an operator F : D(R)→C(R) as follows:

(Fu)(ω) =
1√
2π

∞∫

−∞

e−iωtu(t)dt ∀ ω ∈ R . (12.4.1)

The function Fu is much better than just continuous: It is easy to see that Fu can
be extended to an analytic function on all of C, and its derivative is given by

d

dω
Fu = Fv where v(t) = − itu(t) ∀ t ∈ R .

It is an easy consequence of the Hölder inequality that

|(Fu)(ω)| 6 1√
2π

∞∫

−∞

|u(t)|dt ∀ ω ∈ R . (12.4.2)

It is easy to check that the function ω 7→ iω(Fu)(ω) is the Fourier transform of the
derivative u̇ ∈ D(R). This, together with the last estimate applied to u̇ shows that
lim|ω|→∞(Fu)(ω) = 0. Introduce the space

C0(R) =

{
f ∈ C(R) | lim

|ω|→∞
f(ω) = 0

}
,
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which is a Banach space with the norm

‖f‖∞ = sup
ω∈R

|f(ω)| .

(We know that D(R) is dense in C0(R), but this is not needed here.) Then the
preceding discussion shows that, in fact, F : D(R)→C0(R). Moreover, (12.4.2)
shows that F is bounded if we consider on D(R) the norm ‖ · ‖1 and on C0(R) the
norm ‖ · ‖∞ introduced a little earlier. Since D(R) is dense in L1(R), it follows that
F has a unique extension to L1(R) (denoted by the same symbol) such that

F ∈ L(L1(R), C0(R)) , ‖F‖ =
1√
2π

.

(The estimate (12.4.2) only tells us that ‖F‖ 6 1√
2π

, but if u(t) > 0 for all t > 0

then (Fu)(0) = 1√
2π
‖u‖1, which shows that in fact we have equality.)

The Fourier transformation on L2(R). The following subtle formula holds:

∞∫

−∞

|u(t)|2dt =

∞∫

−∞

|(Fu)(ω)|2dω ∀ u ∈ D(R) . (12.4.3)

Since D(R) is dense also in L2(R), (12.4.3) implies that F has a unique extension
to an isometric operator from L2(R) to itself:

F ∈ L(L2(R)) , F∗F = I .

This extended operator F is no longer given by the formula (12.4.1), since the
integral does not converge in general. This can be overcome by writing

(Fu)(ω) =
1√
2π

lim
T →∞

T∫

−T

e−iωtu(t)dt,

where the limit is taken in the norm of the space L2(R).

It can be checked that for ϕ, f ∈ D(R) we have 〈Fϕ, f〉 = 〈ϕ,F∗f〉, where

(F∗f)(t) =
1√
2π

∞∫

−∞

eiωtf(ω)dω ∀ t ∈ R .

Thus, F∗ is the same operator as F , except for the change of −i into i. Using a
similar reasoning as for F , we can show that FF∗ = I. Thus we get the following
result, known as the Plancherel theorem:

Theorem 12.4.1. The Fourier transformation F ∈ L(L2(R)) is unitary.
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The space H2(C0). For every α ∈ R, we denote by Cα the open right half-plane
where Re s > 0. The space H2(C0) consists of all the analytic functions f : C0→C
for which

sup
α>0

∞∫

−∞

|f(α + iω)|2dω < ∞ . (12.4.4)

The norm of f in this space is, by definition,

‖f‖H2 =


 1

2π
sup
α>0

∞∫

−∞

|f(α + iω)|2dω




1
2

.

Such a space is also called a Hardy space (Hardy spaces are defined also for disks
and sometimes for other domains, and the powers 2 and 1

2
in the above formula are

sometimes replaced by p > 1 and 1
p
, respectively).

If f ∈ H2(C0) then for almost every ω ∈ R, the limit

f ∗(iω) = lim
α→ 0, α>0

f(α + iω)

exists, and it defines a function f ∗ ∈ L2(iR), called the boundary trace of f . Using
boundary traces, an inner product can be defined on H2(C0) as follows:

〈f, g〉H2 =
1

2π

∞∫

−∞

f ∗(iω)g∗(iω)dω.

This inner product induces the norm on H2(C0) that was mentioned earlier. With
this norm, H2(C0) is a Hilbert space.

Let Ω be a non-empty open subset of C. An analytic function f : Ω→C is called
rational if it has the structure f(s) = N(s)/D(s), where N and D are polynomials. If
this fractional representation is minimal, i.e., the order of D is the smallest possible,
then the zeros of D are called the poles of f . Obviously, f has a unique analytic
extension to the complement of the finite set of its poles. f is called proper if it has
a finite limit as s→∞ (equivalently, the order of N is at most equal to the order
of D). Such an f is called strictly proper if its limit at infinity is zero (equivalently,
the order of N is less than the order of D). A rational function f with values in
U belongs to H2(C0, U) iff it is strictly proper and all its poles are in the open
left half-plane where Re s < 0. In this case, the boundary trace f ∗ is simply the
restriction of f to iR.

The Laplace transformation. For u ∈ L1
loc[0,∞), its Laplace transform û is

defined by

û(s) =

∞∫

0

e−stu(t)dt, (12.4.5)
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for all s ∈ C for which the integral converges absolutely, i.e.,

∞∫

0

e−tRe s|u(t)|dt < ∞ .

This set of numbers s may be the whole complex plane C, it may be an open
or a closed right half-plane, or it may be empty. For details about the Laplace
transformation we refer to Arendt et al [8], Doetsch [50] and Widder [236].

It is useful to note that if u ∈ H1
loc(0,∞) is such that ̂̇u is defined on some right

half-plane Cα, with α > 0, then also û is defined on Cα and

̂̇u(s) = sû(s)− u(0) .

If u ∈ L1
loc[0,∞) is such that û is defined on Cα (where α ∈ R), and if y ∈ L1

loc[0,∞)
is defined by y(t) = −tu(t), then ŷ is also defined on Cα and ŷ(s) = d

ds
û(s).

The following theorem is due to R.E.A.C. Paley and N. Wiener.

Theorem 12.4.2. The Laplace transformation L : L2[0,∞) → H2(C0) is unitary.

The proof of the fact that L is isometric is easy: Take u ∈ L2[0,∞) and for all
a > 0 define ua(t) = e−atu(t). It follows from Theorem 12.4.1 that (12.4.4) holds
for û, and taking limits as a→ 0 we obtain (by the dominated convergence theorem
applied in L1[0,∞)) that L is isometric. To show that L is onto, we take f ∈ H2(C0)
and define u(t) = 1√

2π
eat(F∗fa)(t), where a > 0 and fa(ω) = f(a + iω). It can be

shown that u ∈ L2(R) and it is independent of a (this is the easy part). Finally, a
more subtle argument shows that u(t) = 0 for t < 0. Then it is easy to see that
f = û. For the detailed proof see, for instance, Rudin [194, Chapter 19].

In particular, it follows from the last theorem that if u ∈ L2[0,∞) then

‖û‖H2 = ‖u‖2 .

This last conclusion can be derived also from the Plancherel theorem.

We shall refer to Theorem 12.4.2 as the Paley-Wiener theorem. We also need the
following result, called the Paley-Wiener theorem on entire functions.

Theorem 12.4.3. Let f : C → C be an analytic function such that the restriction
of f to R is in L2(R). Suppose that there exist positive constants K and T such that

|f(z)| 6 KeT |z| ∀ z ∈ C .

Then there exists f ∈ L2[−T, T ] such that

f(s) =

T∫

−T

F (t)e−itsdt ∀ s ∈ C .
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For a proof of this theorem we refer to Rudin [194, p. 375].

The inverse Laplace transformation on H2(C0) is given by the formula

(L−1f)(t) = lim
T →∞

1

2π

T∫

−T

e(a+iω)tf(a + iω)dω,

where a > 0 is arbitrary and the limit is taken in the norm of L2[0,∞). Another
way of inverting the Laplace transformation is the Post-Widder formula:

Theorem 12.4.4. If u ∈ L1
loc[0,∞) is such that û exists on some right half-plane

and u is continuous at a point τ > 0, then (denoting û(n) =
(

d
ds

)n
û)

u(τ) = lim
n→∞

(−1)n

n!

(n

τ

)n+1

û(n)
(n

τ

)
.

The proof uses the fact that the sequence of functions ρn(t) = nn+1

n!
(te−t)n con-

verges to δ1, the unit pulse (“delta function” or “Dirac mass”) at t = 1. This implies
that

u(τ) = lim
n→∞

∞∫

0

u(τt)ρn(t)dt = lim
n→∞

(−1)n

n!

(n

τ

)n+1
∞∫

0

u(σ)(−σ)ne−σ n
τ dσ.

Using the property of the Laplace transformation mentioned just before Theorem
12.4.2, we get the desired formula. For more details see for instance Arendt et al [8,
p. 43] or Doetsch [50, Band I, p. 290] or Widder [236, Chapter 6].

Proposition 12.4.5. If u ∈ L1
loc[0,∞) has a Laplace transform û defined on Cα

(for some α ∈ R), then u is uniquely determined by û.

If u is continuous, then this statement follows from the Post-Widder formula.
Now suppose that u ∈ L1

loc[0,∞) such that û exists on Cα for some α > 0. From

what we said before Theorem 12.4.2 it follows that the function v(t) =
∫ t

0
u(σ)dσ

is locally absolutely continuous and has a Laplace transform v̂ defined on Cα, given
by v̂(s) = 1

s
û(s). Thus, v̂ is uniquely determined by û, v is uniquely determined by

v̂, and u is uniquely determined by v.

The Carleson measure theorem. For h > 0 and ω ∈ R we denote

R(h, ω) = { s ∈ C | 0 < Re s 6 h, |Im z − ω| 6 h } .

A positive measure µ on the Borel subsets of the right half-plane C0 is called a
Carleson measure if there is an M > 0 such that

µ(R(h, ω)) 6 M h ∀ h > 0 , ω ∈ R . (12.4.6)

(In some references, the rectangle R(h, ω) is replaced by a half-disk of radius h
centered at iω, or with a “tent”, which is a triangular area with the vertices iω −
ih, iω + ih, iω + h. This leads to equivalent definitions for a Carleson measure.) For
example, if Λ is the part of a straight line lying in C0 and µ is the one-dimensional
Lebesgue measure on Λ, then µ is a Carleson measure.
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Theorem 12.4.6. If µ satisfies (12.4.6), then for some mc < 20
√

M we have
∫

C0

|f |2dµ 6 m2
c‖f‖2

H2 ∀ f ∈ H2(C0) .

The above result, obtained by Lennart Carleson in 1962, is called the Carleson
measure theorem. It has many versions (for the disk or for the half-plane, for a
two-dimensional domain as above or for an n-dimensional domain). For a proof of
the above version we refer to Koosis [133] or Ho and Russell [100] (whose proof is
based on the proof of Duren [54] for the case of the disk). (The constant mc given
above is a bit better than in these references, see the explanations in [88, Prop. 3.2].)

If we apply Theorem 12.4.6 for f(s) = 1
s+λ

, with λ ∈ C0, we obtain that for any
Carleson measure µ there exists k > 0 such that

∫

C0

dµ

|s + λ|2 6 k

Re λ
∀ λ ∈ C0 .

We mention that, in fact, this estimate is equivalent to µ being a Carleson measure,
and it is sometimes used as an alternative definition of a Carleson measure.

12.5 Banach space-valued Lp functions

In this section we introduce spaces of W -valued Lp functions, where W is a
Banach space. Most of the results in Section 12.4 remain valid in this more general
context. We introduce W -valued Sobolev spaces. Good references for this section
are (in alphabetical order) Amann [5], Arendt, Batty, Hieber and Neubrander [8],
Cohn [35], Diestel and Uhl [49], Hille and Phillips [97], Rosenblum and Rovnyak
[193] and Yosida [239]. In this section we shall assume that the reader knows what a
measurable function is, even though now we mean measurability for Banach space-
valued functions (this is defined in the same way as for C-valued functions).

Let W be a Banach space. A set M ⊂ W is called separable if there is a finite or
countable set M0 ⊂ W such that M ⊂ clos M0. Let J be an interval of non-zero
length. A measurable function f : J →W is called strongly measurable if its range
Ran f = {f(t) | t ∈ J} is separable. A measurable f : J →W is called simple if
Ran f is finite. It can be shown that f is strongly measurable iff there exists a
sequence (fn) of simple functions from J to W such that lim fn(t) = f(t) for every
t ∈ J . Most Banach spaces of interest to us are separable, and in this case there is
no distinction between measurable and strongly measurable functions.

We denote by M(J ; W ) the space of all strongly measurable functions from J to
W . A function f ∈M(J,W ) is called Bochner integrable if the function t→‖f(t)‖
is in L1(J). In this case, we define its Bochner integral by

∫

J

f(t)dt = lim

∫

J

fn(t)dt,
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where (fn) is a sequence of simple functions converging to f at every point in J .
The integral of a simple function is easy to define, and it can be shown that the
above limit of integrals exists and it is independent of the choice of (fn). We denote
by L1(J ; W ) the space of all Bochner integrable functions f : J →W .

We state below two important theorems on the Lebesgue integral which remain
valid for the Bochner integral.

Theorem 12.5.1 (dominated convergence). Let J be an interval of non-zero length
and let (fn) be a sequence of Bochner integrable functions from J to the Banach
space W . Assume that f(t) := limn→∞ fn(t) exists a.e. and that there exists an
integrable function g : J → [0,∞) such that for every n ∈ N and for almost all t ∈ J
we have ‖fn(t)‖ 6 g(t). Then f is Bochner integrable and

∫

J

f(t)dt = lim
n→∞

∫

J

fn(t)dt, lim
n→∞

∫

J

‖f(t)− fn(t)‖dt = 0 .

Theorem 12.5.2 (Fubini’s theorem). Let J1 and J2 be two intervals of non-zero
lengths, let W be a Banach space and let f : J1 × J1 → W be strongly measurable.
Suppose that ∫

J1

∫

J2

‖f(x, y)‖dydx < ∞ .

Then the repeated Bochner integrals
∫

J1

∫

J2

f(x, y)dydx,

∫

J2

∫

J1

f(x, y)dxdy

exist and they are equal.

For the proofs of the two above theorems we refer to [8, p. 11-13].

Let J be an interval of non-zero length and let W be a Banach space. The dual
space of W is W ′ = L(W,C) and its elements are called functionals on W . A func-
tion f : J →W is called weakly measurable if for every ψ ∈ W ′ the function t 7→
ψf(t) is measurable. Pettis’ theorem states that f : J →W is strongly measurable
iff it is weakly measurable and Ran f is separable. An important consequence is
that if J is compact and f is continuous, then f is Bochner integrable. (This fact
can be obtained also from the approximation with simple functions.) If f is Bochner
integrable, then for every ψ ∈ W ′ we have ψf ∈ L1(J) and

ψ

∫

J

f(t)dt =

∫

J

ψf(t)dt ∀ ψ ∈ W ′ .

Moreover,
∫

J
f(t)dt is uniquely determined by the above formula.

For J a real interval, 1 6 p 6 ∞ and W a Banach space, Lp(J ; W ) will denote the
space of strongly measurable functions h : J →X for which t→‖h(t)‖ is in Lp(J).
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For p < ∞ we denote ‖h‖p =
(∫

J
‖h(t)‖pdt

) 1
p (this is a seminorm). For p = ∞

we denote ‖h‖∞ = supt∈J‖h(t)‖ (this is a norm). If h, g ∈ Lp(J ; W ), we declare
them to be equivalent if

∫
J
‖h(t) − g(t)‖dt = 0. As in the scalar case, Lp(J ; W )

is defined as the resulting space of equivalence classes. For p < ∞ the inherited
seminorm on Lp(J ; W ) becomes a norm and the space is complete. For L∞(J ; W )
we take ‖h‖∞ to be the infimum of the norms of the functions from the equivalence
class of h. Then L∞(J ; W ) is also a Banach space. The step functions are dense in
Lp(J ; W ) for p < ∞. The spaces Lp

loc(J ; W ) are defined as in the scalar case. The
Fourier transformation on L1(R; W ), L2(R; W ) and the Laplace transformation on
L1

loc([0,∞); W ) are also defined as in the scalar case.

Proposition 12.5.3. Let U, Y be Banach spaces, g ∈ L1
loc([0,∞);L(U, Y )) and

u ∈ Lp
loc([0,∞); U). Define

y(t) =

t∫

0

g(t− σ)u(σ)dσ,

for all t for which the integral exists. Then y ∈ Lp
loc([0,∞); Y ). If α ∈ R is such

that both Laplace transforms û and ĝ are defined on Cα, then also ŷ is defined on
Cα and

ŷ(s) = ĝ(s) · û(s) ∀ s ∈ Cα .

This follows from Theorems 1.9.9 and 1.10.11 in Amann [5]. However, note that
in general we cannot take g(t) = Tt, where T is an operator semigroup, because this
g would not be strongly measurable in most cases.

Let Y be a Hilbert space. The space H2(C0; Y ) consists of all the analytic func-
tions f : C0→Y that satisfy

sup
α>0

∞∫

−∞

‖f(α + iω)‖2dω < ∞ ,

which is similar to (12.4.4). The norm and the boundary trace of f can be defined
similarly as in H2(C0). The boundary trace f ∗ belongs to L2(iR; Y ). The inner
product of two functions in H2(C0; Y ) can be defined using their boundary traces,
as in the case of H2(C0). With this inner product, H2(C0; Y ) is a Hilbert space.

We need the following proposition, which is the Paley-Wiener theorem (Theorem
12.4.2) rewritten for Hilbert space-valued functions, see also [8, p. 48].

Proposition 12.5.4. The Laplace transformation is a unitary operator from
L2([0,∞); Y ) to H2(C0; Y ).

It follows that if f ∈ H2(C0; Y ), then f is the Laplace transform of a function
y ∈ L2([0,∞); Y ), i.e.,

f(s) =

∞∫

0

e−sty(t)dt.



410 Appendix I: Some background in functional analysis

Moreover, we have
∞∫

0

‖y(t)‖2dt =
1

2π

∞∫

−∞

‖f ∗(iω)‖2 .

Sketch of the proof. The range of f is separable, hence it is contained in a subspace
Y0 with a countable orthonormal basis {bk | k ∈ N}. If fk are the coordinates
of f in this basis, i.e., fk(s) = 〈f(s), bk〉, then according to the classical Paley-
Wiener theorem (Theorem 12.4.2), each fk is the Laplace-transform of a function
yk ∈ L2[0,∞). The series

∑
k∈N yk bk is convergent in L2([0,∞); Y0), because its

terms are orthogonal and the norms of its terms are square summable. The sum y
of the series has f as its Laplace-transform.

The space H∞(C0; W ) consists of all the analytic functions G : C0→Z for which

sup
s∈C0

‖G(s)‖W < ∞ .

The norm of G in this space is defined as the above expression. It is easy to see
that if f ∈ H2(C0; U) and G ∈ H∞(C0;L(U, Y )), then Gf ∈ H2(C0; Y ). Denoting
g = Gf , we have ‖g‖H2 6 ‖G‖H∞‖f‖H2 . This fact is often used in systems theory,
where normally f = û, the Laplace transform of the input signal u of a system, G
is the transfer function of the system, and g = ŷ where y is the output signal. The
condition G ∈ H∞(C0;L(U, Y )) is equivalent to the fact that if u ∈ L2([0,∞); U)
then y ∈ L2([0,∞); Y ). This property is also called input-output stability. A
rational function G with values in Cp×m belongs to H∞(C0;Cp×m) if and only if it
is proper and all its poles are in the left half-plane where Re s < 0.

Everything we said about the inverse Laplace transformation in the previous sec-
tion remains valid for Hilbert space-valued functions. In particular, the integral
formula for L−1 and the Post-Widder formula remain true in this context. For a
proof of the Banach space-valued version of the Post-Widder formula see [8, p. 43].
In particular, it follows that Proposition 12.4.5 can be generalized for Banach space-
valued functions.
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Appendix II: Some background on
Sobolev spaces

In this chapter we introduce some concepts about distributions, Sobolev spaces
and differential operators acting on such spaces. For a more solid grounding the
reader should consult Adams [1], Brezis [22], Dautray and Lions [42, 43], Grisvard
[77], Hörmander [101], Lions and Magenes [157], Neças [176], Zuily [246]. Starting
from Section 13.5 we assume that the reader knows some basic concepts about
differentiable manifolds, as can be found for instance in Spivak [208].

Notation. Throughout this chapter, we use the multi-index notation of Laurent
Schwartz. We denote Z+ = {0, 1, 2, . . .}. For α = (α1, ... αn) ∈ Zn

+ and x =

(x1, . . . xn) ∈ Rn we set |x| = ((x1)
2 + (x2)

2 . . . + (xn)2)
1
2 ,

xα = xα1
1 . . . xαn

n , α! = (α1!) . . . (αn!), |α| =
n∑

i=1

αj .

For α = (α1, . . . , αn), β = (β1, ... βn) we set

α + β = (α1 + β1, . . . αn + βn).

As in earlier chapters, we use the following notation for the bilinear product of two
vectors in Cn:

v · w = v1w1 . . . + vnwn .

In this chapter, Ω ⊂ Rn is an open set. For any m ∈ Z+, Cm(Ω) is the space
of all the functions ϕ : Ω→C for which all the partial derivatives of order 6 m
exist and are continuous. C0(Ω) is also denoted by C(Ω). We denote by C∞(Ω) the
intersection of all the spaces Cm(Ω) (m ∈ N). There is no boundedness requirement
for functions in Cm(Ω). If α ∈ Zn

+ and f ∈ Cm(Ω) with |α| 6 m, we denote

∂αf =
∂|α|f

∂xα1
1 . . . ∂xαn

n

=
∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

f .
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13.1 Test functions

If K is the closure of an open subset of Rn, m ∈ Z+ or m = ∞, we denote by
Cm(K) the space of all the restrictions to K of functions in Cm(Rn). We denote by
C∞(K) the intersection of all the spaces Cm(K) (m ∈ N). If K as above is compact
and m < ∞, then for any ϕ ∈ Cm(K) we can define

‖ϕ‖Cm(K) = sup
x∈K, |α|6m

|(∂αϕ)(x)| . (13.1.1)

With this norm Cm(K) is a Banach space. For ϕ ∈ Cm(Rn) and K an arbitrary
compact subset of Rn, we still use the notation (13.1.1), even though for such (arbi-
trary compact) K, (13.1.1) usually does not define a norm on Cm(K) (because ∂αϕ
is not determined by the restriction ϕ|K).

If ϕ ∈ C(Ω), the support of ϕ is the closure (in Rn) of {x ∈ Ω | ϕ(x) 6= 0}. The
support of ϕ is denoted by supp ϕ. We denote by D(Ω) the set of all ϕ ∈ C∞(Ω)
which have compact support contained in Ω. These functions are called test func-
tions. For a compact K ⊂ Ω, we denote by DK(Ω) the set of all ϕ ∈ D(Ω) with
supp ϕ ⊂ K. For p ∈ [1,∞), we denote by Lp(Ω) the space of all the measurable
functions f : Ω→C such that

∫
Ω
|f(x)|pdx < ∞. We denote by L∞(Ω) the space

of all the measurable and essentially bounded functions from Ω to C and by L1
loc(Ω)

the space of all the measurable functions f : Ω→C such that
∫

K
|f(x)|dx < ∞

for every compact K ⊂ Ω. In the last three spaces, we do not distinguish between
functions that are equal almost everywhere. (Two functions f, g ∈ L1

loc(Ω) are equal
almost everywhere iff

∫
K
|f(x) − g(x)|dx = 0 for every compact K ⊂ Ω.) The es-

sential supremum norm on L∞(Ω) is denoted by ‖ · ‖∞. The concepts used above
are supposed to be known from analysis, here we are only clarifying our notation.

We have used several times in this book the existence of test functions with special
properties. We give below a detailed construction of these functions. First we note
that there are test functions other than the zero function.

Lemma 13.1.1. There exists ϕ ∈ D(Rn) such that

ϕ(0) > 0 and ϕ(x) > 0 ∀ x ∈ Rn .

Proof. It is not difficult to check that the function

f(t) =

{
0 if t 6 0

e−
1
t if t > 0

, (13.1.2)

is of class C∞ on R. It follows that the function

ϕ(x) = f
(
1− |x|2) ,

has the required properties.
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By a simple change of variables we see that, for every δ > 0, the function

x 7→ ϕ

(
x− x0

δ

)
,

is non-negative, positive at x0 and supported in the ball of radius δ centered at x0.

Lemma 13.1.2. There exists a non-decreasing function θ ∈ C∞(R) such that

θ(x) =

{
0 if x 6 0
1 if x > 1

.

Proof. We consider again the function in C∞(R) defined by (13.1.2). We clearly
have that supp(f) = [0,∞) and 0 6 f(x) 6 1 for every x ∈ R. Define g(x) =
f(x)f(1 − x) and G(x) =

∫ x

0
g(t)dt. Then 0 6 g(x) 6 1 for x ∈ R and supp(g) ⊂

[0, 1]. Moreover g 6= 0 since g(1
2
) =

[
f

(
1
2

)]2 6= 0. The function θ(x) = G(x)
G(1)

is thus

in C∞(R), it is non-decreasing and it satisfies

θ(x) =

{
0 if x 6 0 ,
1 if x > 1 .

Proposition 13.1.3. Let a < c < d < b be real numbers. Then there exists ρ ∈
D(R) such that

(1) ρ(x) = 1 for every x ∈ [c, d];

(2) supp ρ ⊂ (a, b);

(3) 0 6 ρ(x) 6 1 for every x ∈ R.

Proof. Set ρ(x) = θ

(
x− a

c− a

)
θ

(
b− x

b− d

)
, where θ is the function constructed in

Lemma 13.1.2. It can be easily checked that ρ has the required properties.

Corollary 13.1.4. Let 0 < r < R and let n ∈ N. Then there exists ρ̃ ∈ C∞ (Rn)
such that ρ̃(x) = 1 if ‖x‖ < r and ρ̃(x) = 0 if ‖x‖ > R.

Proof. We take ρ̃(x) = ρ (‖x‖2) where ρ is the function in Proposition 13.1.3,
with

−a = b = R2 and − c = d = r2 .

For x ∈ Rn and r > 0 we denote by B(x, r) the open ball centered at x and of
radius r. For K a compact subset in Rn and for ε > 0 we denote

Kε = K + B(0, ε) =
⋃
x∈K

B(x, ε) .

Proposition 13.1.5. Let K be a compact subset of Rn. Then for every ε > 0, there
exists ϕ ∈ D(K2ε) such that ϕ(x) = 1 for x ∈ Kε and 0 6 ϕ(x) 6 1 for all x ∈ Rn.
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Proof. Since clos Kε is compact, there exist x1, . . . , xp ∈ K such that

clos Kε ⊂
p⋃

j=1

B

(
xj,

4ε

3

)
.

According to Corollary 13.1.4, for each j ∈ {1, . . . , p} there exists a function ϕj ∈
D (

B
(
xj,

5ε
3

))
such that ϕj(x) > 0 for every x ∈ Rn and φj(x) = 1 for x ∈ B

(
xj,

4ε
3

)
.

Let φ(x) =
∑N

j=1 ϕj(x). We have φ(x) > 1 for all x ∈
p⋃

j=1

B(xj, ε). On the other

hand, since

clos

p⋃
j=1

B

(
xj,

5ε

3

)
⊂ K2ε ,

we have that φ ∈ D(K2ε). Let θ ∈ C∞(R) be the function from Lemma 13.1.2. It is
easy to see that the function ϕ(x) = θ(φ(x)) satisfies the required conditions.

Proposition 13.1.6. Suppose that K ⊂ Rn is compact and let D1, ...DN be open
sets such that K ⊂ ∪N

k=1Dk. Then there exist functions ϕk ⊂ D(Dk) (k = 1, ... N)
such that ϕk > 0 and

∑N
k=1 ϕk(x) = 1 for every x in an open neighborhood of K.

The family of functions ϕ1, ...ϕN in the above proposition is called a partition of
unity subordinated to the compact K and to its covering D1, ... DN .

In order to prove Proposition 13.1.6, we need the following lemma.

Lemma 13.1.7. Let K ⊂ Rn be compact and let (Uj)j∈{1,...N} be open sets covering

K. Then there exist compact sets (Kj)j∈{1,...N} such that Kj ⊂ Uj for all j ∈
{1, . . . N} and

K =
N⋃

j=1

Kj . (13.1.3)

Proof. For x ∈ K let rx > 0 be such that clos B (x, rx) ⊂
⋂

x∈Dj

Dj. Then

K ⊂
⋃
x∈K

B (x, rx), so that there exist x1, . . . , xM ∈ K such that K ⊂
M⋃
i=1

B (xi, rxi
).

Denote

Kj = K
⋂




⋃

clos B(xi,rxi)⊂Dj

clos B (xi, rxi
)


 .

Then clearly Kj is a compact set contained in K and Kj ⊂ Dj. We still have
to check (13.1.3). Let x ∈ K, then there exists i ∈ {1, . . . M} such that x ∈
B (xi, rxi

). On the other hand there exists j0 ∈ {1, . . . N} such that xi ∈ Dj0 , so
that clos B (xi, rxi

) ⊂ Dj0 . It follows that x ∈ Kj0 .

We are now in a position to prove the existence of the partition of unity.
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Proof of Proposition 13.1.6. According to Lemma 13.1.7 there exist compacts
(Kj)j∈{1,...N} such that Kj ⊂ Dj, for all j ∈ {1, . . . N}, and K = ∪N

i=1Kj. Moreover,

by applying Proposition 13.1.5 it follows that for j ∈ {1, . . . N} there exists ψj ∈
D(Dj) with ψj(x) ∈ [0, 1], for all x ∈ Rn and ψj(x) = 1 for x ∈ Kj. Let

V =

{
x ∈

N⋃
j=1

Dj

∣∣∣∣∣
N∑

j=1

ψj(x) > 0

}
.

Then K ⊂ V and V is an open set. According to Proposition 13.1.5 there exists
η ∈ D(V ) such that η(x) ∈ [0, 1] for all x ∈ Rn and η = 1 on an open set W such
that K ⊂ W ⊂ V . Define

ϕj =
ψj

(1− η) +
∑N

k=1 ψk

. (13.1.4)

Then ϕj ∈ D(Uj), since the denominator of the expression in the right-hand side
of (13.1.4) is positive on V and it equals 1 outside V. Since η = 1 on W , relation
(13.1.4) implies that

∑N
j=1 ϕj(x) = 1 for all x ∈ W .

Corollary 13.1.8. Let K1 and K2 be two compact disjoint subsets of the open set
Ω ⊂ Rn. Then there exists a function ϕ ∈ D(Ω) such that

ϕ(x) =

{
1 if x ∈ K1

−1 if x ∈ K2

and |ϕ(x)| 6 1 for all x ∈ Ω.

Proof. Let U1 and U2 be two open subsets of Ω such that

K1 ⊂ U1, K2 ⊂ U2, U1 ∩ U2 = ∅ .

According to Proposition 13.1.5 there exist ϕ1, ϕ2 ∈ D(Ω) such that

ϕi(x) = 1 for x ∈ Ki, ϕi ∈ D(Ui), i ∈ {1, 2} ,

and
0 6 ϕi(x) 6 1, i ∈ {1, 2} .

The function ϕ defined by

ϕ(x) = ϕ1(x)− ϕ2(x) ∀ x ∈ Ω ,

clearly has the required properties.

We end this section by a result showing that there are “a lot” of test functions.

Proposition 13.1.9. For every p ∈ [1,∞) we have that D(Ω) is dense in Lp(Ω).

For the proof of the above result we refer to Adams [1, p. 31].
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13.2 Distributions on a domain

If u : D(Ω)→C is linear, then the action of u on a test function ϕ ∈ D(Ω) is de-
noted by 〈u, ϕ〉. We adopt a bilinear convention: 〈u, ϕ〉 is linear in both components
(unlike the pairing of a Hilbert space with its dual).

Definition 13.2.1. A distribution on Ω is a linear map u : D(Ω)→C which satisfies
the following continuity assumption: for every compact K ⊂ Ω there is an m ∈ Z+

and a constant C > 0 (both may depend on K) such that

|〈u, ϕ〉| 6 C ‖ϕ‖Cm(K) ∀ ϕ ∈ DK(Ω) . (13.2.1)

The set of all distributions on Ω is denoted by D′(Ω) and clearly this is a vector
space. If, for some u ∈ D′(Ω), the constant m in (13.2.1) can be chosen indepen-
dently of K, then the smallest such integer m is called the order of u.

If f ∈ L1
loc(Ω) then we can define uf : D(Ω) → C by

〈uf , ϕ〉 =

∫

Ω

f(x)ϕ(x)dx ∀ ϕ ∈ D(Ω) .

Then uf ∈ D′(Ω) and it is of order zero. Indeed, for every compact K ⊂ Ω we have

|〈uf , ϕ〉| 6




∫

K

|f(x)|dx


 ‖ϕ‖C(K) ∀ ϕ ∈ D(Ω) .

Such distributions are called regular.

Proposition 13.2.2. If f ∈ L1
loc(Ω) is such that uf = 0, then f(x) = 0 for almost

every x ∈ Ω.

Proof. We have to show that if f ∈ L1
loc(Ω) is such that

∫

Ω

fϕdx = 0 ∀ ϕ ∈ D(Ω) , (13.2.2)

then f(x) = 0 almost everywhere in Ω. First we assume that f ∈ L1(Ω) and that Ω
is bounded. According to Proposition 13.1.9, for every ε > 0 there exists f1 ∈ D(Ω)
such that ‖f − f1‖L1(Ω) < ε. Using (13.2.2) we have

∣∣∣∣∣∣

∫

Ω

f1ϕdx

∣∣∣∣∣∣
6 ε‖ϕ‖L∞(Ω) ∀ ϕ ∈ D(Ω). (13.2.3)

Let
K1 = {x ∈ Ω | h1(x) > ε} , K2 = {x ∈ Ω | h1(x) 6 −ε} .



Distributions on a domain 417

Since K1 and K2 are compact sets and K1 ∩K2 = ∅, by applying Corollary 13.1.8
we obtain the existence of a function ϕ0 ∈ D(Ω) such that

ϕ0(x) =

{
1 if x ∈ K1

−1 if x ∈ K2 ,

and |ϕ0(x)| 6 1 for all x ∈ Ω. Putting K = K1 ∪K2 it follows that

∫

Ω

f1ϕ0dx =

∫

Ω\K

f1ϕ0 +

∫

K

f1ϕ0 ,

so that, thanks to (13.2.3), we have

∫

K

|f1|dx =

∫

K

f1ϕ0dx 6 ε +

∫

Ω\K

|f1|dx.

Consequently, denoting the Lebesgue measure of Ω by µ(Ω), we see that

∫

Ω

|f1|dx =

∫

K

|f1|+
∫

Ω\K

|f1|dx 6 ε + 2

∫

Ω\K

|f1|dx 6 ε + 2εµ(Ω) ,

since |f1| 6 ε on Ω \K. Thus

‖f‖L1(Ω) 6 ‖f − f1‖L1(Ω) + ‖f1‖L1(Ω) 6 2ε + 2εµ(Ω) .

Since this holds for all ε > 0, we conclude that f = 0 almost everywhere on Ω.

Let Ω be an arbitrary open set in Rn. Then Ω =
⋃

k∈NΩk with Ωk open, clos Ωk

compact, clos Ωk ⊂ Ω. Indeed, we may take, for instance,

Ωk =

{
x ∈ Ω

∣∣∣∣ d(x,Rn \ Ω) >
1

k
and |x| < k

}
.

Here, d(x,M) denotes the distance from the point x ∈ Rn to the set M ⊂ Rn. By
applying the result for bounded Ω proved earlier, with Ωk in place of Ω and with
the corresponding restriction of f , we obtain that f = 0 almost everywhere on Ωk,
so that f = 0 almost everywhere on Ω.

Due to the above proposition, we may regard L1
loc(Ω) as a subspace of D′(Ω).

In this sense, distributions are generalizations of L1
loc functions and are sometimes

called generalized functions. When u is a distribution on Ω then by u ∈ L2(Ω) we
mean that u is regular and it is represented by a function in L2(Ω) ⊂ L1

loc(Ω). The
meaning of u ∈ L∞(Ω), u ∈ Cm(Ω) etc is similar.

Example 13.2.3. For a ∈ Ω we consider the linear map δa : D(Ω)→C defined by

〈δa, ϕ〉 = ϕ(a) ∀ ϕ ∈ D(Ω) .
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Then for every compact K ⊂ Ω we have

|〈δa, ϕ〉| 6 ‖ϕ‖C(K) ∀ ϕ ∈ D(Ω) .

Thus, δa is a distribution of order zero on Ω, called the Dirac mass at a. This
distribution is not regular. Indeed, suppose that there exists f ∈ L1

loc(Ω) such that

〈δa, ϕ〉 =

∫

Ω

f(x)ϕ(x)dx = ϕ(a) ∀ ϕ ∈ D(Ω) . (13.2.4)

Denote Ωa = Ω\{a}. Then 〈δa, ϕ〉 = 0 for all ϕ ∈ D(Ωa). As remarked a little earlier,
this implies that f(x) = 0 almost everywhere in Ωa and thus almost everywhere in
Ω. Consequently

∫
Ω

f(x)ϕ(x)dx = 0 for all ϕ ∈ D(Ω), which contradicts (13.2.4).

There is no good way to define a norm, or even a distance, on the spaces D(Ω)
and D′(Ω). However, convergent sequences can be defined as follows:

Definition 13.2.4. The sequence (ϕk) with terms in D(Ω) converges to ϕ ∈ D(Ω)
if there exists a compact K ⊂ Ω such that

1. supp ϕk ⊂ K for all k ∈ N and supp ϕ ⊂ K,

2. for all m ∈ Z+ we have limk→∞ ‖ϕk − ϕ‖Cm(K) = 0.

The sequence (uk) in D′(Ω) converges to u ∈ D′(Ω) if

lim
k→∞

〈uk, ϕ〉 = 〈u, ϕ〉 ∀ ϕ ∈ D(Ω) .

It is easy to see that a sequence in D(Ω) or in D′(Ω) cannot converge to two
different limits. It is also easy to see that the sum of two convergent sequences (in
one of the above spaces) is convergent to the sum of their limits.

Remark 13.2.5. Let p, q ∈ [1,∞] such that 1/p + 1/q = 1. If the sequence (uk) in
Lp(Ω) is such that uk→u0 in Lp(Ω), then uk→ u0 also in D′(Ω). Indeed,

∣∣∣∣∣∣

∫

Ω

u0(x)ϕ(x)dx−
∫

Ω

uk(x)ϕ(x)dx

∣∣∣∣∣∣
6 ‖u0 − uk‖Lp(Ω) ‖ϕ‖Lq(Ω)

for all ϕ ∈ D(Ω), which clearly implies that uk→ u0 in D′(Ω).

Definition 13.2.6. Let u ∈ D′(Ω) and let j ∈ {1, ... n}. The partial derivative of u
with respect to xj, denoted ∂u

∂xj
, is the distribution defined by

〈
∂u

∂xj

, ϕ

〉
= −

〈
u,

∂ϕ

∂xj

〉
∀ ϕ ∈ D(Ω) .
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It is easy to check that indeed the above formula defines a new distribution in
D′(Ω). Moreover, if u ∈ C1(Ω), then its partial derivatives in D′(Ω) coincide with
its usual partial derivatives. Higher order partial derivatives are defined recursively
in the obvious way. It is easy to check that, for all α ∈ Zn

+,

〈∂αu, ϕ〉 = (−1)|α| 〈u, ∂αϕ〉 ∀ ϕ ∈ D(Ω) . (13.2.5)

Example 13.2.7. Let H ∈ L∞(R) be the Heaviside function, which is the charac-
teristic function of the interval [0,∞). Then ∂1H = dH

dx
= δ0 in D′(R), since

〈
dH

dx
, ϕ

〉
= −

〈
H,

dϕ

dx

〉
= −

∞∫

0

dϕ

dx
dx = ϕ(0) ∀ ϕ ∈ D(R) .

Example 13.2.8. Let u ∈ L1(R) be given by u(x) = log |x|. The derivative ∂1u of
this (regular) distribution is denoted PV 1

x
and it is given for all ϕ ∈ D(R) by

〈
PV

1

x
, ϕ

〉
= lim

ε→ 0, ε>0

∫

|x|>ε

ϕ(x)
dx

x
=

R∫

−R

[ϕ(x)− ϕ(0)]
dx

x
,

where R > 0 is such that supp ϕ ⊂ [−R, R]. (PV stands for “principal value”.) Note
that in the last integral we are integrating a continuous function on [−R,R]. The
distribution PV 1

x
is not regular. However, its restriction to Ω0 = {x ∈ R | x 6= 0}

is regular and it is represented by the function d
dx

u(x) = 1
x
.

Proposition 13.2.9. Let (uk) be a sequence in D′(Ω) such that uk→u in D′(Ω).
Then for every multi-index α ∈ Zn

+ we have that ∂αun→ ∂αu in D′(Ω).

Proof. For any ϕ ∈ D(Ω) we have

lim
n→∞

〈∂αun, ϕ〉 = (−1)|α| lim
n→∞

〈un, ∂
αϕ〉 = (−1)|α| 〈u, ∂αϕ〉 = 〈∂αu, ϕ〉 .

For f ∈ C∞(Ω) and u ∈ D′(Ω), the product fu ∈ D′(Ω) is defined by

〈fu, ϕ〉 = 〈u, fϕ〉 ∀ ϕ ∈ D(Ω) .

It is easy to check that this formula defines indeed a distribution. The following
version of Leibnitz’ formula holds (as it is easy to verify):

∂

∂xk

(fu) =
∂f

∂xk

u + f
∂u

∂xk

∀ k ∈ {1, ... n} .

For u ∈ D′(Ω) and O an open subset of Ω, the restriction of u to O, denoted by
u|O ∈ D′(O) is defined by

〈u|O, ϕ〉D′(O),D(O) = 〈u, ϕ〉D′(Ω),D(Ω) ∀ ϕ ∈ D(O) .



420 Appendix II: Some background on Sobolev spaces

Proposition 13.2.10. Let I be an arbitrary index set and suppose that Ω = ∪j∈IDj,
where each Dj is open. If u ∈ D′(Ω) is such that u|Dj

= 0 for all j ∈ I, then u = 0.

Proof. Let η ∈ D(Ω). Since supp η is compact, there exists a finite index set F ⊂ I
such that supp η ⊂ ⋃

j∈F Dj. Let φj (j ∈ F) be a partition of unity subordinated
to supp η (see Proposition 13.1.6) and to its covering Dj (j ∈ F). We have that
η =

∑
j∈F φjη, with φjη ∈ D(Dj). Thus,

〈u, η〉 =
∑
j∈F

〈u, φjη〉 =
∑
j∈F

〈
u|Dj

, φjη
〉

= 0 .

It follows from the last proposition that for any u ∈ D′(Ω), the union O of all
the open sets D ⊂ Ω such that u|D = 0 has again the property u|O = 0. The
complement of O (in Ω) is called the support of u and it is denoted by supp u.

13.3 The operators div, grad, rot and ∆

Let Ω be an open connected set in Rn. Distributions with values in Cm (m ∈ N)
and spaces of such distributions are defined componentwise in the obvious way. The
notation D′(Ω,Cm) is used for such distributions. The differential operators

div : D′(Ω;Rn)→D′(Ω) , grad : D′(Ω)→D′(Ω;Rn)

are defined by

div v =
∂v1

∂x1

... +
∂vn

∂xn

, grad ψ =

(
∂ψ

∂x1

, ...
∂ψ

∂xn

)
.

For n = 3, we also introduce the operator

rot : D′(Ω;C3)→D′(Ω;C3)

by

(rot v)j =
∂vl

∂xk

− ∂vk

∂xl

, (j, k, l) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} .

A non-rigorous but useful way of thinking of these operators is to introduce the
“vector”

∇ =

(
∂

∂x1

, ...
∂

∂xn

)

and do computations with it as if it were a vector in Rn. Then formally grad ψ = ∇ψ
(as if we would multiply a vector with a scalar), div v = ∇ · v (as if we would take
the bilinear product of two vectors). For n = 3 we have rot v = ∇ × v (as if we
would take the vector product of two vectors).

The following identities are easily verified by direct computation:

rot grad = 0 , div rot = 0 .
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According to Leibnitz’ formula, for ϕ ∈ C∞(Ω), ψ ∈ D′(Ω) and v ∈ D′(Ω;Cn),

div (ϕv) = (grad ϕ) · v + ϕdiv v , (13.3.1)

grad (ϕψ) = ψ(grad ϕ) + ϕ(grad ψ) . (13.3.2)

If n = 3, q ∈ D(Ω;C3) and v ∈ D′(Ω;C3), then

div (q × v) = rot q · v − q · rot v .

We denote ∆ = div grad , which is called the Laplacian. (In the formal calculus
mentioned earlier, ∆ = ∇ · ∇.) Thus, according to Definition 13.2.6, for every
distribution ψ ∈ D′(Ω) we have

〈∆ψ, ϕ〉 = − 〈∇ψ,∇ϕ〉 = 〈ψ, ∆ϕ〉 ∀ ϕ ∈ D(Ω) . (13.3.3)

The operator ∆ can be applied also to vector-valued distributions, acting compo-
nentwise. It is easy to check that

rot rot = grad div −∆ .

If v ∈ D′(Ω;Cn) and ψ ∈ D(Ω;Cn) then we denote 〈v, ψ〉 =
∑n

k=1〈vk, ψk〉 = 〈ψ, v〉.
It is easy to verify that

〈div v, ϕ〉 = − 〈v, grad ϕ〉 ∀ v ∈ D′(Ω;Cn), ϕ ∈ D(Ω) , (13.3.4)

〈rot v, ψ〉 = 〈v, rot ψ〉 ∀ v ∈ D′(Ω;C3), ϕ ∈ D(Ω;C3) ,

∆(ϕψ) = (∆ϕ)ψ + 2〈∇ϕ,∇ψ〉+ ϕ(∆ψ) ∀ ψ ∈ D′(Ω), ϕ ∈ D(Ω) . (13.3.5)

Remark 13.3.1. If we take Ω = Rn \ {0} then for every q ∈ R, the function
f(x) = |x|q defines a regular distribution on Ω and grad f = q|x|q−2x. Using the
formula (13.3.1) we obtain ∆f = qgrad (|x|q−2) · x + q|x|q−2div x, whence

∆|x|q = qdiv (|x|q−2x) = q(q + n− 2)|x|q−2 . (13.3.6)

If we include also the point zero, i.e., if Ω = Rn, then the computation becomes
more interesting. We compute ∆|x|q for q = 2− n and Ω = Rn in Example 13.7.5.

In the remaining part of this section we give a result showing that partial deriva-
tives in D′(Ω) preserve an important property of classical partial derivatives.

Theorem 13.3.2. Suppose that Ω is connected and that u ∈ D′(Ω) is such that
grad u = 0. Then u is a constant function.

For the proof of this theorem we need the following lemma.
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Lemma 13.3.3. Let η ∈ D(R), where R is an n-dimensional open hypercube. Then
the following conditions are equivalent:

(1)

∫

R

η(x)dx = 0.

(2) There exist ψ ∈ D(R;Cn) such that η = div ψ.

Proof. The fact that (2) implies (1) can be checked by simple integration by parts.

We show by induction that (1) implies (2). Without loss of generality we may
assume that R = Rn = (−R, R)n for some R > 0. It is easy to check that the
implication (1) ⇒ (2) holds for n = 1. Assume that k > 2 and that the implication
holds for all n 6 k − 1. Consider the function f defined by

f (x1, . . . , xk−1) =

R∫

−R

η (x1, . . . , xk−1, y) dy . (13.3.7)

Then supp f ∈ D (Rk−1). Moreover, by applying Fubini’s theorem, we obtain that∫
Rk−1

f(x)dx = 0 so that there exist g1, . . . , gk−1 ∈ D(Rk−1) with

f =
k−1∑
j=1

∂gj

∂xj

. (13.3.8)

Let ρ ∈ D(R1) satisfying
∫ R

−R
ρ(t)dt = 1 and consider the function η̃ defined by

η̃(x) = η(x)−
k−1∑
j=1

∂gj

∂xj

(x1, ... xk−1) ρ(xk) ∀ x ∈ Rk . (13.3.9)

The above relation and (13.3.8) imply that

η̃(x) = η(x)− f(x1, ... xk−1)ρ(xk) .

This combined with (13.3.7) and with the fact that
∫ R

−R
ρ(t)dt = 1 implies that

supp η ⊂ Rk,

R∫

−R

η̃(x1, ... xk−1, t)dt = 0 ∀ (x1, ... xk−1) ∈ Rk−1 . (13.3.10)

Denote

ψj (x1, ... xk) = gj (x1, ... xk−1) ρ (xk) , ∀ j ∈ {1, ... k − 1} .
We have that ψj ∈ D(Rk) and from (13.3.9), and the last formula it follows that,
for all j ∈ {1, . . . k − 1},

η̃ = η −
k−1∑
j=1

∂ψj

∂xj

. (13.3.11)
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This combined to (13.3.10) implies that the function

ψk(x) =

xk∫

−R

η̃(x1, ... xk−1, t)dt

satisfies the conditions ψk ∈ D(Rk) and that ∂ψk

∂xk
= η̃. These facts, combined to

(13.3.11) imply that η = div ψ .

Proof of Theorem 13.3.2. As a first step we suppose that R ⊂ Ω is an open
hypercube and we show that the restriction of u to R is a constant function. Let
θ ∈ D(R) be such that

∫
R θ(x)dx = 1 and let ϕ ∈ D(R). The function η(x) =

ϕ(x)− [∫
R ϕ(x)dx

]
θ(x) is in D(R) and

∫
R η(x)dx = 0. According to Lemma 13.3.3

there exists ψ ∈ D(R;Cn) such that

div ψ = ϕ−



∫

O

ϕ(x)dx


 θ .

By applying u to the above formula it follows that

〈u, ϕ〉 =




∫

R

ϕ(x)dx


 〈u, θ〉+ 〈u, div ψ〉 .

Using (13.3.4) and the fact that grad u = 0, it follows that the last term on the
right-hand side above vanishes. Denoting by C the constant 〈u, θ〉, it follows that

〈u, ϕ〉 = C

∫

R

ϕ(x)dx ∀ ϕ ∈ D(R) .

Thus, u|R = C (a constant function).

The second step is to show that the constant C from the first step is the same
for all the hypercubes contained in Ω. Since Ω is connected, for any two open
hypercubes Rα, Rω ⊂ Ω there exists a chain of open hypercubes (R1, ...Rp) such
that R1 = Rα, Rω = Rp, Rk ⊂ Ω, Rk ∩Rk+1 6= ∅ for all k ∈ {1, ... p− 1}. Thus, it
suffices to show that the constant C from the first step is the same for any two open
hypercubes with non-empty intersection. This follows by considering the restriction
of u to the intersection of these hypercubes.

The third step is to show that u = C where C is the constant from the second
step. It follows from the result of the second step that (u−C)|R = 0 for every open
hypercube R ⊂ Ω. The union of all the open hypercubes contained in Ω is Ω. Thus,
by Proposition 13.2.10 we have u− C = 0.
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13.4 Definition and first properties of Sobolev spaces

In this section we gather, for easy reference, several basic definitions and results
on Sobolev spaces. For more information and for detailed proofs we refer to Adams
[1], Grisvard [77], Evans [59], Lions and Magenes [157], Neças and [176].

Let Ω ⊂ Rn be an open set and let m ∈ N.

Definition 13.4.1. The Sobolev space Hm(Ω) is formed by the distributions f ∈
D′(Ω) having the property that ∂αf ∈ L2(Ω) for every α ∈ Zn

+ with |α| 6 m.

From the above definition it clearly follows that H0(Ω) = L2(Ω).

Proposition 13.4.2. Hm(Ω) is a Hilbert space with the scalar product

〈f, g〉m =
∑

|α|6m

∫

Ω

(∂αf) (∂αg)dx ∀ f, g ∈ Hm(Ω). (13.4.1)

Proof. It can be easily checked that (13.4.1) defines an inner product on Hm(Ω).
Therefore we only have to show that Hm(Ω) is complete with respect to the associ-
ated norm ‖ · ‖m. Let (fj) be a Cauchy sequence with respect to the norm ‖ · ‖m.
Then, for all α ∈ Zn

+ with |α| 6 m we have

lim
j,k→∞

‖∂αfj − ∂αfk‖2
L2 = 0 .

Consequently, if |α| 6 m then (∂αfj) is a Cauchy sequence in L2(Ω), which is a
Hilbert space. We can thus conclude that, for all α ∈ Zn

+ with |α| 6 m there exists
gα ∈ L2(Ω) such that ∂αfj → gα in L2(Ω). Since the convergence in L2(Ω) implies
the convergence in D′(Ω) (see Remark 13.2.5), we obtain that fj → g0 in D′(Ω). By
applying Proposition 13.2.9 we obtain that ∂αfj → ∂αg0 in D′(Ω). We have thus
shown that ∂αg0 = gα ∈ L2(Ω) which implies that g0 ∈ Hm(Ω). Moreover, by the
definition of gα, we have that

‖g0 − fj‖2
m =

∑

|α|6m

‖gα − ∂αfj‖2
L2 → 0 ,

so we obtain that fj → g0 in the norm of Hm(Ω).

Remark 13.4.3. Let Ω ⊂ Rn be open, X = L2(Ω), α ∈ Nn with |α| = m and let A
be defined by

Aϕ = ∂αϕ, D(A) =
{
ϕ ∈ L2(Ω)

∣∣ ∂αϕ ∈ L2(Ω)
}

.

Then A is a closed operator on X. Indeed let (ϕk) be a sequence in D(A) such that

ϕk→ϕ, Aϕk→ψ in X.

From ϕk→ϕ we get, by Proposition 13.2.9, that Aϕk→ ∂αϕ in D′(Ω). Thus ∂αϕ =
ψ in D′(Ω). Consequently ϕ ∈ D(A) and Aϕ = ψ, so that A is closed.
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Sobolev spaces of positive non-integer order are defined as follows:

Definition 13.4.4. For m ∈ N and s = m + σ with σ ∈ (0, 1), the Sobolev space
Hs(Ω) is formed by the functions f ∈ Hm(Ω) such that

∫

Ω

∫

Ω

|∂αf(x)− ∂αf(y)|2
|x− y|n+2σ

dxdy < ∞ ,

for every multi-index α such that |α| = m.

For s,m and σ as above, Hs(Ω) is a Hilbert space with the norm

‖ϕ‖2
s = ‖ϕ‖2

m +
∑

|α|=m

∫

Ω

∫

Ω

|∂αϕ(x)− ∂αϕ(y)|2
|x− y|n+2σ

dxdy .

It is clear that Hs(Ω) ⊂ Hm(Ω), with continuous embedding. If ∂Ω is of class C1

(as defined in the next section), then we also have

Hm+1(Ω) ⊂ Hs(Ω)

with continuous embedding. This fact is not easy to check, the proof and other
details can be found for instance in Adams [1, p. 214]. For bounded Ω, a much
stronger result is contained in Theorem 13.5.3 below. For alternative definitions of
Hs(Ω) and its norm (assuming smooth ∂Ω) see also [157, Section 9.1].

Remark 13.4.5. If f : Ω→C and s > 0, we say that f ∈ Hs
loc(Ω) if f ∈ Hs(O) for

every bounded open set O with clos O ⊂ Ω.

If Ω is an open subset of Rn and s > n
2
, then any function f ∈ Hs

loc(Ω) is continuous
on Ω. Indeed, for every ϕ ∈ D(Ω), the product ϕf may be regarded as a function in
Hs(Rn). Using Fourier transforms it follows that ϕf is continuous, see Taylor [217,
p. 272]. Clearly this implies the continuity of f on Ω. It follows from here that for
every m ∈ Z+,

s >
n

2
+ m ⇒ Hs

loc(Ω) ⊂ Cm(Ω) .

If Ω is bounded, ∂Ω is Lipschitz and s > n
2
, then the functions in Hs(Ω) are

continuous on clos Ω. This follows easily by combining Theorems 1.4.3.1 and 1.4.4.1
from Grisvard [77] (see also [157, Theorem 9.8] for the case of smooth boundary).
It follows from here that for such Ω and every m ∈ Z+,

s >
n

2
+ m ⇒ Hs(Ω) ⊂ Cm(clos Ω) .

We define below a space which is very useful in the study of boundary value
problems for elliptic partial differential equations.

Definition 13.4.6. For s > 0, the space Hs
0(Ω) is the closure of D(Ω) in Hs(Ω).
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We mention that if Ω is bounded, with Lipschitz boundary and s < 1
2
, then we

have Hs
0(Ω) = Hs(Ω), see Grisvard [77, Corollary 1.4.4.5] (see also [157, Theorem

11.1] for the case when the boundary is smooth).

Sobolev spaces of negative order are defined as follows:

Definition 13.4.7. For any s > 0 the Sobolev space H−s(Ω) is defined as the dual
of Hs

0(Ω) with respect to the pivot space L2(Ω) (duality with respect to a pivot
space has been explained in Section 2.9).

Remark 13.4.8. Let s = m + σ, where m ∈ Z+ and σ ∈ [0, 1). From the above
definition we see that any u ∈ H−s(Ω) is a continuous linear functional on Hs

0(Ω),
hence also on Hm+1

0 (Ω). This implies that, when applied to ϕ ∈ D(Ω), u satisfies
the condition (13.2.1) (with m + 1 in place of m). Since D(Ω) is dense in Hs

0(Ω),
u is completely determined by its restriction to D(Ω). Thus, we may regard u as a
distribution:

H−s(Ω) ⊂ D′(Ω) .

This embedding is continuous, in the following sense: the convergence of a sequence
in H−s(Ω) implies its convergence in D′(Ω) (this is easy to see).

There is a little annoyance with the embedding described above: when we defined
duality with respect to a pivot space, we used a pairing that is antilinear in the
second argument, while the pairing of distributions with test functions is linear in
both arguments. Thus, for u ∈ H−s(Ω) and ϕ ∈ D(Ω),

〈u, ϕ〉H−s(Ω),Hs
0(Ω) = 〈u, ϕ〉D′(Ω),D(Ω) .

Proposition 13.4.9. Let α be a multi-index with |α| = m. Then for every p ∈ Z
we have ∂α ∈ L(Hp(Ω),Hp−m(Ω)), with ‖∂α‖ 6 1.

Proof. If p > m then this is clear from the definition of Hp(Ω). For p = 0 we
argue as follows: Let u ∈ L2(Ω). It is clear from (13.2.5) that

〈∂αu, ϕ〉D′,D 6 ‖u‖L2 · ‖∂αϕ‖L2 6 ‖u‖L2 · ‖ϕ‖m ∀ ϕ ∈ D(Ω) .

Since D(Ω) is dense in Hm
0 (Ω), it follows that ∂αu has a continuous extension to

Hm
0 (Ω), so that ∂αu ∈ H−m(Ω) and ‖∂αu‖H−m 6 ‖u‖L2 . For 0 < p < m we

decompose α = α1 + α2 such that |α1| = p and |α2| = m − p. Now the statement
follows from ∂α = ∂α2∂α1 by combining the cases p > m and p = 0 discussed earlier.

It remains to consider the case p < 0. If u ∈ Hp(Ω), then

|〈u, ψ〉D′,D| 6 ‖u‖Hp · ‖ψ‖−p ∀ ψ ∈ D(Ω) .

Using this and (13.2.5), we obtain

|〈∂αu, ϕ〉D′,D| 6 ‖u‖Hp · ‖∂αϕ‖−p 6 ‖u‖Hp · ‖ϕ‖m−p .

This shows that ∂αu ∈ Hp−m(Ω) and ‖∂αu‖Hp−m 6 ‖u‖Hp .

In the remaining part of this section we take a closer look at the spaces H1
0(Ω).

Under a simple geometric assumption, functions in such a space satisfy the following
remarkable inequality, called the Poincaré inequality.
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Proposition 13.4.10 (Poincaré inequality). Suppose that Ω is contained between a
pair of parallel hyperplanes situated at a distance δ > 0. Then

‖f‖L2 6 δ‖∇f‖L2 ∀ f ∈ H1
0(Ω) .

Proof. First notice that it suffices to prove the proposition for real-valued f since
the complex case follows easily. Using that D(Ω) is dense in H1

0(Ω) we see that it
suffices to prove the inequality for f ∈ D(Ω). Consider Cartesian coordinates such
that Ω ⊂ {

x ∈ Rn | − δ
2

< x1 < δ
2

}
and extend f to vanish outside Ω. Then for any

x′ ∈ Rn−1 and x1 ∈
(− δ

2
, 0

)
we have

f 2(x1, x
′) =

x1∫

− δ
2

∂

∂x1

(f 2(ξ, x′))dξ = 2

x1∫

− δ
2

f(ξ, x′)
∂f

∂x1

(ξ, x′)dξ ,

which implies (using the Cauchy-Schwarz inequality) that

f 2(x1, x
′) 6 2




0∫

− δ
2

f 2(ξ, x′)dξ




1
2



0∫

− δ
2

[
∂f

∂x1

(ξ, x′)
]2

dξ




1
2

.

Integrating the above relation with respect to x1, we get

0∫

− δ
2

f 2(x1, x
′)dx1 6 δ




0∫

− δ
2

f 2(x1, x
′)dx1




1
2



0∫

− δ
2

[
∂f

∂x1

(x1, x
′)
]2

dx1




1
2

.

From the above relation we obtain that

0∫

− δ
2

f 2(x1, x
′)dx1 6 δ2

0∫

− δ
2

[
∂f

∂x1

(x1, x
′)
]2

dx1 .

Integrating with respect to x′ yields
∫

(− δ
2
,0)×Rn−1

f 2(x)dx 6 δ2

∫

(− δ
2
,0)×Rn−1

[
∂f

∂x1

(x)

]2

dx 6 δ2

∫

(− δ
2
,0)×Rn−1

|(∇f)(x)|2dx.

Adding this to the corresponding result for x1 ∈ (0, δ
2
) we obtain the desired in-

equality. (If we had not split the domain into two slices, we would have obtained 2δ
in place of δ in the estimate in the proposition.)

Lemma 13.4.11. Let Ω1, Ω2 be two open subsets of Rn, with clos Ω1 ⊂ Ω2. Then
the extension operator E defined by

(Ef)(x) =

{
f(x) if x ∈ Ω1

0 if x 6∈ Ω1
∀ f ∈ H1

0(Ω1) ,

is isometric from H1
0(Ω1) to H1

0(Ω2).
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Proof. For every f ∈ H1
0(Ω1) there exists a sequence (fn) in D(Ω1) such that

fn → f in H1
0(Ω1). If we denote gn = Efn, for every n ∈ N then (gn) clearly is

a Cauchy sequence in H1
0(Ω2), so that gn → g in H1

0(Ω2). It is easily seen that
g(x) = f(x) if x ∈ Ω1 and that g(x) = 0 if x ∈ Ω2 \ Ω1, so that Ef = g ∈ H1

0(Ω2)
and ‖Ef‖H1

0(Ω2) = ‖f‖H1
0(Ω1).

Proposition 13.4.12. Let n ∈ N and Ω be a bounded open subset of Rn. Then the
embedding operator JΩ of H1

0(Ω) in L2(Ω) is compact.

Proof. Let Q be an open hypercube in Rn, with clos Ω ⊂ Q and we denote by
E ∈ L(H1

0(Ω),H1
0(Q)) the extension operator in Lemma 13.4.11. Moreover, for

g ∈ H1
0(Q) we denote by Rg the restriction of g to Ω. By using the facts that

R ∈ L(L2(Q), L2(Ω)) and JΩ = RJQE, we see that the compactness of JΩ follows
from the compactness of JQ.

We still have to show that JQ is compact. For the sake of simplicity, we assume
that Q = (0, π)n. From the elementary theory of Fourier series we know that the
family (ϕα)α∈Nn defined by

ϕα(x) =

(
2

π

)n
2

n∏

k=1

sin (αkxk) ∀ α ∈ Nn, x ∈ Q,

is an orthonormal basis in L2(Q). In this proof, we need the notation ‖α‖2 =∑n
k=1 α2

k for a multi-index α ∈ Nn. Let f ∈ H1
0(Q). Then

‖f‖2
L2(Q) =

∑

α∈Nn

∣∣∣〈f, ϕα〉L2(Q)

∣∣∣
2

,

‖f‖2
H1(Q) =

∑

α∈Nn

(1 + ‖α‖2)
∣∣∣〈f, ϕα〉L2(Q)

∣∣∣
2

.

From the above formulas it follows that if m ∈ N and JQ,m ∈ L(H1
0(Q), L2(Q)) is

defined by

JQ,mf =
∑

α∈Nn, ‖α‖26m

〈f, ϕα〉L2(Q) ϕα ∀ f ∈ H1
0(Ω) ,

then
‖JQf − JQ,mf‖2

L2(Q) 6 1

1 + m
‖f‖2

H1
0(Ω) .

This implies that

lim
m→∞

‖JQ − JQ,m‖L(H1
0(Q),L2(Q)) = 0 .

Since dim Ran JQ,m < ∞, according to Proposition 12.2.2 JQ is compact.
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13.5 Regularity of the boundary and Sobolev spaces
on manifolds

Some of the properties of Sobolev spaces strongly depend on the regularity proper-
ties of the boundary ∂Ω of Ω. For more details on the concepts and results introduced
in this section we refer to Grisvard [77] and to Nečas [176].

Definition 13.5.1. Let Ω be an open subset of Rn. We say that ∂Ω is Lipschitz if
there exists an L > 0 (called the Lipschitz constant of ∂Ω) such that the following
property holds: for every x ∈ ∂Ω there exists a neighborhood V of x in Rn and a
system of orthonormal coordinates denoted by (y1, . . . yn) such that

1. V is a rectangle in the new coordinates, i.e.,

V = {(y1, . . . yn) | − ai < yj < aj, 1 6 j 6 n} ;

2. There exists a Lipschitz function ϕ with Lipschitz constant 6 L defined on

V ′ = {(y1, . . . yn−1) | − ai < yj < aj, 1 6 j 6 n− 1} ,

such that |ϕ(y′)| 6 an

2
for every y′ = (y1, . . . yn−1) ∈ V ′,

Ω ∩ V = {y = (y′, yn) ∈ V | yn < ϕ(y′)},
∂Ω ∩ V = {y = (y′, yn) ∈ V | yn = ϕ(y′)}.

In other words, in a neighborhood of any point x ∈ ∂Ω the set Ω is below the
graph of ϕ and ∂Ω is the graph of ϕ. Consequently if Ω is an open set with Lipschitz
boundary then Ω is not on both sides of ∂Ω at any point of ∂Ω. For instance,
R∗ = R \ {0} does not have a Lipschitz boundary. More generally, a domain with a
cut in Rn does not have a Lipschitz boundary.

If D is an open set in Rn, f : D → C and m ∈ N, we say that f is of class
Cm,1 if f is of class Cm and all the partial derivatives of f of order m are Lipschitz
continuous. Equivalently, all the derivatives of f of order 6 m + 1 are in L∞(D).

Definition 13.5.2. Let Ω be an open subset of Rn and m ∈ Z+. We say that ∂Ω
is of class Cm (respectively of class Cm,1) if the properties in the previous definition
hold but with ϕ of class Cm (respectively of class Cm,1) and the L∞ norm of all these
ϕ and their first m (respectively first m+1) derivatives are uniformly bounded. We
say that ∂Ω is of class C∞ if it is of class Cm for every m ∈ N.

Thus, ∂Ω is Lipschitz iff it is of class C0,1 and the inclusions between the above
classes can be written informally as Cm,1 ⊂ Cm ⊂ Cm−1,1 for all m ∈ N.

For example, the interior of a convex polygon in R2 has a Lipschitz boundary but
its boundary is not of class C1. If Ω = {(x, y) ∈ R2 | y > sin x} then ∂Ω is of class
Cm for all m, but if we replace sin x with sin (x2) then ∂Ω is not Lipschitz. If Ω ⊂ R
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consists of finitely many open intervals whose closures are disjoint, then (according
to the earlier definition), ∂Ω (which consists of finitely many points) is of class C∞.

For bounded open sets with Lipschitz boundary, the following theorem is a gen-
eralization of Proposition 13.4.12. For a proof see [176, Theorem 6.1].

Theorem 13.5.3. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary.
Suppose that 0 6 s1 < s2. Then Hs2(Ω) ⊂ Hs1(Ω), with compact embedding.

We quote from Grisvard [77, Theorem 1.4.2.1] a result concerning the density of
spaces of smooth functions in Sobolev spaces (for related results and particular cases
see also Neças [176, Section 3.2] and Adams [1, Theorems 3.18 and 7.40]).

Theorem 13.5.4. Suppose that Ω ⊂ Rn is a bounded open set with Lipschitz bound-
ary and m ∈ Z+. Then C∞(clos Ω) is dense in Hs(Ω), for all s > 0.

Moreover, the space D(Rn) is dense in Hm(Rn).

It follows from here that for any Ω as above and for any numbers s1, s2 with
0 6 s1 < s2, Hs2(Ω) is dense in Hs1(Ω).

An important and difficult theory which requires the regularity of the boundary
is the so-called “elliptic regularity theory”. We give below without proof one of the
main results from this theory, and we refer to Brezis [22, Section IX.6] and Evans
[59, Section 6.3] for the proof and for more sophisticated versions.

Theorem 13.5.5. Let Ω be a bounded open set with a boundary ∂Ω of class C2 and
let f ∈ L2(Ω). If ϕ ∈ H1

0(Ω) satisfies (in D′(Ω)) the equation

−∆ϕ + ϕ = f ,

then ϕ ∈ H2(Ω).

Remark 13.5.6. If f and ϕ are as in the above theorem then, without any smooth-
ness assumption on ∂Ω and without the boundedness assumption on Ω, we have
that ϕ ∈ H2

loc(Ω), i.e., ϕ ∈ H2(O) for any bounded open set O with clos O ⊂ Ω.
For the proof (which is much easier than the proof of Theorem 13.5.5) we refer, for
instance, to [59, p. 309]. More generally, if f ∈ Hm

loc(Ω), where m ∈ Z+, and ϕ
satisfies the equation in the theorem, then ϕ ∈ Hm+2

loc (Ω), see the same reference.
(The space Hm

loc(Ω) has been defined in Remark 13.4.5.)

We will need Sobolev spaces spaces on open subsets of ∂Ω, where Ω is a bounded
open set with Lipschitz boundary. If Ω is such a set and x ∈ ∂Ω, then there exist a
neighborhood V of x in Rn, a system of orthonormal coordinates (y1, . . . yn) in Rn

satisfying condition 1 in Definition 13.5.1 and a Lipschitz function ϕ defined on the
(n − 1)-dimensional rectangle V ′ that corresponds to the coordinates y1, . . . yn−1,
satisfying condition 2 in the same definition, such that

∂Ω ∩ V = {y = (y′, yn) ∈ V | yn = ϕ(y′)} .
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If Ω is an open set with a Lipschitz boundary, then the set ∂Ω can be seen as an
(n− 1)-dimensional Lipschitz manifold in Rn. Indeed, if we define Φ on V ′ by

Φ(y1, . . . yn−1) = [y1, . . . yn−1, ϕ(y1, . . . , yn−1)] , (13.5.1)

then Φ−1 is a chart from ∂Ω ∩ V onto V ′. Taking a collection of such charts (Φ−1
j )

corresponding to a collection of rectangular sets (Vj) as above that cover ∂Ω, we
obtain an atlas of ∂Ω, since the maps Φ−1

j Φk are Lipschitz on their domains.

Definition 13.5.7. Let Ω be a bounded open subset of Rn with a boundary ∂Ω of
class Cm,1, where m ∈ Z+. Let Γ be an open subset of ∂Ω and let s ∈ [0,m + 1].
The space Hs(Γ) consists of those f ∈ L2(Γ) such that, with V and Φ as in (13.5.1),

f ◦ Φ ∈ Hs(Φ−1(Γ ∩ V ))

for all possible V , V ′ and ϕ as in Definition 13.5.1.

It is enough to verify the above condition for one atlas (∂Ω ∩ Vj, Φ
−1
j )J

j=1 of ∂Ω,
where Φj corresponds to ϕj as in (13.5.1). The bound s 6 m + 1 implies that if the
condition in Definition 13.5.7 holds for one atlas, then it holds for any other atlas.
One possible norm on Hs(Γ) is given by

‖f‖2
Hs(Γ) =

J∑
j=1

‖f ◦ Φj‖2
Hs(Φ−1

j (Γ∩Vj))
, (13.5.2)

where (∂Ω ∩ Vj, Φ
−1
j )J

j=1 is an atlas of ∂Ω such that Φj corresponds to ϕj as in
(13.5.1) and each couple (Vj, ϕj) satisfies the conditions in Definition 13.5.1. The
condition s 6 m + 1 ensures that for different atlases we get equivalent norms.

If s ∈ (0, 1) then any norm of the form (13.5.2) is equivalent to the norm given by

‖f‖2
s =

∫

Γ

∫

Γ

|f(x)− f(y)|2
|x− y|n+2s−1

dσxdσy +

∫

Γ

|f(x)|2dσ, (13.5.3)

where dσ is the surface measure on ∂Ω. It can be shown that, with the norm from
(13.5.2), Hs(Γ) is a Hilbert space (for each s ∈ [0,m + 1]).

Proposition 13.5.8. Let Ω be a bounded open subset of Rn with a boundary ∂Ω
of class Cm,1, where m ∈ Z+. Let s1, s2 ∈ [0,m + 1] with s1 < s2. Then we have
Hs2(∂Ω) ⊂ Hs1(∂Ω), with compact embedding.

Proof. According to the definition of compact operators (Definition 12.2.1), we
have to show that if (zn) is a bounded sequence in Hs2(∂Ω), then this sequence has
a convergent subsequence in Hs1(∂Ω). Let (∂Ω∩Vj, Φ

−1
j )J

j=1 be an atlas of ∂Ω as in
(13.5.2). Then for each j ∈ {1, . . . J}, (zn ◦ Φj) is a bounded sequence in Hs2(V ′

j ).
Here, V ′

j is the (n− 1)-dimensional basis of the rectangle Vj, as in Definition 13.5.1.
According to Theorem 13.5.3 the sequence (zn) contains a subsequence (z1

n) such
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that (z1
n ◦ Φj) is convergent in Hs1(V ′

1). By the same argument, the sequence (z1
n)

contains a subsequence (z2
n) such that (z2

n◦Φj) is convergent in Hs1(V ′
2). Continuing

the process, after J steps we obtain a subsequence of (zn) that is a Cauchy sequence
with respect to the norm from (13.5.2) (with s = s1). Hence, this subsequence is
convergent in Hs1(∂Ω), so that the embedding is compact.

Definition 13.5.9. With Ω as in the last proposition, let Γ be an open subset of ∂Ω.
We say that Γ has Lipschitz boundary in ∂Ω if there exists an atlas (∂Ω∩Vj, Φ

−1
j )J

j=1

of ∂Ω as in (13.5.2) such that, for each k ∈ {1, . . . J},
Φ−1

k (Γ ∩ Vk) has Lipschitz boundary in V ′
k

Proposition 13.5.10. Let Ω be a bounded open subset of Rn with a boundary ∂Ω
of class Cm,1, where m ∈ Z+. Let s1, s2 ∈ [0,m + 1] with s1 < s2. Let Γ be an open
subset of ∂Ω that has Lipschitz boundary in ∂Ω.

Then we have Hs2(Γ) ⊂ Hs1(Γ), with compact embedding.

The proof is similar to the proof of the previous proposition. In some places ∂Ω
has to be replaced with Γ and V ′

j has to be replaced with Φ−1
j (Γ ∩ Vj).

13.6 Trace operators and the space H1
Γ0

(Ω)

In this section we recall some results giving a weak sense to boundary values of
functions defined on a domain Ω ⊂ Rn, that belong to certain Sobolev spaces. Such
boundary functions or distributions are called (boundary) traces of the functions
defined on Ω. We also introduce and investigate the space H1

Γ0
(Ω), which consists

of those f ∈ H1(Ω) whose trace vanishes on a part Γ0 of the boundary.

In general a function f in H1(Ω) is not continuous (even worse, it is generally
defined only a.e. in Ω) so the values of f on ∂Ω have no meaning. However these
boundary values can be defined in a weaker sense, based on the following result,
which is proved, for instance, in Neças [176, Sections 5.4-5.5].

Theorem 13.6.1. Let Ω be a bounded open subset of Rn with Lipschitz boundary.
Then the mapping γ0 : C1(clos Ω)→C0(∂Ω) defined by

γ0f = f |∂Ω ∀ f ∈ C1(clos Ω),

has a unique extension to a bounded linear operator from H1(Ω) onto H 1
2 (∂Ω).

If f ∈ H1(Ω) then we call γ0f the Dirichlet trace of f on ∂Ω. For the sake of
simplicity, we sometimes write f(x) instead of (γ0f)(x) (where x ∈ ∂Ω). The space
H1

0(Ω) introduced in Definition 13.4.6 can be characterized as follows.

Proposition 13.6.2. Let Ω be a bounded open subset of Rn with a Lipschitz bound-
ary. Then

H1
0(Ω) = {f ∈ H1(Ω) | γ0f = 0} .
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For a proof of the above proposition we refer to [176, p. 87].

Definition 13.6.3. If Ω is a bounded open set with a Lipschitz boundary, then
the unit outward normal vector field is defined for almost all x ∈ ∂Ω, using local
coordinates as in Definition 13.5.1 (such that x has the coordinates (y′, ϕ(y′))), as
follows:

ν(x) =
1√

1 +
[

∂ϕ
∂y1

(y′)
]2

+ · · ·+
[

∂ϕ
∂yn−1

(y′)
]2




− ∂ϕ
∂y1

(y′)
...

− ∂ϕ
∂yn−1

(y′)
1


 . (13.6.1)

This vector field can be extended to almost every point in the rectangular open
set V by defining it to be independent of yn (the last local coordinate). Now let
(∂Ω ∩ Vj, Φ

−1
j )J

j=1 be an atlas of ∂Ω, where Vj is rectangular and Φj corresponds
to ϕj,n as in (13.5.1). By a partition of unity subordinated to the compact set ∂Ω
and its covering (Vj)

J
j=1 (see Proposition 13.1.6) we can define a vector field ν in a

neighborhood of clos Ω coinciding with the outward unit normal almost everywhere
on ∂Ω. If Ω is only Lipschitz, then all what we can say about the vector field ν is that
it is almost everywhere defined on ∂Ω and measurable (and obviously bounded). If
Ω is of class Cm (or Cm,1), with m ∈ N, then ν is of class Cm−1 (or Cm−1,1).

Definition 13.6.4. If f ∈ C1(clos Ω), then the scalar field on ∂Ω defined by

∂f

∂ν
(x) = ∇f(x) · ν(x) for almost all x ∈ ∂Ω, (13.6.2)

is called the normal derivative of f on ∂Ω.

Remark 13.6.5. Theorem 13.6.1 allows us to extend the definition of the normal
derivative for any function f ∈ H2(Ω), and we obtain that ∂f

∂ν
∈ L2(∂Ω) (this

is still for Ω bounded, open and with a Lipschitz boundary, which implies that
ν ∈ L∞(∂Ω)). Thus, for any bounded domain with Lipschitz boundary,

γ1 ∈ L(H2(Ω), L2(∂Ω)) .

With more smoothness imposed on the boundary, we get the following stronger
result, see Grisvard [77, Theorem 1.5.1.2] and Lions and Magenes [157, Chapter 1,
Theorem 8.3] (the latter actually assumes C∞ boundary).

Theorem 13.6.6. Let Ω be a bounded open set in Rn with boundary ∂Ω of class
C2. Let γ1 : C2(clos Ω)→L2(∂Ω) be the mapping

(γ1f)(x) =
∂f

∂ν
(x), a.e. in ∂Ω ,

where ∂f
∂ν

(x) has been defined in (13.6.2). Then γ1 has a unique extension as a

bounded operator from H2(Ω) onto H 1
2 (∂Ω).

If we restrict the trace operator γ1 to H2(Ω)∩H1
0(Ω), then it is still onto H 1

2 (∂Ω).
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If f ∈ H2(Ω) we call γ1f the Neumann trace of f on ∂Ω and, for the sake of
simplicity, we often denote (γ1f)(x) = ∂f

∂ν
(x).

The space H2
0(Ω) introduced in Definition 13.4.6 can be characterized as follows.

Proposition 13.6.7. Let Ω be a bounded open subset of Rn with a C2 boundary.
Then

H2
0(Ω) = {f ∈ H2(Ω) | γ0f = 0, γ1f = 0} .

For a proof of the above result we refer to [176, p. 90].

By combining Proposition 13.5.8 and Theorem 13.6.6, we obtain:

Corollary 13.6.8. Let Ω be a bounded open set of Rn with a boundary ∂Ω of class
C2 and let γ1 be the Neumann trace operator on ∂Ω.

Then γ1 is a compact operator from H2(Ω) into L2(∂Ω).

Let Ω be a bounded open and connected set in Rn with Lipschitz boundary and
let Γ0, Γ1 be open subsets of ∂Ω such that

clos Γ0 ∪ clos Γ1 = ∂Ω , Γ0 ∩ Γ1 = ∅ . (13.6.3)

We define
H1

Γ0
(Ω) =

{
f ∈ H1(Ω) | γ0f|Γ0 = 0

}
,

which we regard as a closed subspace of H1(Ω). (The formula γ0f|Γ0 = 0 has to
be understood as an equality in L2(∂Ω), i.e., with equality almost everywhere.)
According to Proposition 13.6.2 we have H1

0(Ω) ⊂ H1
Γ0

(Ω). We show that the
Poincaré inequality proved in Proposition 13.4.10 for functions in H1

0(Ω) still holds
in this larger space. Here (unlike in Proposition 13.4.10) Ω has to be bounded and
we do not obtain an explicit expression for the constant in the inequality.

Theorem 13.6.9. With Ω, Γ0 and Γ1 as above, assume that Γ0 6= ∅. Then there
exists a constant c > 0, depending only on Ω and on Γ0, such that

∫

Ω

|f(x)|2dx 6 c2

∫

Ω

‖∇f(x)‖2dx ∀ f ∈ H1
Γ0

(Ω) .

Proof. We use a contradiction argument. Assume that the conclusion of the
theorem is false. This implies the existence of a sequence (fn) in H1

Γ0
(Ω) such that

‖fn‖L2(Ω) = 1 ∀ n ∈ N , (13.6.4)

‖∇fn‖L2(Ω) → 0 . (13.6.5)

Clearly (fn) is bounded in H1
Γ0

(Ω). According to to Alaoglu’s theorem (see Lemma
12.2.4), there exists f ∈ H1

Γ0
(Ω) and a subsequence (fnk

) such that

lim
k→∞

〈fnk
, ϕ〉H1 = 〈f, ϕ〉H1 ∀ ϕ ∈ H1

Γ0
(Ω) . (13.6.6)
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Since ∇ ∈ L(H1
Γ0

(Ω), L2(Ω)), it follows that

lim
k→∞

〈∇fnk
, ψ〉 = 〈∇f, ψ〉 ∀ ψ ∈ L2(Ω) ,

where the inner products are taken in L2(Ω). The above formula with (13.6.5) imply
that ∇f = 0 in Ω. By Theorem 13.3.2 it follows that f is a constant function in
Ω. Since f ∈ H1

Γ0
(Ω), the trace of this constant on Γ0 must be zero. Since the

(n− 1)-dimensional measure of Γ0 is not zero, we obtain that f = 0.

On the other hand, (13.6.6) implies, because of the compact embedding of H1
Γ0

(Ω)
in L2(Ω) (see Theorem 13.5.3) and because of Proposition 12.2.5, that fnk

→ f in
L2(Ω). This fact combined with (13.6.4) yields that ‖f‖L2(Ω) = 1, which clearly
contradicts the previously established fact that f = 0.

With Ω, Γ0 and Γ1 as in (13.6.3), we regard L2(Γ1) as a closed subspace of L2(∂Ω),
consisting of those f ∈ L2(∂Ω) for which f(x) = 0 for almost every x ∈ ∂Ω \ Γ1.
(This condition is in general stronger than f(x) = 0 for almost every x ∈ Γ0.)

Theorem 13.6.10. With Ω, Γ0 and Γ1 as in (13.6.3), the space

V(Γ1) =
{
f ∈ γ0H1(Ω) | supp f ⊂ Γ1

}

is dense in L2(Γ1).

Proof. Let f ∈ L2(Γ1) and ε > 0. The first step is to construct fε ∈ C(Γ1), with
compact support contained in Γ1, which is a good approximation of f .

Let (∂Ω ∩ Vj, Φ
−1
j )J

j=1 be an atlas of ∂Ω as in (13.5.2). Clearly V1, . . . VJ is an
open covering of the compact set clos Γ1. Let ψ1, . . . ψJ be a partition of unity
subordinated to clos Γ1 and its covering V1, . . . VJ (see Proposition 13.1.6), so that

f = fψ1 . . . + fψJ .

Then fψj ∈ L2(Γ1 ∩ Vj), or equivalently

(fψj) ◦ Φj ∈ L2(Φ−1
j (Γ1 ∩ Vj)) (1 6 j 6 J) .

Note that Φ−1
j (Γ1 ∩ Vj)) ⊂ V ′

j is open in Rn−1 (V ′
j is the (n − 1)-dimensional rect-

angle at the basis of Vj, as in Definition 13.5.1). Since D(Φ−1
j (Γ1 ∩ Vj)) is dense in

L2(Φ−1
j (Γ1 ∩ Vj)) (see Proposition 13.1.9), we can find f̃j,ε ∈ D(Φ−1

j (Γ1 ∩ Vj)) such
that

‖(fψj) ◦ Φj − f̃j,ε‖L2(V ′j ) 6 ε.

For all j ∈ {1, . . . J} we define fj,ε ∈ C(Γ1 ∩ Vj) by

fj,ε = f̃j,ε ◦ Φ−1
j ,

and we extend fj,ε to a function in C(∂Ω) by making it equal to zero in all the other
points of ∂Ω. Note that supp fj,ε ⊂ Γ1∩Vj. Let us denote by ϕj the last component
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of Φj (this is the scalar Lipschitz function as in Definition 13.5.1, whose graph is
∂Ω ∩ Vj). Let Lj be the Lipschitz constant of ϕj. Then

‖fψj − fj,ε‖L2(∂Ω) = ‖fψj − fj,ε‖L2(Γ1∩Vj)

6 (1 + L2
j)

1
2‖(fψj) ◦ Φj − f̃j,ε‖L2(V ′j ) 6 (1 + L2

j)
1
2 ε.

It follows that the function fε ∈ C(∂Ω) defined by

fε =
J∑

j=1

fj,ε

satisfies

‖f − fε‖L2(∂Ω) 6 ε

J∑
j=1

(1 + L2
j)

1
2 .

This shows that (by choosing ε) we can choose fε as close as we wish to f .

The second step is to show that for each j ∈ {1, . . . J} we have fj,ε ∈ H1(∂Ω).
This is equivalent to the statement that for each j ∈ {1, . . . J},

fj,ε ◦ Φk ∈ H1(V ′
k) ∀ k ∈ {1, . . . J} . (13.6.7)

We denote

V ′
k,j = {y ∈ V ′

k | Φk(y) ∈ Γ1 ∩ Vj} ∀ j, k ∈ {1, . . . J} .
Then (using that supp fj,ε ⊂ Γ1 ∩ Vj) (13.6.7) is equivalent to

f̃j,ε ◦ Φ−1
j ◦ Φk ∈ H1(V ′

k,j) ∀ k ∈ {1, . . . J} .

Since both f̃j,ε and Φ−1
j ◦ Φk are Lipschitz, the above statement is true.

The third step is to show that fε ∈ V(Γ1). For this, clearly it will be enough to
show that each term fj,ε is in this space (where j ∈ {1, . . . J}). We already know
from the second step and from Proposition 13.5.8 that

fj,ε ∈ H1(∂Ω) ⊂ H 1
2 (∂Ω) .

According to Theorem 13.6.1 there exist functions gj,ε ∈ H1(Ω) such that

γ0gj,ε = fj,ε .

From supp fj,ε ⊂ Γ1 ∩ Vj we see that indeed fj,ε ∈ V(Γ1).

Corollary 13.6.11. With Ω, Γ0 and Γ1 as in (13.6.3), H 1
2 (Γ1) is dense in L2(Γ1).

Indeed, this follows from the last theorem since, by Theorem 13.6.1,

V(Γ1) ⊂ H 1
2 (Γ1) .

In the following four remarks we continue to use the notation from (13.6.3).



Trace operators and the space H1
Γ0

(Ω) 437

Remark 13.6.12. In general, V(Γ1) ⊂ γ0H1
Γ0

(Ω), since

γ0H1
Γ0

(Ω) =
{
f ∈ γ0H1(Ω) | supp f ⊂ (∂Ω \ Γ0)

}
.

The inclusion may be strict, because the inclusion Γ1 ⊂ ∂Ω \ Γ0 may be strict.

Remark 13.6.13. We denote by ∂Γ0 and ∂Γ1 the boundaries of Γ0 and Γ1 in ∂Ω.
In general, it seems that γ0H1

Γ0
(Ω) is not a subspace of L2(Γ1). However, if ∂Γ0 and

∂Γ1 have surface measure zero, then Γ1 and ∂Ω \ Γ0 differ by a set of measure zero,
so that γ0H1

Γ0
(Ω) ⊂ L2(Γ1). This is the case, for example, if ∂Γ0 = ∂Γ1 = ∅ or if

∂Γ0 and ∂Γ1 are Lipschitz in ∂Ω, as in Definition 13.5.9 (and then ∂Γ0 = ∂Γ1). If

γ0H1
Γ0

(Ω) is a subspace of L2(Γ1), then clearly it is a subspace of H 1
2 (Γ1) (because,

according to Theorem 13.6.1, it is a subspace of H 1
2 (∂Ω)).

Remark 13.6.14. By combining Theorem 13.6.10, Remark 13.6.12 and Remark
13.6.13, we obtain the following statement: If ∂Γ0 and ∂Γ1 have surface measure
zero, then γ0H1

Γ0
(Ω) is a dense subspace of L2(Γ1).

Remark 13.6.15. Suppose that ∂Γ0 = ∂Γ1 = ∅ (equivalently, Γ0 = clos Γ0 and
Γ1 = clos Γ1, or still equivalently, Γ1 = ∂Ω\Γ0). Intuitively, this means that Γ0 and
Γ1 do not touch, like in Section 7.6. Then

V(Γ1) = γ0H1
Γ0

(Ω) = H 1
2 (Γ1) .

Indeed, the inclusions V(Γ1) ⊂ γ0H1
Γ0

(Ω) ⊂ H 1
2 (Γ1) follow from Remarks 13.6.12

and 13.6.13. If f ∈ H 1
2 (Γ1) then we extend it to be zero on Γ0 and we obtain a

function in H 1
2 (∂Ω), which has support in Γ1. Because of the “onto” statement in

Theorem 13.6.1, f ∈ V(Γ1). Thus, H 1
2 (Γ1) ⊂ V(Γ1), which concludes the proof.

The space H1
Γ0

(Ω) provides a natural framework to study the Laplace operator
with mixed boundary conditions. In particular, the regularity result in Theorem
13.5.5 can be extended, with appropriate assumptions on Ω, Γ0 and Γ1, to the
case in which the Dirichlet boundary conditions hold only on Γ0 and with Neumann
boundary conditions on Γ1. More precisely, using a result which is difficult, but well-
known in the literature on elliptic PDEs (see, for instance, Grisvard [77, Theorem
2.4.1.3]), it is not difficult to establish that:

Proposition 13.6.16. With the assumptions and the notation of Remark 13.6.15,
suppose that ∂Ω is of class C2 and that Γ0 6= ∅. Then the operator

Tφ =
[

∆φ
γ1φ|Γ1

]

is an isomorphism from H2(Ω) ∩H1
Γ0

(Ω) onto L2(Ω)×H 1
2 (Γ1).
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13.7 Green formulas and extensions of trace operators

Using trace operators, we derive in this section two identities called Green formulas.
The use of Green formulas in computations is also called integration by parts. Using
the Green formulas, we introduce some extensions of trace operators.

The results in Section 13.6 allow us to define the Dirichlet or the Neumann trace
of a function f ∈ Hs(Ω) for certain values of s. It has been shown in [157] that if a
function f satisfies an elliptic partial differential equation, then f and its derivatives
have traces on the boundary, provided that f ∈ Hs(Ω), without any restriction on
s ∈ R. We shall present here some particular cases of such extended trace operators,
which are relevant for the other chapters.

We need the following Green type formula, given in Neças [176, Theorem 1.1,
Chapter 3] (see also Lions and Magenes [157, Chapter 2, Theorem 5.4]).

Theorem 13.7.1. Let Ω be a bounded open subset of Rn with a Lipschitz boundary
∂Ω, let f, g ∈ H1(Ω) and let l ∈ {1, . . . , n}. Then we have

∫

Ω

∂f

∂xl

gdx +

∫

Ω

f
∂g

∂xl

dx =

∫

∂Ω

(γ0f)(γ0g)νldσ (13.7.1)

(“integration by parts”), where νl denotes the l-th component of the unit outward
normal vector field from Definition 13.6.3.

Remark 13.7.2. Suppose that v ∈ H1(Ω;Cn) and g ∈ H1(Ω). If we take f = vl in
(13.7.1) and do a summation over all l = 1, 2, . . . n, we obtain:

∫

Ω

(div v)gdx +

∫

Ω

v · ∇gdx =

∫

∂Ω

(v · ν)gdσ. (13.7.2)

In particular, for g(x) = 1, we obtain the Gauss formula
∫

Ω

div vdx =

∫

∂Ω

v · νdσ. (13.7.3)

Remark 13.7.3. Formula (13.7.2) is often encountered in the following particular
form: suppose that Ω is as in Theorem 13.7.1, h ∈ H2(Ω) and g ∈ H1(Ω). If we
denote v = grad h and apply (13.7.2), we obtain

∫

Ω

(∆h)gdx +

∫

Ω

∇h · ∇gdx =

∫

∂Ω

(γ1h)(γ0g)dσ.

(Here γ1h is defined as in Remark 13.6.5.) This is sometimes called the first Green
formula. If we interchange the roles of h and g and subtract the equations, we obtain

∫

Ω

(∆h)gdx−
∫

Ω

h(∆g)dx =

∫

∂Ω

(γ1h)(γ0g)dσ −
∫

∂Ω

(γ0h)(γ1g)dσ,

which holds if h, g ∈ H2(Ω). This is called the second Green formula.
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Remark 13.7.4. The Gauss formula (13.7.3) does not have to hold on unbounded
domains. For example, let Ω be the exterior of the unit ball: Ω = {x ∈ Rn | |x| > 1},
with n > 3 and define the regular Cn-valued distribution v on Ω by

v(x) =
1

|x|n x.

It is easy to verify that v ∈ H1(Ω;Cn). It follows from (13.3.6) that div v = 0. The
left-hand side of (13.7.3) is clearly zero, while the right-hand side is −An, where
An = nVn is the area of the unit sphere in Rn (Vn is the volume of the unit ball).
However, this is not really surprising, because (13.7.3) has been derived from (13.7.2)
using g(x) = 1, and this g is not in H1(Ω).

Example 13.7.5. Condider the following function (regular distribution) on Rn:

f(x) =
1

|x|n−2
.

We have seen in Remark 13.3.1 that

∇f =
2− n

|x|n x, (13.7.4)

which is still a (vector-valued) regular distribution on Rn. Our goal in this example
is to compute ∆f = div (∇f). Let ϕ ∈ D(Rn) and let R > 0 sufficiently large so
that supp ϕ ⊂ B(0, R) (here B(0, R) denotes, as usual, the open ball of radius R
centered at zero). According to (13.3.3) we have

〈∆f, ϕ〉 = − 〈∇f,∇ϕ〉 = −
∫

B(0,R)

(∇f)(x) · (∇ϕ)(x)dx

= − lim
ε→ 0

∫

B(0,R)\B(0,ε)

(∇f)(x) · (∇ϕ)(x)dx. (13.7.5)

We shall now use the first Green formula (from Remark 13.7.3) on the domain
Ωε = B(0, R) \ B(0, ε), where ε > 0. We take h = f , which is in H2(Ωε), and we
take g = ϕ. Since ∆f = 0 on Ωε (see (13.3.6)), we obtain

∫

Ωε

(∇f)(x) · (∇ϕ)(x)dx =

∫

∂Ωε

(γ1f)(γ0ϕ)dσ.

From (13.7.4) we see that γ1f = n−2
|x|n−1 , so that (13.7.5) becomes

〈∆f, ϕ〉 = − (n− 2) lim
ε→ 0

∫

∂Ωε

ϕ(x)

|x|n−1
dσ = − (n− 2)Anϕ(0) ,

where An is again the area of the unit sphere in Rn. Thus,

∆
1

|x|n−2
= − (n− 2)Anδ0 ,

where δ0 is the Dirac mass at 0 (defined in Example 13.2.3).



440 Appendix II: Some background on Sobolev spaces

With Ω as in Theorem 13.7.1, we denote by H− 1
2 (∂Ω) the dual of H 1

2 (∂Ω) with
respect to the pivot space L2(∂Ω). We also introduce the space

D(∆) = {f ∈ H1(Ω) | ∆f ∈ L2(Ω)},
where ∆ is the Laplacian in the sense of distributions. Endowed with the norm

‖f‖D(∆) =
√
‖f‖2

H1(Ω) + ‖∆f‖2
L2(Ω) ∀ f ∈ D(∆),

D(∆) is clearly a Hilbert space.

Theorem 13.7.6. Let Ω be a bounded open subset of Rn with a Lipschitz boundary
∂Ω. Then the Neumann trace operator γ1 (which until now was defined on H2(Ω))

has an extension that is a bounded operator from D(∆) into H− 1
2 (∂Ω).

Proof. According to Theorem 13.6.1 we have that γ0 ∈ L(H1(Ω),H 1
2 (∂Ω)) and

this operator is onto. From Proposition 12.1.3 we conclude that γ0γ
∗
0 is a strictly

positive (hence, invertible) operator on H 1
2 (∂Ω).

Suppose that f ∈ H2(Ω) and consider an arbitrary ϕ ∈ H 1
2 (∂Ω). Define ϕ̃ ∈

H1(Ω) by ϕ̃ = γ∗0(γ0γ
∗
0)
−1ϕ. Denoting c = ‖γ∗0(γ0γ

∗
0)
−1‖, we have

γ0ϕ̃ = ϕ, ‖ϕ̃‖H1(Ω) 6 c‖ϕ‖H 1
2 (∂Ω)

.

From the first Green formula (Remark 13.7.3) we have
∫

∂Ω

(γ1f)ϕdσ =

∫

Ω

∆f ϕ̃dx +

∫

Ω

∇f · ∇ϕ̃dx. (13.7.6)

This implies that
∣∣∣∣∣∣

∫

∂Ω

(γ1f)ϕdσ

∣∣∣∣∣∣
6 c‖f‖D(∆)‖ϕ‖H 1

2 (∂Ω)
∀ ϕ ∈ H 1

2 (∂Ω),

which implies that ‖γ1f‖H− 1
2

6 c‖f‖D(∆). Hence, γ1 can be extended as claimed.

Remark 13.7.7. In the last theorem, we did not claim the unicity of the extension
of γ1. If we would know that H2(Ω) is dense in D(∆), then of course the extension
would be unique. However, we do not know if this is the case. The easiest way to
define an extension of γ1 is via the formula (13.7.6) with ϕ̃ = γ∗0(γ0γ

∗
0)
−1ϕ. Possibly

different extensions can be obtained using (13.7.6) and a different definition of ϕ̃.

Now we show that the Dirichlet trace operator γ0 can also be extended. We
introduce the space

W(∆) = {g ∈ L2(Ω) | ∆g ∈ H−1(Ω)},
which is a Hilbert space with the norm

‖g‖W(∆) =
√
‖g‖2

L2(Ω) + ‖∆g‖2
H−1(Ω) ∀ g ∈ W(∆) .
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Proposition 13.7.8. Let Ω be a bounded open subset of Rn with boundary ∂Ω of
class C2. Then the Dirichlet trace operator γ0 (which until now was defined on

H1(Ω)) has an extension that is a bounded operator from W(∆) into H− 1
2 (∂Ω).

Proof. According to the last part of Theorem 13.6.6 we have that

γ1 ∈ L(H2(Ω) ∩H1
0(Ω),H 1

2 (∂Ω))

and this operator is onto. From Proposition 12.1.3 we conclude that γ1γ
∗
1 is a strictly

positive (hence, invertible) operator on H 1
2 (∂Ω).

Take g ∈ H2(Ω) and consider an arbitrary ϕ ∈ H 1
2 (∂Ω). Define the function

ϕ̃ ∈ H2(Ω) ∩H1
0(Ω) by ϕ̃ = γ∗1(γ1γ

∗
1)
−1ϕ. Denoting κ = ‖γ∗1(γ1γ

∗
1)
−1‖, we have

γ0ϕ̃ = 0, γ1ϕ̃ = ϕ, ‖ϕ̃‖H2(Ω) 6 κ‖ϕ‖H 1
2 (∂Ω)

.

From the second Green formula (Remark 13.7.3, with h = ϕ̃) we have

∫

∂Ω

(γ0g)ϕdσ =

∫

Ω

g ∆ϕ̃dx −
∫

Ω

(∆g)ϕ̃dx. (13.7.7)

This implies that for every ϕ ∈ H 1
2 (∂Ω),

∣∣∣∣∣∣

∫

∂Ω

(γ0g)ϕdσ

∣∣∣∣∣∣
6 ‖g‖W(∆)‖ϕ̃‖H2(Ω) 6 κ‖g‖W(∆)‖ϕ‖H 1

2 (∂Ω)
,

which in turn implies that ‖γ0g‖H− 1
2

6 κ‖g‖W(∆). Hence, γ0 can be extended

from the domain H2(Ω) to the domain W(∆), as stated. On H1(Ω) this extension
coincides with the one introduced in Theorem 13.6.1, because H2(Ω) is dense in
H1(Ω) (this follows from the first part of Theorem 13.5.4).

Remark 13.7.9. The extension of γ0 (whose existence is stated in the last proposi-
tion) is not unique. The story is similar to Remark 13.7.7: the easiest way to specify
an extension of γ0 is to require that (13.7.7) should hold for all g ∈ W(∆) and for

all ϕ ∈ H 1
2 (∂Ω). Now, the integral on the left of (13.7.7) and one of the integrals

on the right should be replaced by duality pairings:

〈γ0g, ϕ〉H− 1
2 (∂Ω),H 1

2 (∂Ω)
=

∫

Ω

g ∆ϕ̃dx − 〈∆g, ϕ̃〉H−1(Ω),H1
0(Ω) .

Thus, γ0 has a unique extension to W(∆) that satisfies the above formula.
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Chapter 14

Appendix III: Some background
on differential calculus

The aim of this chapter is to provide an elementary proof of Theorem 9.4.3, after
introducing the necessary tools from differential calculus. First we recall some basic
concepts and prove a classical result of Sard. Then we give the detailed construction
of η0 from Theorem 9.4.3. Our method requires only a particular case of Sard’s
theorem (which is proved below). We refer to Coron [36, Lemma 2.68] and Fursikov
and Imanuvilov [69, Lemma 1.1] for related proofs.

Notation. In this chapter n, p ∈ N, Ω ⊂ Rn is open, bounded and connected,
with boundary of class Cm, with m > 2, and O is an open subset of Ω. For a ∈ Rn

and r > 0 we denote by B(a, r) the open ball in Rn of center a and radius r.

14.1 Critical points and Sard’s theorem

Definition 14.1.1. Let V ⊂ Rn be open and a ∈ V . A mapping f : V → Rp is
called differentiable at a if there exists L ∈ L(Rn,Rp) such that

lim
‖h‖→0

1

‖h‖(f(a + h)− f(a)− Lh) = 0 .

It is well known (see, for instance, Spivak [208, p. 16]) that there exists at most
one linear map satisfying the above definition. This linear map will be denoted
Df(a) and it is called the differential of f at a (also called the Jacobian of f at a).
The function f is in C1(V,Rp) (or simply C1(V ) for p = 1) if f is differentiable at
each a ∈ V and the map a 7→ Df(a) is continuous from V to L(Rn,Rp). We recall
a classical result in differential calculus, called the inverse function theorem.

Theorem 14.1.2. Let f : V → Rn be a C1 function and let a ∈ V be such that Df(a)
is an invertible linear operator. Then there exists an open set U ⊂ V containing a
and an open set W ⊂ Rn containing f(a) such that f is an invertible mapping from
U onto W and the inverse map f−1 : W → U is C1.

443
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For a proof of this result we refer to [208, p. 35].

In the case p = 1, it is easy to check that if f is differentiable at a ∈ V then, with
the notation in Section 13.3,

Df(a)h = 〈∇f(a), h〉 ∀ h ∈ Rn .

Definition 14.1.3. Let p ∈ N and let f : V → Rp be a C1 function. We say that
a ∈ V is a critical point of f if Ran Df(a) 6= Rp.

We also recall a well-known property which is a consequence of a result called the
chain rule (see, for instance, [208, p. 19]).

Proposition 14.1.4. Let p ∈ N, let W ⊂ Rp be an open set and let f : V → W
and γ : W → Rq, with q ∈ N, be two functions which are differentiable at any point
a ∈ V , respectively any b ∈ W . Then the function g : W → Rq defined by g = f ◦ γ
is differentiable at any point b ∈ W and

Dg(b)h = Df(γ(b))[Dγ(b)h] ∀ h ∈ Rp .

Remark 14.1.5. If f is C1 on the open convex set V and K is a compact convex
subset of V then there exists α > 0 and an increasing function λ : [0, α] → [0,∞)
such that limt→0 λ(t) = 0 and

‖f(y)− f(x)−Df(x)(x− y)‖ 6 λ(‖x− y‖)‖x− y‖ , (14.1.1)

for every x, y ∈ K with ‖x − y‖ < α. Indeed, by applying Proposition 14.1.4 it
follows that

f(y)− f(x) =

1∫

0

Df(x + t(y − x))(y − x)dt,

so that

‖f(y)− f(x)−Df(x)(x− y)‖ 6
1∫

0

‖Df(x + t(y − x))(y − x)−Df(x)(x− y)‖ dt,

and (14.1.1) follows by using the uniform continuity of Df on K. Note that the
resulting λ is increasing.

The following result is a particular case of Sard’s theorem. We refer to Sternberg
[211, p. 47] for stronger versions of this result.

Theorem 14.1.6. Let f : V → Rn be a C1 function and let B be the set of all the
critical points of f . Then the Lebesgue measure of f(B) in Rn is zero.
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Proof. Let x ∈ B. Since the linear operator Df(x) is not invertible, Ran Df(x)
is contained in a subspace P of Rn with dimension at most n− 1. Denote

P̃ = {w + f(x) | w ∈ P} ,

which is the affine hyperplan parallel to P and passing by f(x).

For r > 0 we denote (as usual) by B(x, r) the open ball of center x and of radius
r in Rn. Let r > 0 be small enough such that B(x, r) ⊂ V and let y ∈ B(x, r).

Since f(x) + Df(x)(x − y) belongs to P̃ , the distance of f(y) to P̃ is smaller than
‖f(y)−f(x)−Df(x)(x−y)‖. This fact and (14.1.1) imply that the distance of f(y)

to P̃ is smaller than λ(r)r. Let

K = sup
z∈B(x,r)

‖Df(z)‖.

Then

‖f(y)− f(x)‖ =

∥∥∥∥∥∥

1∫

0

Df(x + t(y − x))(y − x)dt

∥∥∥∥∥∥
6 Kr ∀ y ∈ B(x, r) .

The above facts show that f maps B(x, r) into a cylinder C(x, r) whose base is the

(n−1)-dimensional ball P̃∩B(f(x), Kr) and whose height is 2λ(r)r. Let Vn−1 be the
volume of the (n−1)-dimensional unit ball. Then the volume (or the n-dimensional
Lebesgue measure) of C(x, r) is

Vol(C(x, r)) = 2λ(r)r(Vn−1(Kr)n−1) = 2Vn−1K
n−1λ(r)rn .

It follows that

Vol(f(B(x, r))) 6 Vol(C(x, r)) = 2Vn−1K
n−1λ(r)rn . (14.1.2)

Let k ∈ N be such that the cube whose side length is 1
k

is contained in V and let
m ∈ N. The cube A can be divided in at most mn cubes whose side length is 1

mk
. It

is easy to see that if one of these cubes contains some x ∈ B then it is contained in
B(x, 2

√
n

mk
). Hence, A∩B is contained in at most mn balls whose center is the image

of a point of B through f and whose radius is 2
√

n
mk

. From (14.1.2) it follows that

Vol(f(A ∩B)) 6 mn2Vn−1K
n−1λ

(
2

√
n

mk

)(
2

√
n

mk

)n

= C(n, k,K)λ

(
2

√
n

mk

)
,

where C(n, k, K) is a positive constant depending on n, k and K but NOT on m. So,
letting m go to +∞, we obtain that Vol(f(A∩B)) = 0. Covering V by a countable
number of such cubes, we get that Vol(f(B)) = 0.
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14.2 Existence of Morse functions on Ω

Let f ∈ C2(clos Ω;R) and let a ∈ Ω be a critical point of f . We say that a is

non-degenerate if the Hessian matrix
[

∂2f
∂xi∂xj

(a)
]

is invertible.

Definition 14.2.1. A Morse function on Ω is an f ∈ C2(clos Ω,R) such that

f(x) = 0 , ∇f(x) 6= 0 ∀ x ∈ ∂Ω

and all the critical points of f in Ω are non-degenerate.

Proposition 14.2.2. Let f be a Morse function on Ω. Then f has a finite number
of critical points.

Proof. Let g : clos Ω → Rn be the C1 function defined by

g(x) = ∇f(x) ∀ x ∈ clos Ω .

The fact that f is a Morse function implies that Dg(a) is invertible at every point
a such that g(a) = 0. According to Theorem 14.1.2, it follows that for any critical
point a of f there exists an open set Va ⊂ Ω such that ∇f(x) 6= 0 for every x ∈ Va

that is different from a. Thus, a is isolated (within the set of critical points of f).
The critical points cannot have a limit point on the boundary, because of the second
condition in the definition of a Morse function. Therefore, the set of critical points
is closed. Since it consists of isolated points, this set is finite.

The main result of this section is:

Theorem 14.2.3. There exists a Morse function f on Ω such that f ∈ Cm(clos Ω)
and f(x) > 0 for every x ∈ Ω.

One of the main ingredients of the proof of Theorem 14.2.3 is the following result.

Lemma 14.2.4. Let V be an open bounded subset of Rn and let g ∈ C2(clos V ;R).
Then there exists a sequence (lk) in Rn such that lim lk = 0 and for every k ∈ N the
map

x 7→ f(x) + 〈lk, x〉 ,
has only non-degenerate critical points.

Proof. Let G : V → Rn be defined by

G(x) = −∇f(x) ∀ x ∈ V .

Let B ⊂ V be the set of critical values of G and let l ∈ Rn. For l 6∈ G(B) we
consider the map

x 7→ f(x) + 〈l, x〉 , (14.2.1)
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If a ∈ V is a critical point of the above map then l = −∇f(a) = G(a). Since
l 6∈ G(B), it follows that a 6∈ B, so that DG(a) is invertible. It is easy to see that
the Hessian at a of the map defined in (14.2.1) is −DG(a) so that that the critical
point a is non-degenerate. We have thus shown that if l 6∈ G(B), then the map
defined in (14.2.1) has only non-degenerate critical points.

On the other hand, by applying, Sard’s Theorem 14.1.6 to the function G it follows
that for every k ∈ N there exists lk ∈ B(0, 1

k
) \G(B). The sequence (lk) clearly has

the required properties.

We are now in a position to prove the main result of this section.

Proof of Theorem 14.2.3. The proof is divided in two steps.

Step 1. We show that there exists a function v : clos Ω → R of class Cm satisfying

(P1) v > 0 in Ω, v = 0 on ∂Ω,

(P2) v has no critical point in V = clos N ∩ clos Ω, where N is an open neighbor-
hood of ∂Ω in Rn.

Since the open set Ω is of class Cm, by using Definition 13.5.2, it is not difficult to
prove that there exists an open covering (V k)k=0,p of clos Ω such that V 0 ∩ ∂Ω = ∅,
(V k)k=1,p is a covering of ∂Ω and such that for every k ∈ {1, . . . , p} there exists a
system of orthonormal coordinates (yk

1 , . . . , y
k
n) such that

1. V k is a hypercube in the new coordinates;

2. For every k ∈ {1, . . . , p} there exists a Cm function ϕk of the arguments
(yk

1 , . . . , y
k
n−1) that vary in the basis of the hypercube V k, such that

Ω ∩ V k = {y = (y ∈ V k | yk
n < ϕk(yk

1 , . . . , y
k
n−1)},

∂Ω ∩ V k = {y ∈ V k | yk
n = ϕ(yk

1 , . . . , y
k
n−1)}.

Let v0 : V 0 → R be defined by

v0(x) = 1 ∀ x ∈ V 0 . (14.2.2)

Moreover, for 1 6 k 6 p we define vk : V k → R by

vk(yk
1 , . . . , y

k
n) = yk

n − ϕk(yk
1 , . . . , y

k
n−1) ∀ (yk

1 , . . . , y
k
n) ∈ Vk .

We clearly have
vk = 0 on ∂Ω ∩ V k . (14.2.3)

Moreover, if ν is the unit outward normal vector field, defined by (13.6.1), then for
every y ∈ V k ∩ ∂Ω we have

∇vk(y) · ν(y) =

√
1 +

[
∂ϕk

∂y1

(y′)
]2

+ · · ·+
[

∂ϕk

∂yn−1

(y′)
]2

> 0 ,
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where y = (yk
1 , . . . , y

k
n) and y′ = (yk

1 , . . . , y
k
n−1). By using the compactness of ∂Ω it

follows that there exists m0 > 0 such that, for every k ∈ {1, . . . , p} we have

∇vk(y) · ν(y) > m0 ∀ y ∈ ∂Ω ∩ V k . (14.2.4)

Let ψ1, . . . , ψp be a partition of unity subordinated to the compact clos Ω and to its
covering V 1, ... V p, as in Proposition 13.1.6. We next define v ∈ D(Rn) by

v(x) =

p∑

k=1

ψk(x)vk(x) ∀ x ∈ Rn . (14.2.5)

We clearly have v ∈ Cm(clos Ω). Moreover, from (14.2.2), (14.2.3) and the properties
of (ψk) it is easy to see that v satisfies property (P1) above.

On the other hand, by combining (14.2.3) and (14.2.5) it follows that

∇v(x) =

p∑

k=1

ψk(x)∇vk(x) ∀ x ∈ ∂Ω.

From the above formula and (14.2.4) it follows that

∇v(x) · ν(x) > m0 > 0 ∀ x ∈ ∂Ω .

Since v = 0 on ∂Ω it follows that

‖∇v(x)‖ > m0 ∀ x ∈ ∂Ω .

Using the continuity of the map x 7→ ∇v(x) yields the fact that v also satisfies
property (P2). This ends the first step of the proof.

Step 2. Let v ∈ Cm(clos Ω) be the function be constructed in Step 1, let V =
clos N ∩ clos Ω be the set constructed in Step 1, such that v has no critical point
in V , and consider the open set W = Ω \ V . By Proposition 13.1.5, there exists a
smooth function η ∈ D(Ω) with 0 6 η 6 1 and η = 1 on clos W . We set

ε = inf
x∈supp (η)∩V

‖∇v(x)‖ , (14.2.6)

so that ε > 0. By Lemma 14.2.4 there exists l ∈ Rn such that the map x 7→
v(x) + 〈l, x〉 has the following properties

(H1) It has only non-degenerate critical points on W ;

(H2) The gradient of the map
x 7→ η(x)〈l, x〉 (14.2.7)

is smaller than ε
2

for x ∈ supp (η) ∩ V .

(H3) The map defined in (14.2.7) is positive on supp (η).
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Let
f(x) = v(x) + η(x)〈l, x〉 ∀ x ∈ clos Ω .

By using the properties of v, of η and of l we easily see that f ∈ Cm(clos Ω), f = 0
on ∂Ω and f > 0 in Ω. We still have to show that f has only no-degenerate critical
points. This will be done by noting first that

Ω = W ∪ (supp(η) ∩ V ) ∪ (Ω \ supp (η)) .

Since
f(x) = v(x) + 〈l, x〉 ∀ x ∈ clos W ,

it follows that all the critical points of f in clos W are non-degenerate. On the other
hand, for x ∈ supp (η) ∩ V we can combine (14.2.6) and condition (H2) above to
obtain that f has no critical points in supp(η) ∩ V . Finally, on Ω \ supp (η) ⊂ V
we have f = v so that f has no critical points in Ω \ supp (η). Consequently all the
critical points of f in clos Ω are non-degenerate, so that f satisfies all the conditions
required in Theorem 14.2.3.

14.3 Proof of Theorem 9.4.3

The main ingredients of the proof of Theorem 9.4.3 are Theorem 14.2.3 and the
following result. Recall the standing assumptions on Ω and O, from the beginning
of the chapter.

Proposition 14.3.1. Let l ∈ N and let {a1, . . . , al} ∈ Ω. Then there exists a C∞

diffeomorphism Φ : clos Ω → clos Ω such that Φ(x) = x for x ∈ ∂Ω and

Φ(ak) ∈ O ∀ k ∈ {1, . . . , l} .

For the proof we begin with the following lemma.

Lemma 14.3.2. Let W ⊂ Rn be an open connected set. Then for any x, y ∈ W
there exists a C∞ simple regular curve contained in W going from x to y. In other
words, for every x, y ∈ W there exists a C∞ function γ : [0, 1] → W such that

• γ(0) = x, γ(1) = y;

• For every t1, t2 ∈ [0, 1] with t1 6= t2 we have γ(t1) 6= γ(t2);

• γ̇(t) 6= 0 on [0, 1].

Proof. For x ∈ W we define Wx to be the set of the points y ∈ W for which there
exists a continuous piecewise linear map β : [0, 1] →W such that

(PL1) β(0) = x, β(1) = y;

(PL2) For every t1, t2 ∈ [0, 1] with t1 6= t2 we have β(t1) 6= β(t2);

(PL3) β is piecewise linear.
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It is easy to check that Wx is open and non-empty. In order to show that Ω \Wx

is empty, we use a contradiction argument. If Ω \ Wx is not empty, take a ∈ Wx

such that x is closer to Ω \ Wx than to ∂Ω. Let β0 be a piecewise linear curve
lying in W and leading from x to a. Let r0 be the distance from a to Ω \Wx. Let
b ∈ Ω \Wx such that |b−a| = r0. It is possible to find a piecewise linear curve lying
in B(a, r0) ⊂ Wx leading from a to b which does not intersect β0 (in most cases this
will be just a straight line). Joining the two curves in a suitable way, we obtain
a curve joining x and b, so that b ∈ Wx, which is a contradiction. We have thus
shown that Wx = W , i.e., that for every x, y ∈ W there exists a path β satisfying
(PL1)-(PL3). Let 0 = t0 < t1 < · · · < tr−1 < tr = 1, with r ∈ N, be such that β is
an affine function on each interval [tk, tk+1], with k ∈ {0, . . . , r − 1}. We extend β
to a function defined on R (still denoted by β) which is affine on (−∞, t1] and on
[tr−1,∞). If ϕ ∈ D(R) is such that

∫
R ϕ(t)dt = 1,

∫
R tϕ(t)dt = 0 and supp ϕ is a

sufficiently small interval centered at 0, then the function

γ(t) =

∫

R

ϕ(t− s)β(s)ds ∀ t ∈ [0, 1] ,

satisfies the three conditions required in the lemma (in other words the convolution
with ϕ “rounds the corners” of β).

We also need the following result, which looks obvious but for which we did not
find a proof in the literature. We give below a simple proof.

Lemma 14.3.3. Let W ⊂ Rn, with n > 2, be an open connected set, let x, y ∈ W
and let γ : [0, 1] → W be a C∞ curve satisfying the three conditions in Lemma
14.3.2. Then Ω \ γ([0, 1]) is an open connected set.

Proof. Denote

Ic = {t ∈ [0, 1] | Ω \ γ([0, t]) is connected }, (14.3.1)

D = {x ∈ Rn | x1 ∈ [0, 1], x2 = . . . = xn = 0} . (14.3.2)

Clearly 0 ∈ Ic so that Ic 6= ∅. We show that Ic is open in [0, 1]. Let t ∈ Ic. Let ε > 0
be small enough such that B(γ(t), ε) \ γ([0, t]) is diffeomorphic to B(0, 1) \D. Since
B(0, 1)\D is connected, the same property holds for B(γ(t), ε)\γ([0, t]). It is easy to
see that for δ > 0 small enough B(γ(t), ε)\γ([0, t+δ]) remains connected. Let p, q ∈
Ω \ γ([0, t + δ]). Since t ∈ Ic, we can find a continuous path g : [0, 1] → Ω \ γ([0, t])
with g(0) = p and g(1) = q. If g([0, 1])∩B(γ(t), ε) = ∅, then the path g goes from
p to q and it is contained in Ω \ γ([0, t + δ]). Assume that g([0, 1]) ∩B(γ(t), ε) 6= ∅
and denote

t0 = inf{t > 0 | g(t) ∈ B(γ(t), ε)}, t1 = sup{t > 0 | g(t) ∈ B(γ(t), ε)} .

Using the fact that B(γ(t), ε) \ γ([0, t + δ]) is connected, it follows that there exists
a continuous function f : [t0, t1] → B(γ(t), ε) \ γ([0, t + δ]) such that f(t0) = g(t0)
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and f(t1) = g(t1). Define g̃ : [0, 1] → Ω by

g̃(t) =

{
f(t) for t ∈ [t0, t1],

g(t) for t ∈ [0, 1] \ [t0, t1].

The function g̃ is clearly continuous with g̃(0) = p, g̃(1) = q and g̃(t) ∈ Ω\γ([0, t+δ])
for every t ∈ [0, 1]. We have thus shown that Ω \ γ([0, t + δ]) is connected, thus, for
δ > 0 small enough, we have that t + δ ∈ Ic, where Ic has been defined in (14.3.1).
It follows that Ic is an open subset of [0, 1].

The set Ic is also closed in [0, 1]. Indeed, let (tk) be an increasing sequence of
points of Ic converging to t∞ ∈ [0, 1]. Let ε be small enough in order to have that
B(γ(t∞), ε) \ γ([0, t∞]) is diffeomorphic to B(0, 1) \ D, where D has been defined
in (14.3.2). By following the method used in order to show that Ic is open, we can
construct a continuous path linking any two points of Ω \ γ([0, t∞]) which does not
intersect γ([0, t∞]), so that t∞ ∈ Ic.

We have thus shown that the non-empty set Ic is both open and closed in [0, 1],
so that Ic = [0, 1]. We conclude that Ω \ γ([0, 1]) is connected.

We are now in a position to prove Proposition 14.3.1.

Proof of Proposition 14.3.1. Let {b1, . . . bl} ⊂ O. By applying recursively Lemma
14.3.2 and Lemma 14.3.3 it follows that there exists the C∞ functions γ1, . . . γl :
[0, 1] → Ω such that:

(SC1) For every k ∈ {1, . . . l} we have γk(0) = ak, γk(1) = bk.

(SC2) For every k ∈ {1, . . . l} and t ∈ [0, 1] we have γ̇k(t) 6= 0.

(SC3) For every k, j ∈ {1, . . . l} with k 6= j we have γk([0, 1]) ∩ γj([0, 1]) = ∅.
(SC4) For every k ∈ {1, . . . l} and s, t ∈ [0, 1] with s 6= t we have γk(t) 6= γk(s).

The next step is to construct a C∞ vector field X ∈ D(Ω,Rn) such that

X(γk(t)) = γ̇k(t) ∀ t ∈ [0, 1] , k ∈ {1, . . . l} .

This can be done first locally, around each curve by using property (SC3) and then
by multiplying by an appropriate cut-off function. Let Φ : Ω × [0,∞) → Ω be the
flow associated to the vector field X. This means that for every x ∈ Ω the function
t 7→ Ψ(x, t) is the solution of the initial value problem

∂Ψ

∂t
(x, t) = X(Ψ(x, t), t) ∀ t > 0 , Ψ(x, 0) = x.

Classical results on differential equations (see, for instance Hartman [96, p. 100])
imply that Ψ is well defined and that Ψ(·, t) is a C∞ diffeomorphism of Ω with
Ψ(∂Ω, t) = ∂Ω for every t > 0. In particular, the map Φ defined by

Φ(x) = Ψ(1, x) ∀ x ∈ Ω ,
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is the desired diffeomorphism. Indeed, besides the properties inherited from Ψ, it is
easily seen that Φ(ak) = bk for every k ∈ {1, . . . l}.

Proof of Theorem 9.4.3. Let f ∈ Cm(clos Ω,R) be a Morse function on Ω, with
f > 0 on Ω as in Theorem 14.2.3. This means, in particular, that f has only a finite
numbers of critical points a1, · · · , al in Ω, where l ∈ N. Let Φ be the map constructed
in Proposition 14.3.1 and let η0 = f ◦Φ−1. We clearly have η0 ∈ Cm(clos Ω), η0 = 0
on ∂Ω and η0 > 0 in Ω.

For q ∈ clos Ω we have, by the chain rule (see Proposition 14.1.4) Dη0(q) =
Df(Φ−1(q)) ◦DΦ−1(q) and since DΦ−1(q) ∈ L(Rn) is an isomorphism, q is a critical
point for η0 if and only if Φ−1(q) is a critical point of f . Since for every critical point
p of f , we have Φ(p) ∈ O it follows that all the critical points of η0 belong to O.
This concludes the proof of Theorem 9.4.3.



Chapter 15

Appendix IV: Unique continuation
for elliptic operators

15.1 A Carleman estimate for elliptic operators

In this section section we provide an elementary proof of a Carleman estimate for
second order elliptic operators. As it has already been remarked by T. Carleman in
[29], this kind of estimates provides a powerful tool for proving unique continuation
results for linear elliptic PDEs. Our approach is essentially based on Burq and
Gérard [26]. More sophisticated versions of Carleman estimates are currently applied
to quite general linear partial differential operators (see, for instance, Hörmander
[103], Fursikov and Imanuvilov [69], Tataru [214], [216], Imanuvilov and Puel [106]
and Lebeau and Robbiano [151], [152]).

Throughout this section n ∈ N, Ω ⊂ Rn is an open bounded set and the family
of C2(Ω) real-valued functions akl, with k, l ∈ {1, . . . n}, is such that akl = alk for
every k, l ∈ {1, . . . n} and, for some constant δ > 0,

n∑

l,k=1

akl(x)ξkξl > δ

n∑

k=1

|ξk|2 ∀ x ∈ Ω ∀ ξ ∈ Rn . (15.1.1)

We define the differential operator P : H2(Ω) → L2(Ω) by

Pϕ =
n∑

k,l=1

∂

∂xk

(
akl

∂ϕ

∂xl

)
.

With the above assumptions the operator P is uniformly elliptic on Ω. For f ∈ L2(Ω)
we denote by ‖f‖ the norm of f in L2(Ω) whereas for x ∈ Rn we denote by |x| the
Euclidian norm of x. The standard inner product in L2(Ω) is denoted by 〈·, ·〉.

For λ, s > 0 we define the functions

α(x) = eλxn ∀ x ∈ Rn , (15.1.2)

453
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and the operator Ps,λ is defined by

Ps,λϕ = esαP (e−sαϕ) ∀ ϕ ∈ H2(Ω) .

The main result of this section is:

Theorem 15.1.1. Let K be a compact subset of Ω. Then there exist C > 0, λ0 > 0
and s0 > 0 such that for every s > s0 and every ϕ ∈ H2(Ω) supported in K,

s‖∇ϕ‖2 + s3‖ϕ‖2 6 C‖Ps,λ0ϕ‖2 . (15.1.3)

Proof. We may assume, without loss of generality, that ϕ is real-valued. From
(15.1.2) it follows that

∂

∂xl

(e−sα) = − λsδlnαe−sα , (15.1.4)

where δln is the Kronecker symbol. It follows that for every k ∈ {1, . . . n} we have

n∑

l=1

akl
∂

∂xl

(e−sαϕ) = e−sα

(
n∑

l=1

akl
∂ϕ

∂xl

− λsαaknϕ

)
.

From the above formula it follows that, for every s, λ > 0 we have

n∑

k,l=1

∂

∂xk

[
akl

∂

∂xl

(e−sαϕ)

]
=

n∑

k=1

∂

∂xk

[
e−sα

(
n∑

l=1

akl
∂ϕ

∂xl

− λsαaknϕ

)]
,

which, combined with (15.1.4), implies that

n∑

k,l=1

∂

∂xk

[
akl

∂

∂xl

(e−sαϕ)

]
= − λsαe−sα

(
n∑

l=1

anl
∂ϕ

∂xl

− λsαannϕ

)

+ e−sα

n∑

k,l=1

∂

∂xk

(
akl

∂ϕ

∂xl

)
− e−sα

n∑

k=1

λs
∂

∂xk

(αaknϕ) .

From the above formula it follows that

Ps,λϕ = L1ϕ− L2ϕ, (15.1.5)

where
L1ϕ = Pϕ + λ2s2α2annϕ, (15.1.6)

L2ϕ = λs

(
n∑

k=1

αank
∂ϕ

∂xk

+
n∑

k=1

∂

∂xk

(αaknϕ)

)
. (15.1.7)

It is not difficult to check that L1 is “symmetric” and L2 is “skew-symmetric”, in
the sense that

〈L1ϕ, ψ〉 = 〈L1ψ, ϕ〉 , 〈L2ϕ, ψ〉 = − 〈L2ψ, ϕ〉 ,
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for every ϕ, ψ ∈ H2(Ω) supported in K. This property, combined with (15.1.5),
implies that for every s, λ > 0 and every ϕ, ψ ∈ H2(Ω) supported in K we have

‖Ps,λϕ‖2 = ‖L1ϕ‖2 + ‖L2ϕ‖2 + 〈(L2L1 − L1L2)ϕ, ϕ〉 . (15.1.8)

Let us estimate the last term on the right-hand side of the above formula. We have

L1L2ϕ = λs

n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
αank

∂ϕ

∂xk

+
∂

∂xk

(αaknϕ)

))

+ λ3s3α3ann

n∑

k=1

ank
∂ϕ

∂xk

+ λ3s3α2ann

n∑

k=1

∂

∂xk

(αaknϕ) ,

L2L1ϕ = λs

n∑

k,p,q=1

αank
∂2

∂xk∂xp

(
apq

∂ϕ

∂xq

)
+ λ3s3α

n∑

k=1

ank
∂

∂xk

(α2annϕ)

+ λs

n∑

k,p,q=1

∂

∂xk

(
αakn

∂

∂xp

(
apq

∂ϕ

∂xq

))
+ λ3s3

n∑

k=1

∂

∂xk

(
aknα3annϕ

)
,

so that

L2L1ϕ = λs

n∑

k,p,q=1

αank
∂2

∂xk∂xp

(
apq

∂ϕ

∂xq

)
+ λs

n∑

k,p,q=1

∂

∂xk

(
αakn

∂

∂xp

(
apq

∂ϕ

∂xq

))

+ 2λ3s3α

n∑

k=1

ank
∂

∂xk

(α2ann)ϕ + λ3s3α3ann

n∑

k=1

ank
∂ϕ

∂xk

+ λ3s3α2ann

n∑

k=1

∂

∂xk

(
αaknϕ

)
.

The above formulas imply that

(L2L1 − L1L2)ϕ = 2λ3s3α

n∑

k=1

ank
∂

∂xk

(α2ann)ϕ

+ λs

n∑

k,p,q=1

αank
∂2

∂xk∂xp

(
apq

∂ϕ

∂xq

)
+ λs

n∑

k,p,q=1

∂

∂xk

(
αakn

∂

∂xp

(
apq

∂ϕ

∂xq

))

− λs

n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
αank

∂ϕ

∂xk

+
∂

∂xk

(αaknϕ)

))

= 4λ4s3α3a2
nnϕ + 2λ3s3α3

n∑

k=1

ank
∂ann

∂xk

ϕ + λs(L3ϕ + L4ϕ− L5ϕ) , (15.1.9)

where
L3ϕ = 2

n∑

k,p,q=1

αank
∂2

∂xk∂xp

(
apq

∂ϕ

∂xq

)
, (15.1.10)
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L4ϕ =
n∑

k,p,q=1

∂(αakn)

∂xk

∂

∂xp

(
apq

∂ϕ

∂xq

)
, (15.1.11)

L5ϕ =
n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
2αank

∂ϕ

∂xk

+
∂(αakn)

∂xk

ϕ

))
. (15.1.12)

By simple calculations, equation (15.1.10) implies that

L3ϕ = 2α
n∑

k,p,q=1

ank
∂

∂xk

(∂apq

∂xp

∂ϕ

∂xq

)
+ 2α

n∑

k,p,q=1

ank
∂

∂xk

(
apq

∂2ϕ

∂xp∂xq

)

= 2α
n∑

k,p,q=1

ank
∂2apq

∂xk∂xp

∂ϕ

∂xq

+ 2α
n∑

k,p,q=1

ank
∂apq

∂xp

∂2ϕ

∂xk∂xq

+ 2α
n∑

k,p,q=1

ank
∂apq

∂xk

∂2ϕ

∂xp∂xq

+ 2α
n∑

k,p,q=1

ankapq
∂3ϕ

∂xk∂xp∂xq

. (15.1.13)

We write the operator L5 defined in (15.1.12) in a more convenient form:

L5ϕ = 2
n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
αank

∂ϕ

∂xk

))
+

n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
∂(αakn)

∂xk

ϕ

))

= 2
n∑

p,q,k=1

∂

∂xp

(
apq

∂(αank)

∂xq

∂ϕ

∂xk

)
+ 2

n∑

p,q,k=1

∂

∂xp

(
apqαank

∂2ϕ

∂xq∂xk

)

+
n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
∂(αakn)

∂xk

ϕ

))

= 2
n∑

p,q,k=1

∂

∂xp

(
apq

∂(αank)

∂xq

∂ϕ

∂xk

)
+ 2

n∑

p,q,k=1

∂

∂xp

(apqαank)
∂2ϕ

∂xq∂xk

+ 2α
n∑

p,q,k=1

apqank
∂3ϕ

∂xp∂xq∂xk

+
n∑

p,q,k=1

∂

∂xp

(
apq

∂

∂xq

(
∂(αakn)

∂xk

ϕ

))
(15.1.14)

From (15.1.11), (15.1.13) and (15.1.14) we see that the terms containing the third-
order derivatives of ϕ in the last term on the right-hand side of (15.1.9) cancel, so
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that:

L3ϕ + L4ϕ− L5ϕ = 2α
n∑

k,p,q=1

ank
∂2apq

∂xk∂xp

∂ϕ

∂xq

+ 2α
n∑

k,p,q=1

ank
∂apq

∂xp

∂2ϕ

∂xk∂xq

+ 2α
n∑

k,p,q=1

ank
∂apq

∂xk

∂2ϕ

∂xp∂xq

+
n∑

k,p,q=1

∂(αakn)

∂xk

∂

∂xp

(
apq

∂ϕ

∂xq

)

− 2
n∑

p,q,k=1

∂

∂xp

(
apq

∂(αank)

∂xq

∂ϕ

∂xk

)
− 2

n∑

p,q,k=1

∂

∂xp

(apqαank)
∂2ϕ

∂xq∂xk

−
n∑

p,q,k=1

∂

∂xp

(
apq

∂2(αakn)

∂xq∂xk

ϕ

)
−

n∑

p,q,k=1

∂

∂xp

(
apq

∂(αakn)

∂xk

∂ϕ

∂xq

)
. (15.1.15)

We remark that

2α
n∑

k,p,q=1

ank
∂apq

∂xp

∂2ϕ

∂xk∂xq

= 2
n∑

k,p,q=1

∂

∂xq

(
αank

∂apq

∂xp

∂ϕ

∂xk

)
− 2

n∑

k,p,q=1

∂

∂xq

(
αank

∂apq

∂xp

)
∂ϕ

∂xk

,

2α
n∑

k,p,q=1

ank
∂apq

∂xk

∂2ϕ

∂xp∂xq

= 2
n∑

k,p,q=1

∂

∂xp

(
αank

∂apq

∂xk

∂ϕ

∂xq

)
− 2

n∑

k,p,q=1

∂

∂xp

(
αank

∂apq

∂xk

)
∂ϕ

∂xq

,

n∑

k,p,q=1

∂(αakn)

∂xk

∂

∂xp

(
apq

∂ϕ

∂xq

)

=
n∑

k,p,q=1

∂

∂xp

(∂(αakn)

∂xk

apq
∂ϕ

∂xq

)
−

n∑

k,p,q=1

∂

∂xp

(∂(αakn)

∂xk

)
apq

∂ϕ

∂xq

,

2
n∑

p,q,k=1

∂

∂xp

(apqαank)
∂2ϕ

∂xq∂xk

= 2
n∑

p,q,k=1

∂

∂xq

(
∂

∂xp

(apqαank)
∂ϕ

∂xk

)
− 2

n∑

p,q,k=1

∂

∂xq

(
∂

∂xp

(apqαank)

)
∂ϕ

∂xk

.
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Substituting the last four formulas into (15.1.15), we obtain that

L3ϕ + L4ϕ− L5ϕ = − 2
n∑

k,p,q=1

∂(αank)

∂xp

∂apq

∂xk

∂ϕ

∂xq

−
n∑

k,p,q=1

∂2(αakn)

∂xp∂xk

apq
∂ϕ

∂xq

+ 2
n∑

p,q,k=1

∂

∂xq

(
apq

∂(αank)

∂xp

)
∂ϕ

∂xk

− 4
n∑

p,q,k=1

∂

∂xp

(
apq

∂(αank)

∂xq

∂ϕ

∂xk

)

+ 2
n∑

k,p,q=1

∂

∂xp

(
αank

∂apq

∂xk

∂ϕ

∂xq

)
−

n∑

p,q,k=1

∂

∂xp

(
apq

∂2(αakn)

∂xq∂xk

ϕ

)
.

Taking the inner product of both sides with ϕ and integrating by parts, we notice
that the contributions from the second and from the last term on the right-hand
side of the above relation vanish, so that

〈L3ϕ + L4ϕ− L5ϕ, ϕ〉 = − 2
n∑

k,p,q=1

〈
∂(αank)

∂xp

∂apq

∂xk

∂ϕ

∂xq

, ϕ

〉

+ 2
n∑

p,q,k=1

〈
∂

∂xq

(
apq

∂(αank)

∂xp

)
∂ϕ

∂xk

, ϕ

〉

+ 4
n∑

p,q,k=1

〈
apq

∂(αank)

∂xq

∂ϕ

∂xk

,
∂ϕ

∂xp

〉
− 2

n∑

k,p,q=1

〈
αank

∂apq

∂xk

∂ϕ

∂xq

,
∂ϕ

∂xp

〉
.

By developing ∂(αank)
∂xq

in the third term from the right-hand side of the above relation

it follows that

〈L3ϕ + L4ϕ− L5ϕ, ϕ〉 = − 2
n∑

k,p,q=1

〈
∂(αank)

∂xp

∂apq

∂xk

∂ϕ

∂xq

, ϕ

〉

+ 2
n∑

p,q,k=1

〈
∂

∂xq

(
apq

∂(αank)

∂xp

)
∂ϕ

∂xk

, ϕ

〉
+ 4λ

n∑

p,k=1

〈
αapnank

∂ϕ

∂xk

,
∂ϕ

∂xp

〉

+ 4α
n∑

p,q,k=1

〈
apq

∂ank

∂xq

∂ϕ

∂xk

,
∂ϕ

∂xp

〉
− 2

n∑

k,p,q=1

〈
αank

∂apq

∂xk

∂ϕ

∂xq

,
∂ϕ

∂xp

〉
. (15.1.16)

The first term in the right-hand side of the above relation can be written as

− 2
n∑

k,p,q=1

〈
∂(αank)

∂xp

∂apq

∂xk

∂ϕ

∂xq

, ϕ

〉
= −

∫

Ω

∂(αank)

∂xp

∂apq

∂xk

∂

∂xq

|ϕ|2dx

=

∫

Ω

∂

∂xq

(
∂(αank)

∂xp

∂apq

∂xk

)
|ϕ|2dx.

It follows that∥∥∥∥∥−2
n∑

k,p,q=1

〈
∂(αank)

∂xp

∂apq

∂xk

∂ϕ

∂xq

, ϕ

〉∥∥∥∥∥ 6 C1C2λ
2‖ϕ‖2 , (15.1.17)
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for every λ > 1, where
C1 = max

x∈K
|α(x)| . (15.1.18)

and C2 > 0 depends only on (akl) and on K.

The second term in the right-hand side of (15.1.16) can be written as

2
n∑

p,q,k=1

〈
∂

∂xq

(
apq

∂(αank)

∂xp

)
∂ϕ

∂xk

, ϕ

〉
=

n∑

p,q,k=1

∫

Ω

∂

∂xq

(
apq

∂(αank)

∂xp

)
∂

∂xk

|ϕ|2dx

= −
n∑

p,q,k=1

∫

Ω

∂2

∂xk∂xq

(
apq

∂(αank)

∂xp

)
|ϕ|2dx.

From the above formula it easily follows that

2

∥∥∥∥∥
n∑

p,q,k=1

〈
∂

∂xq

(
apq

∂(αank)

∂xp

)
∂ϕ

∂xk

, ϕ

〉∥∥∥∥∥ 6 C1C3λ
3‖ϕ‖2, (15.1.19)

for every λ > 1, where C2 has been defined in (15.1.18) and C3 > 0 depends only
on (akl) and on K.

The third term in the right-hand side of (15.1.16) is non-negative. Indeed, for
every λ > 0 we have

4λ
n∑

p,k=1

〈
αapnank

∂ϕ

∂xk

,
∂ϕ

∂xp

〉
= 4λ

∫

K

α

n∑

k=1

∣∣∣∣ank
∂ϕ

∂xk

∣∣∣∣
2

dx > 0 . (15.1.20)

For the last two terms in the right-hand side of (15.1.16) it is easy to check that

∣∣∣∣∣4
n∑

p,q,k=1

〈
αapq

∂ank

∂xq

∂ϕ

∂xk

,
∂ϕ

∂xp

〉
− 2

n∑

k,p,q=1

〈
αank

∂apq

∂xk

∂ϕ

∂xq

,
∂ϕ

∂xp

〉∣∣∣∣∣

6 C4

∫

K

α|∇ϕ|2dx, (15.1.21)

for every λ > 1, where C4 > 0 is a constant depending only on (akl) and on K. By
combining (15.1.16), (15.1.17), (15.1.19), (15.1.20) and (15.1.21) it follows that for
every λ > 1 we have

〈L3ϕ + L4ϕ− L5ϕ, ϕ〉 > − C4

∫

K

α|∇ϕ|2dx− C1C5λ
3‖ϕ‖2 , (15.1.22)

where C1 has been defined in (15.1.18) and C5 = max{C2, C3}.
On the other hand, it is easily seen that there exists C6 > 0, depending only on

(akl) and on K, such that
∣∣∣∣∣〈2λ

3s3α3

n∑

k=1

ank
∂ann

∂xk

ϕ, ϕ〉
∣∣∣∣∣ 6 C6λ

3s3

∫

K

α3|ϕ|2dx.
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Combining the last inequality with (15.1.8), (15.1.9) and (15.1.22), we obtain that
for every λ > 1 we have

‖L1ϕ‖2 + ‖L2ϕ‖2 + 4λ4s3

∫

K

α3a2
nn|ϕ|2dx 6 ‖Ps,λϕ‖2 + C6λ

3s3

∫

K

α3|ϕ|2dx

+ C4λs

∫

K

α|∇ϕ|2dx + C1C5λ
4s‖ϕ‖2 . (15.1.23)

In order to absorb the term containing
∫

K
α|∇ϕ|2dx from the right-hand side of the

above estimate we note that from (15.1.6) it follows that

−〈L1ϕ, αϕ〉 =
n∑

k,l=1

∫

K

αakl
∂ϕ

∂xk

∂ϕ

∂xl

dx+
n∑

l=1

λ

∫

K

αanl
∂ϕ

∂xl

ϕdx−λ2s2

∫

K

α3ann|ϕ|2dx

> δ

∫

K

α|∇ϕ|2dx− C1C7λ‖ϕ‖2 − λ2s2

∫

K

α3ann|ϕ|2dx,

where δ is the constant from (15.1.1), C1 has been defined in (15.1.18) and C7 > 0
depends only on (akl) and on K. It follows that

C4λs

∫

K

α|∇ϕ|2dx 6 δ−1C4λs‖L1ϕ‖ · ‖αϕ‖

+ δ−1C4λ
3s3

∫

K

α3ann|ϕ|2dx + δ−1C1C4C7λ
2s‖ϕ‖2 . (15.1.24)

From the above inequality it follows that for λ, s > 1 and ε > 0 we have

C4λs

∫

K

α|∇ϕ|2dx 6 δ−1C4ε‖L1ϕ‖2 + ε−1δ−1C4λ
2s2

∫

K

α2|ϕ|2dx

+ δ−1C4λ
3s3

∫

K

α3ann|ϕ|2dx + δ−1C1C4C7λ
2s‖ϕ‖2 .

By using the above inequality, with ε chosen such that δ−1C4ε < 1
2
, in (15.1.23) we

obtain that

1

2
‖L1ϕ‖2 + ‖L2ϕ‖2 +

〈
s3α3(4λ4a2

nn − δ−1C4λ
3ann − C6λ

3)ϕ, ϕ
〉

6 ‖Ps,λϕ‖2

+ ε−1δ−1C4λ
2s2

∫

K

α2|ϕ|2dx + δ−1C1C4C6λ
2s‖ϕ‖2 + C1C5λ

4s‖ϕ‖2 .

Using again (15.1.24) in the above inequality we obtain that

C4λs

∫

K

α|∇ϕ|2dx +
〈
s3α3(4λ4a2

nn − 2δ−1C4λ
3ann − C6λ

3)ϕ, ϕ
〉

6 ‖Ps,λϕ‖2

+ 2ε−1δ−1C4λ
2s2

∫

K

α2|ϕ|2dx + 2δ−1C1C4C6λ
2s‖ϕ‖2 + C1C5λ

4s‖ϕ‖2 . (15.1.25)
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Since C4 and C6 depend only on (akl) and on K, there exists λ0 > 0 such that

4λ4
0a

2
nn − 2δ−1C4λ

3
0ann − C6λ

3
0 > 2λ4

0a
2
nn .

Choosing λ = λ0 in (15.1.25) we obtain that

C4λ0s

∫

K

α|∇ϕ|2dx + 2λ4
0s

3

∫

K

α3a2
nn|ϕ|2dx 6 ‖Ps,λ0ϕ‖2

+ 2ε−1δ−1C4λ
2
0s

2

∫

K

α2|ϕ|2dx + 2δ−1C1C4C6λ
2
0s‖ϕ‖2 + C1C5λ

4
0s‖ϕ‖2 , (15.1.26)

for every s > 1. Since the constants (Ck) involved in (15.1.26) are independent of
s, all but the the first term on the right-hand side of (15.1.26) can be absorbed by
the terms in the left-hand side, provided that s is large enough. This fact clearly
implies the conclusion (15.1.1).

The result in the above theorem still holds if we perturb the operator P by lower
order terms. More precisely, we have

Corollary 15.1.2. With the notation in Theorem 15.1.1, let b ∈ L∞(Ω;Rn), c ∈
L∞(Ω;R) and let P̃ = P + Q where

Qϕ = b · ∇ϕ + cϕ ∀ ϕ ∈ H2(Ω) .

Then there exist C > 0, λ0 > 0 and s0 > 0 such that for every s > s0 and every
ϕ ∈ H2(Ω) supported in K,

s‖∇ϕ‖2 + s3‖ϕ‖2 6 C‖P̃s,λ0ϕ‖2 , (15.1.27)

where P̃s,λ = esαP̃ e−sα for every s, λ > 0.

Proof. We first remark that by using (15.1.4) we have

n∑

l=1

bl
∂

∂xl

(e−sαϕ) = e−sα

(
n∑

l=1

bl
∂ϕ

∂xl

− λsαbnϕ

)
,

so that, for every s, λ > 0 we have

P̃s,λϕ = Ps,λϕ + Qϕ− λsαbnϕ.

The above formula together with (15.1.1) imply that

s‖∇ϕ‖2 + s3‖ϕ‖2 6 C‖Ps,λ0ϕ‖2

6 C‖P̃s,λ0ϕ−Qϕ + λ0sαbnϕ‖2 6 3C
(
‖P̃s,λ0ϕ‖2 + ‖Qϕ‖2 + λ2

0s
2‖αbnϕ‖2

)
.

The above inequality easily implies that (15.1.27) holds for s large enough.
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15.2 The unique continuation results

In this section we apply the results from the previous one to prove unique contin-
uation results for second order elliptic operators.

For x ∈ Rn and r > 0 we denote by B(x, r) the open ball of center x and radius
r. We also use the notation Br = B(0, r). The Euclidian norm of x ∈ Rn will be
denoted by |x|, while the norm in L2(Ω) (with Ω ⊂ Rn) will be denoted by ‖ · ‖.

The main result of this section is the following:

Theorem 15.2.1. Let Ω be an open bounded and connected subset of Rn, let

(akl)k,l∈{1,...n} ∈ C2
(
Ω,Rn2

)
, b ∈ L∞(Ω;Rn) , c ∈ L∞(Ω;R)

and let φ ∈ H2(Ω) ∩H1
0(Ω) be such that

n∑

k,l=1

∂

∂xk

(
akl

∂φ

∂xl

)
+ b · ∇φ + cφ = 0 in L2(Ω) . (15.2.1)

Moreover, assume that there exists an open subset O of Ω such that

φ(x) = 0 ∀ x ∈ O .

Then φ = 0 in Ω.

Proof. We denote by φ also the extension of the original φ to Rn obtained by
setting φ = 0 outside Ω. According to Lemma 13.4.11, we have φ ∈ H1

0(R
n). Recall

from Section 13.2 that the support of φ, denoted supp φ, is the complement in Rn

of the largest open set G such that the restriction of φ to G is the zero distribution
on G (clearly O ⊂ G). Therefore, in order to prove the theorem, it suffices to show
that supp φ = ∅. This will be proved by a contradiction argument. If supp φ is not
empty, take x ∈ Ω \ supp φ such that x is closer to supp φ than to ∂Ω. Let r0 be the
distance from x to supp φ. Then it follows that B(x, r0) ⊂ Ω \ supp φ and ∂B(x, r0)
contains at least one point y ∈ supp φ (see Figure 15.1).

It is easy to check that there exists a local system of curvilinear coordinates
(x̃1, . . . x̃n) with the origin in y (i.e., x̃(y) = 0) such that, for some r1 > 0,

Br1 ⊂ Ω , supp φ ∩ {x̃ ∈ Br1 | x̃n > 0} = {0} , (15.2.2)

as illustrated in Figure 15.2. Using this new system of coordinates, relation (15.2.1)
implies that

P̃ φ(x̃) = 0 (x̃ ∈ Br1) ,

where P̃ is a differential operator as in Corollary 15.1.2, with appropriate coefficients
(akl), b and c (expressed as functions of the new coordinates x̃). Let r2 ∈ (0, r1) and
let χ ∈ D(Br1) be such that χ = 1 on Br2 (see again Figure 15.2).
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Figure 15.1: The point x is closer to supp φ than to ∂Ω. The ball B(x, r0) is in the
complement of supp φ in Ω and y ∈ supp φ ∩ ∂B(x, r0).

It is clear that
supp (∇χ) ⊂ {x ∈ Rn | r2 6 |x| 6 r1} . (15.2.3)

By applying Corollary 15.1.2 with ϕ = χesαφ, where α = α(xn) = eλxn , it follows
that there exist the constants s0, λ0, C > 0 such that, for λ = λ0,

s ‖∇(χesαφ)‖2 + s3 ‖χesαφ‖2 6 C
∥∥∥P̃s,λ0(χesαφ)

∥∥∥
2

∀ s > s0 ,

where P̃s,λ = esαP̃ e−sα. Since P̃s,λ0(χesαφ) = esαP̃ (χφ), it follows that

s ‖∇(χesαφ)‖2 + s3 ‖χesαφ‖2 6 C
∥∥∥esαP̃ (χφ)

∥∥∥
2

∀ s > s0 . (15.2.4)

On the other hand
∇(χφ) = φ∇χ + χ∇φ,

n∑

k,l=1

∂

∂xk

[
akl

∂

∂xl

(χφ)

]
= φ

n∑

k,l=1

∂

∂xk

(
akl

∂χ

∂xl

)

+ 2
n∑

k,l=1

akl
∂χ

∂xk

∂φ

∂xl

+ χ

n∑

k,l=1

∂

∂xk

(
akl

∂φ

∂xl

)
.

The two formulas above and the fact that P̃ φ = 0 imply that

P̃ (χφ) = φ

n∑

k,l=1

∂

∂xk

(
akl

∂χ

∂xl

)
+ φb · ∇χ + 2

n∑

k,l=1

akl
∂χ

∂xk

∂φ

∂xl

,
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χ = 0

xn

x′

χ = 1

Figure 15.2: The set supp φ (in the new coordinates x̃) is to the left of the dashed
curve. Here x̃′ = (x̃1, . . . x̃n−1) and the point 0 corresponds to y in Figure 15.1.

so that
supp P̃ (χφ) ⊂ supp φ ∩ supp∇χ.

The above inclusion together with (15.2.2) and (15.2.3) implies that there exists
ε > 0 such that

xn 6 − ε ∀ x ∈ supp P̃ (χφ) . (15.2.5)

If we multiply both sides of (15.2.4) by e−2sα(−ε), it follows that

s3
∥∥χes(α−α(−ε))φ

∥∥2 6 C
∥∥∥es(α−α(−ε))P̃ (χφ)

∥∥∥
2

∀ s > s0 .

From (15.2.5) it follows that the right-hand side of the above estimate tends to zero
when s →∞, so that the left-hand side has the same property. This means that

supp χφ ⊂ {x ∈ Rn | α(xn)− α(−ε) 6 0} = {x ∈ Rn | xn 6 −ε},

which contradicts (15.2.2).

The above theorem implies a unique continuation result from the boundary. For
the sake of simplicity, we give this result only for second order operators having the
Laplacian as principal part.

Corollary 15.2.2. Let Ω ⊂ Rn be open, bounded, connected and with Lipschitz
boundary, let b ∈ L∞(Ω,Cn), c ∈ L∞(Ω), and let φ ∈ H2(Ω) ∩H1

0(Ω) such that

∆φ + b · ∇φ + cφ = 0 ∀ x ∈ Ω . (15.2.6)
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Moreover, assume that there exists an open subset Γ of ∂Ω such that

∂φ(x)

∂ν
(x) = 0 ∀ x ∈ Γ .

Then φ = 0 in Ω.

Proof. Let x0 ∈ Γ and ε > 0 be such that such that the ball of center x0 and
radius ε, denoted by B(x0, ε) satisfies the condition

B(x0, ε) ∩ ∂Ω ⊂ Γ .

We denote Ωε = Ω∪B
(
x0,

ε
2

)
. By using the fact that ∂Ω is Lipschitz (see Definition

13.5.1) it follows that Ωε\clos Ω is a non-empty open set. We extend φ to a function,
still denoted by φ, defined on Ωε by setting φ(x) = 0 for x ∈ Ωε \ clos Ω. From
Lemma 13.4.11 it follows that φ ∈ H1

0(Ωε). This implies that

〈∆φ, ϕ〉D′(Ωε),D(Ωe) =

∫

Ωε

∇φ · ∇ϕdx ∀ ϕ ∈ D(Ωε) ,

so that ∆φ ∈ L2(Ωε). By applying Theorem 13.5.5 it follows that φ ∈ H2(Ωε) ∩
H1

0(Ωε) and
∆φ + b · ∇φ + cφ = 0 in Ωε .

Since φ vanishes on a non-empty open subset of Ωε, the conclusion follows by ap-
plying Theorem 15.2.1.
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Poincaré inequality, 102, 116, 262, 426,
434

point spectrum, 37
pointwise multiplication operator, 90
pole of a rational function, 91, 404
polynomial, 401, 404
positive operator, 16, 88, 151, 399
positive semigroup, 113, 153
Post-Widder formula, 43, 406
principal value, 419
products of Hilbert spaces, 30
projection of a vector onto a closed

subspace, 13
proper rational function, 404
proper transfer function, 176
properly spaced eigenvalues, 232

range of an operator, 14, 397
rank of a matrix, 15
rational function, 91, 404
real part of a matrix, 20
rectangular domain, 105, 271, 291, 308,

429
regular distribution, 416
regular sequence, 280
relatively compact set, 395
resolvent identity, 34, 155
resolvent of an operator, 34
resolvent set of an operator, 34
resolvent set of matrix, 15
Riesz basis, 46, 49, 55, 65, 280, 300
Riesz projection theorem, 13
Riesz representation theorem, 14, 62,

67, 90, 91, 347
right half-plane, 404
right half-planes in C, 30
right-invertible operator, 56
right-invertible semigroup, 56, 156

Sard’s theorem, 444
Schrödinger equation, 213, 214, 258,

259, 291, 353, 367
self-adjoint matrix, 16
self-adjoint operator, 84, 90, 99, 150,

398
semigroup on product space, 124

semigroup property, 30, 64, 170
separable Hilbert space, 46
separable set in a Banach space, 407
simple (measurable) function, 407
simultaneous approximate controllabil-

ity, 372
simultaneous approximate observabil-

ity, 200, 372
simultaneous exact controllability, 371
simultaneous exact observability, 200,

371, 372
singular value, 16
skew-adjoint matrix, 20
skew-adjoint operator, 108, 114, 275
skew-symmetric operator, 107
Sobolev spaces on an interval, 30
solution of a non-homogeneous differ-

ential equation, 122, 130, 376
solution space of a boundary control

system, 328, 376
space of bounded linear operators, 13
spectral bound of a matrix, 19
spectral bound of an operator, 85
spectral controllability, 389
spectral mapping theorem, 37, 402
spectral radius, 35
spectrum of a matrix, 15
spectrum of an operator, 34
spectrum of an operator (unbounded),

85, 89, 158
square root of a positive matrix, 16
square root of a positive operator, 92,

400
stable LTI system, 21
stable square matrix, 21
state, 21
state trajectory, 21
step function, 127, 137, 141
Stone’s theorem, 114, 207, 215, 258,

380
strictly positive operator, 16, 88, 98,

103, 297, 394
strictly proper rational function, 404
strictly unbounded control operator, 329
string equation (non-homogeneous), 336,
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369, 378
strong continuity, 30, 64, 75
strong solution of a non-homogeneous

equation, 122
strongly continuous group, 57, 109
strongly continuous semigroup, 30
strongly measurable function, 407
strongly stable semigroup, 149, 234
Sturm-Liouville operator, 97, 276
support of a continuous function, 412
support of a distribution, 420, 422, 462
symmetric operator, 84, 98

Taylor series, 35
Taylor series with matrix variable, 17
temperature, 54
test function, 412
time, 21, 26, 31
time-reflection operator, 22, 136, 145
torque, 227, 340, 370
total boundedness, 395
transfer function, 154, 167

unbounded observation operator, 132
uniform boundedness theorem, 31, 144,

156, 396
uniformly bounded semigroup, 149
uniformly continuous semigroup, 31
uniformly elliptic operator, 453
unilateral left shift, 167
unilateral left shift semigroup, 41, 72,

124, 137, 152, 177
unilateral right shift, 121, 167
unilateral right shift semigroup, 45, 65,

109, 137, 152, 331
unique continuation for solutions of

elliptic equations, 462
unit outward normal vector field, 236,

433, 447
unit pulse, 406
unitary group, 58, 60, 61, 114, 189,

207, 214, 258, 291, 380
unitary matrix, 15
unitary operator, 58, 66, 70, 409
unitary semigroup, 58

unobservable space of a finite-dimen-
sional system, 23

vanishing semigroup, 42, 65

wave equation (one-dimensional), 60,
62, 379

wave equation (with distributed obser-
vation), 250

wave equation(with boundary control),
356, 387

wave equation(with homogenous Dirich-
let boundary conditions), 236

wave equation(with Neumann bound-
ary observation), 241

wave packet, 222
weak solution of a non-homogeneous

equation, 122
weak solution of a PDE, 334, 336, 352,

359, 360, 362, 383, 386
weakly convergent sequence, 73, 298,

396
weakly measurable function, 408
weakly stable semigroup, 149
well-posed boundary control system, 330
Weyl’s formula, 107

Yosida approximation, 111
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